L. Rieger. i.e. a simultaneous interpretation of all predicate variables as individual predicates. An analogous situation is in Henkin [1]. For a detailed discussion of the already sketched application of part I to logic, see my paper announced in the footnote 3) of the end of Introduction. #### References. (For further literature, see notes and footnotes of the text). Birkhoff, G. [1] Lattice Theory, Amer. Math. Soc. Coll. Publ. 25 (Sec. Ed., 1948). Gödel, K. [1] Die Vollständigkeit der Axiome des logischen Funktionen-kalküls, Mh. Math. Phys. 37 (1930). Henkin, L. [1] The completeness of the first order functional calculus, J. Symb. L. 14, Nr. 3 (1949). Loomis, L. H. [1] On the representation of a-complete algebras, Bull. Am. Math. Soc. 53 (1947), pp. 757-760. Sikorski, R. [1] On the representation of Boolean algebras as fields of sets, Fund. Math. 35 (1948), pp. 247-258. — [2] On inducing of homomorphisms by mappings, ibid. 36 (1949), pp. 7-22. Stone, M. H. [1] The theory of the representation for Boolean algebras, Trans. Am. Math. Soc. 40 (1936), pp. 37-111. Wecken, F. [1] Abstracte Integrale und fastperiodische Funktionen, Math. Z. 45 (1939), pp. 377-404. # A Note to Rieger's Paper "On Free s_{\$}-complete Boolean Algebras" ¹). By ## Roman Sikorski (Warszawa). The subject of this note is a simple proof of Rieger's Theorem 6^{2}). Let M be an abstract set with cardinal \mathfrak{m} (finite or infinite), and let $C_{\mathfrak{m}}$ denote the set of all functions f on M, the values of which are the numbers 0 and 1 only. ($C_{\mathfrak{m}}$ is the so-called *generalized Cantor discontinuum*, i. e. the Cartesian product of \mathfrak{m} spaces, each of which is composed of the numbers 0 and 1 only). For $a \in M$ let $C_{\mathfrak{m},a}$ denote the set of all $f \in C_{\mathfrak{m}}$ such that f(a)=1. For every (infinite) cardinal \mathfrak{n} let $F_{\mathfrak{m},\mathfrak{n}}$ denote the least \mathfrak{n} -additive field of subsets of $C_{\mathfrak{m}}$ containing all the sets $C_{\mathfrak{m},a}$ ($a \in M$). If X is an n-additive field of subsets of a set \mathcal{Z} , and if I is an n-additive ideal of X, then the n-complete Boolean algebra X/I is called an n-quotient algebra. In particular, every n-additive field of sets is also an n-quotient algebra (the ideal I then contains only the empty set). **Theorem.** $F_{\mathfrak{m},\mathfrak{n}}$ is the free \mathfrak{n} -quotient algebra with \mathfrak{m} generators $C_{\mathfrak{m},a}$ $(a\in M).$ This means: For every family $\{A_a\}_{a\in M}$ of elements of any n-quotient algebra X/I there exists an n-additive homomorphism h of $F_{m,n}$ into X/I such that $h(C_{m,a})=A_a$ ($a\in M$). ¹⁾ This volume, pp. 29-46. ²⁾ Loc. cit., p. 41. icm For every $a \in M$ let $X_a \in X$ be a fixed set such that 3) $[X_a] = A_a$. Let f = e(x) be the characteristic function 4) of the family $\{X_a\}_{a \in M}$, that is, the mapping of $\mathcal X$ into C_m which associates with $x \in \mathcal X$ an element $f \in C_m$ defined as follows: f(a) = 1 if and only if $x \in X_a$. The mapping $$h(F) = [c^{-1}(F)]$$ for $F \in F_{m,n}$ is an n-additive homomorphism of $F_{m,n}$ into X/I such that $$h(C_{m,a}) = [c^{-1}(C_{m,a})] = [X_a] = A_a,$$ q. e. d. **Corollary 1** (Rieger's Theorem 6). The σ -field F_{m,\aleph_0} is the free Boolean σ -algebra with m generators $C_{m,a}$ $(\alpha \in M)$ $^5).$ This follows immediately from the fact that every Boolean σ -algebra is isomorphic to an κ_0 -quotient algebra ⁶). Corollary 2. Every n-quotient algebra X/I with at most m generators is isomorphic to an n-quotient algebra $F_{m,n}/J$, where J is a suitable n-additive ideal. This is a generalization of Rieger's Theorem 4 7). Concerning the Cartesian product of Cantor-manifolds. В ### Karol Borsuk (Warszawa). **1.** A set of points 1) is called an *n*-dimensional Cantor-manifold 2) if it is an *n*-dimensional compactum and it cannot be disconnected by a subset of dimension $\leq n-2$. It is known 3) that every n-dimensional Cantor-manifold is n-dimensional in every one of its points and that (1) If A and B are n-dimensional Cantor-manifolds and dim A $B \ge n-1$, then A+B is also an n-dimensional Cantor-manifold. We can easily see that if in the formula $$(2) C = A \times B^{4})$$ A and B are polytopes 5) then C is a Cantor-manifold if and only if both polytopes A and B are Cantor-manifolds. In this paper I shall show, by certain examples, that for arbitrary compacts there exists no relation between the Cantormanifold property of A, B and C. Namely the following theorem holds: 2) P. Urysohn, Mémoire sur les multiplicités Cantoriennes, Fund. Math. 7 (1925), p. 124. 4) $A \times B$ denotes the Cartesian product of A and B. ³) For $X \in X$ the symbol [X] will denote the element (coset) of X/I determined by X. ⁴⁾ M. H. Stone, On Characteristic Functions of Families of Sets, Fund. Math. 33 (1945), pp. 27-33. See also E. Marczewski, The characteristic function of sets and some its applications, Fund. Math. 31 (1938), pp. 207-223. ⁵) Another proof of this fact follows from Theorem VIII in my paper On an analogy between measures and homomorphisms, Annales Soc. Pol. Math. 23 (1950), pp. 1-20. That proof is based on Loomis's theorem for Boolean algebras with \aleph_0 generators only. ^{•)} See L. H. Loomis, On the representation of σ-complete Boolean algebras, Bull. Am. Math. Soc. 53 (1947), pp. 757-760, and R. Sikorski, On the representation of Boolean algebras as fields of sets, Fund. Math. 35 (1948), pp. 247-258 (Theorem 5.3). ⁷⁾ Loc. cit., p. 39. ¹⁾ It is convenient to assume that all sets of points investigated in this paper are subsets of the Hilbert space. ³) See for instance C. Kuratowski, Topologie II, Warszawa-Wrocław 1950, p. 106. ⁵⁾ By a polytope we understand a point-set contained in the Hilbert space and having a decomposition in a finite collection of geometrical (rectilinear) simplexes such that every face of each simplex of the collection belongs to the collection. This decomposition of a polytope is called its triangulation. Every set homeomorphic to a polytope is called a curvilinear polytope.