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i.e. a simultaneous interpretation of all predicate variables as in-
dividual predicates. An analogous situation is in Henkin [1]. For
a detailed discussion of the already sketched application of part I
to logie, see my paper announced in the footnote 3} of the end of
Introduction. :
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A Note to Rieger’'s Paper ,,On Free $;-complete
Boolean Algebras“?).

By

Roman Sikorski (Warszawa).

The subject of this note is a simple proof of Rieger’s
Theorem 6 2).

Let M be an abstract set, with cardinal m (finite or infinite),
and let . denote the set of all functions f on M, the values of
which are the numbers 0 and 1 only. (Cy, is the so-called generalized
Cantor discontinuum, i. e. the Cartesian product of m spaces, each
of which is composed of the numbers 0 and 1 only).

For aeM let Cn, denote the set of all fe (, such that
fla)=1. For every (infinite) cardinal 1 let ¥y, denote the least
n-additive field of subsets of C,, containing all the sets Cmaq (& ¢ M).

If X is an n-additive field of subsets of a set &, and if I is
an n-additive ideal of X, then the n-complete Boolean algebra
X/T is called an n-quotient alzebra. In particular, every n-additive
field of sets is also an n-quotient algebra (the ideal T then contains
only the emptly set).

Theorem. Fy, is the free n-quotient algebra with m generators
(a e M). ) -

This means:

Cma

3

For every fomily {As}aen 0f elements of any n-quoiient algebra
X/T there ewisis an n-additive homomorphism h of Fn, into X/T
such that h(Cwao)=A. (@ € M). N

1) This volume, pp. 29-46.
2} Loe. cit., p. 41.
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For every aeM let X,eX be a fixed set such that3)
[Xs]=A4,. Let f=c(x) be the characteristic function4) of the fa-
mily {X }sen, that is, the mapping of & into €, which associates
with e & an element fe O, defined as follows: f(a)=1 if and
-only if e X, The mapping

WF)=[c4(F)] for FeFy,
is an n-additive homomorphism of F,, into X/I such that

7 h('dm:a)=[c—i(om,a)]z[xa]zliay q.e.d.
Corollary 1 (Rieger’s Theorem 6). The o-field Fy, s
the free Boolean o-algebra with m generators Cu, (@ e M)5).

This follows immediately from the fact that every Boolean
o-algebra is isomorphic to an s,-quotient algebra ©).

Corollary 2. Every n-quotient algebra X/X with of most m
generators is isomorphic to an n-quotient algebra FyylJ, where J is
a suitable n-additive ideal.

This is a generalization of Rieger’s Theorem 4 7).

*) For X ¢ X the symbol [X] will denote the element (coset) of XTI de-
termined by X.

%) M. H. Stone, On Characteristic Functions of Families of Sets, Fund.
Math. 33 (1945), pp. 27-33. See also E. Marczewski, The characteristic function
of sets and some its applications, Fund. Math. 81 (1938), pp. 207-223.

%) Another proof of this fact follows from Theorem VIII in my paper On
an analogy between measures and homomorphisms, Annales Soc. Pol. Math. 23
(1950), pp. 1-20. That proof is based on Loomis’s theorem for Boolean algebras
with N, generators only.

%) See L. H. Loomis, On the representation of o-complete Boolean algebras,
Bull. Am. Math. Soc. 53 (1947), pp. 757-760, and R. Sikorski, On the representa-

iton of Boolean algebras as fields of sets, Fund. Math. 35 (1948), pp. 247-258
{Theorem 5.3).

7} Loe. cit., p. 39.
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Concerning the Cartesian product of Cantor-manifolds.

By

Karol Borsuk (Warszawa).

1. A set of points?) is called an n-dimensional Camfor-mani-
fold ?) if it is an n-dimensional compactum and it cannot be dis-
connected by a subset of dimension <n—2. .

It is known3) that every n-dimensional Cantor-manifold is
n-dimensional in every one of its points and that

(1) If A and B are n-dimensional Cantor-manifolds and dimA:B}
>n—1, then A+ B is also an’ n-dimensional Cantor-manifold.

We can easily see that if in the formmla
@ (=AXB?Y

A and B are polytopes %) then O is a Cantor-manifold if and only
if both polytopes A and B are Cantor-manifolds. .
! thi i les, that for ar-
In this paper I shall show, by certain examples,
bitrary compacta there exists no relation . between fche Cantor-
manifold property of 4, B and . Namely the following theorem
holds: )

1) It is convenient to assume that all sets of points investigated in this

aper are subsets of the Hilbert space. ) .

" 2) P. Urysohn, Mémoire sur les multiplicités Cantoriennes, Fund. Math. 7
(1925), p- 124. )

3) See for instance C. Kuratowski,
1950, p. 106.

i d B.

1) A xB denotes the Cartesian product of 4 and ) )

5) By a polytope we understand a point-set. contained in ﬂle Hﬂbe;'t; ﬂ]sl})aoe
and having a decomposition in a finite collection of geome}ﬁncal (rec to:a;lr)
simplexes such that every face of each simplex of the c-o]lect.mu belo.ngs— o ]
collection. This decomposition of a polytope is f:%lled its triangulation. Every
set homeomorphic to a polytope is called a curvilinear polytope.
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