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For every A'eJmmir let Fa be the set of all ae X5t
such that (@,a).e B4, A=A'+(m+14+k). By (vii), XF™ iy the
union of all sets By, A’ € Jn,mix. We shall prove the property (iv).

Let A’ e Sm,m-i-ky A=/l’—l—(m—|—1+k) € Sm-{»l,m—l—l—}.—kl Let P'=
=Y{X ...X ¥nyz, where Yj=(a;) for jed’ be any A'-subset of
Xgtk and let P be the A-set of all points (..., Bmix,a) ¢ XTHTE
where a;=a; for jeA. We have PE;<8,. Since P'E, is the set
of all @ e X§H* such that (#,a) e PE4, we infer that P'Ba < 8.

Corollary 1. Let k be any positive integer. -The continuum
hypothesis is equivalent to the assertion that the (k- 2)-dimensional
E-+2

Euclidean space is the sum of ( 5 ) sets Eup®) such that the set

PEg, is finite for every k-dimensional hyperplane P perpendicular
to the i-th and j-th awes of coordinates.

Corollary 2. Let k be any positive integer. The continuum
hypothesis is equivalent to the assertion that the (k--1)-dimensional
Euclidean space is the sum of k-+1 sets B; (i=1,...,k+1) such that,
for every k-dimensional hyperplane P perpendicular to the i-th axis
of coordinates, the set PE; is at most denumerable.

In order to prove the above corollaries it ix sufficient to put
in the Theorem

=0 and m=2,
or: .
r=1 and m=1.

8) Here A=(i,)) e g 42, 1. €. (1,7) is a two-element subset of I4qa.
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This paper is an attempt at a systematic discussion of the
concept of weak convergence of measures. We shall introduce
a neighborhood topology in the set Mz of all measures on a given
set (or space) R, and discuss the relations between the properties
of R and the topology of My This topology specializes to weak
convergence under certain conditions. ‘

The space of measures. Let R he an abstract set with
a class of subsets called ,open—, satisfying, for the present, only

Axiom I: R is an open set.
A measure is a set function defined for all sets, satisfying:

) P(4)>0, (0)=0, BR) finite.

(2) ACB = ¢(4) <¢(B)

(3) 9(24) <f_z;¢<Ai)

(4) ¢(A)=LB ¢(0) for all open sets 0DA (Regularity).
(5) Open sets are (Carathéodory) measurable.

Definition: A unitary neighborhood O(gy,0,a) of a mea-
sure ¢, is the set of all measures ¢ for which @4(0)<@(0)+a and
|p(R)Y—go(R)|<<a, where O is open and a>0.

Any finite product of unitary neighborhoods of g, is called
a neighborhood of ¢,.

The measures on R thus constitute a topological space Mp.
Neighborhoods are open sets, but we shall not prove this.

1) Presented to the American Mathematical Society April 30, 1949. The
author is indebted to Professor Witold Hurewicz for.advice given during the
preparation of thiz paper. . .
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‘We shall state a rather superficial theorem showing that all
results concerning the space of measures can be derived from cor-
responding results concerning the space of normalized measures
(i- e. measures for which ¢(R)=1).

Let M denote the subspace of all normalized measures, and M’
the subspace of all measures except the zero measure. Let I be the
space of positive real numbers.

Theorem 1: M’ is topoiogically equivalent fo M X I.

The one-to-one mapping ‘(q;,m)—}wtp of MxI on to M’ is
2 homeomorphism.. We omit the proof, which is straight forward.
Henceforth, let all measures be normalized.

Theorem 2: M is a T,-space.

Proof: Let ¢y#=¢,. There iz an open .set O for which
®o(0) >¢;(0). For suppose not; then g, <, for all open sets,
and hence for all sets. But ¢, and ¢, are not identical, and
therefore there is an open set 0'-for which ¢,(0") < ¢, (0.  Then
Po(B—0") >¢(R—0'), which is a contradiction. Hence the open
set O deseribed above exists. Let a=g,(0)—gp,(0). Then Olg;,0,a)
is a neighborhood of ¢, which does not contain g,.

Definition: ¢ —>¢ if ¢(0) << Lim #,(0) for each open set O.

This was first stated by A.D. Alexandroff?) as a necessary
and sufficient condition for weak convergence. It is easy to see
that a sequence @, converges to ¢ if and only if ¢ —»p. A priori,
little is known about the properties of thls convergence; for exa,mple,
limits need not be unique.

We shall use the term separable to mean that the open sets
have & finitely additive countable basis. (If B is a topologlcal space,
then this is ordinary separability).

Theorem 3: If R is sepa,mble, then M has the first countability
property.

Proof: Let o be a finitely additive countable basis for R.
We asgert that the neighborhoods O(py,4,7) (4ew and >0 and
rational) and their finite intersections constitute a basis for the

- %) Alexandroff A, D., Additive Set Functions in Absiract Spaces, Rec,
Math. (Mat. Sbornik) N. 8. 8 (1940), p. 307.
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neighborhoods of ¢,. Let (g, 0,a) be any unitary neighborhood
of ¢,. Let r be a positive rational number <<af2. O is the lmit of
sets of o and therefore there is a set 4 e » for which ACO and
¢ol0)—qo(d)<<r. We shall prove that @,(¢y,-4,7) CO{ge,0,a). Let ¢ O,.
Then go(A)<<g(d)+r. Thus ¢(0)<g(d)+r<g(d)+2r<¢(0)+a
Taking finite intersections completes the proof. . '

Corollary: If R is separable, then the O-convergent sequences
completely determine the topology of M.

Equivalent systems of neighborhoods. To establish the
connection between our topology and ordinary weak convergence,
we introduce W-neighborhoods. Also A-neighborhoods are intro-
duced for convenience in proofs. ’ '

Definition: A set 4 is called nbp (null boundary for ¢) if
it is open and there exist a finite number of non-intersecting open

&

sets A;CR—A4 such that Y ¢(d)=¢(R—4). (I E is a topological
=1

space, then an open set A is nbg if and only if ¢(4)=¢(A)).

Definition: A unitary 4-neighborhood HAlp,A,a) of ¢, is
the set of all measures ¢ for which |p(4d)—g¢y(4)|<a, where 4 is
nbp, and a>0.

Definition: A function f on R is called continuous if for each
pair of numbers a, b, the set (a<<f<b) is open or vacuous.

Definition: A unitary W-neighborhood Wigp,,f,a) of ¢, is
the set of all measures ¢ for which

| [1dg— [ fag|<a, :
R R

where f is a bounded, non-negative 3), continuous function, and a >0.
Finite products are then allowed in each definition. M has
been given two new topologies, whose relation will now be discussed.

Theorem <£: Every unitary A-neighborhood of ¢, contains an
O-neighborhood of g. .

3) Henceforth all continuous functions on B will be understood to be
bounded and non-negative, unless the contrary possibility is stated.
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Proof: Let Aipy4,a) be any unitary A-neighborhood of ¢,.
We assert that the intersection of the ¥+ 1 neighborhoods O(p,4,a)
and O(py,4;,a/k) (i=1,...,k) is contained in A. For let ¢ be in this
intersection. Then

k k k
¢(4) <pR—Y 4)=1-) ¢(4)<1—Xgfdd+a=

=1
=1—gy(B—4)+ a=py(4)+a.

On the other hand, ¢y(4)<p(4)+ a. Hence |p(4)—gpy(4)|<a
and ¢ e A.

Observe that the only assumption concerning the class of
open sets is that R is open. Despite the appearance of sums in the
foregoing proof, it is not assumed that the sum of two open sets
is open. If this assumption were made, then the proof could be
slightly simplified. :

Theorem &: Every unitary W-neighborhood of g, contains an
A-neighborhood of ¢,.

Proof: Let W(p,,f,e) be any unitary W-neighborhood of g,.
The set (f=y), being ,-measurable, has p,-measure zero for a dense
class of values of y. We choose from this class numbers y; such that

Yo<LBf<yy<<..<yra<M=UBf<y,

and yi—yea<afd (i=1,..,7). Let A;=(yq<f<y;). The 4, are nbg,.
We shall prove that the intersection of the r neighborhoods
A o, Aryaj4rM) is contained in W(gp,,f,a)-

Let A=)4; and E=R—A.
=1

Let ¢ be any measure (including possibly g,).
W \[ 1ap—3 yin( 4| < (a]4) g(R)=al4.
A =1

Now let ¢ be in the given intersection. g(E)=1—g¢(4d)=
=go(4)—p(4). Thus
‘}'(E):ié;%)(li!) “g;fi(Al) S:S,;lfl‘u(fli) (4| < a/tH.
Hence

@ | fae— [fagi| = [ 1ap < g (B) < afs.
E

E E
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Also
T T I
(3) | 3 yer(de) =3 wepol 4| < M3 g(d) —go( il < aft.
i=1 =1 =1

Adding the four inequalities consisting of (1) as written, (1)
with ¢=g¢,, (2) and (3), we obtain

Vqu —ffd%} <a.

Theorem 6: If the open sets of R are such that R is a normai
topological space, then every wunitary O-neighborhood of g, contains
a W-neighborhood of ¢,.

Proof: Let O{g,,0,a) be any unitary O-neighborhood of ¢,.
There exists a closed set FCO for which ¢ (0—F)<a/2.

We shall say, after A. D. Alexandroff, that a continuous
funetion f joins the closed sets F; and F, if f=0 on F,, f=1 on F,,
and 0<f<1. In a normal space any two non-intersecting closed
sets can be joined, according to Urysohn’s Lemma.

Let f join R—O to F. We assert that Wig,yf,¢/2)CO. For
let ¢ € W. Then

7ol 0) <o F)+ a2 <[ fdgo+aj2< [ fdg+a < ¢(0)+a.
R R

Theorems 4, 5, and 6, together, imply the equivalence of the
neighborhood systems O, 4, W, if R is normal.
We shall now state the usual definition of weak convergence.

Definition: qnf—;([ if / f(lq:n~>f fdg for every bounded,
b4 :

possibly negative, continuous function f.

By decomposing f into its positive and negative parts, it is
easy to see that a sequence ¢, converges to ¢ in the W-topology
if and only if q‘niqw. If R is normal, O-convergence is equivalent
to W-convergence. This was proved by A. D. Alexandroff, using
results on functions of bounded variation. The proof of Theorem 6
is essentially his proof that W-convergence implies O-convergence,
transcribed into neighborhood terminology.
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Theorem 7: If R is a mormal topological spdce, then M is
a Hausdorff space.

Proof: Since R is normal, we may use A-neighborhoods instead
of O-neighborhoods.

Let ¢,5¢, Then there is an open set O on which ¢,=¢, Let
|#1(0)—g»(0)|= 4a. There is & closed set F;CO for which ¢;(0—F))<a
(i=1,2). P=F,--F, is closed and ¢,(0—F)<a (i=1,2). Join R—O0
to F by a continuous function f. For some number y (0<C{y<C1)
we have ¢y(f=y)=g¢y(f=y)=0. Then A=(f>y) is open and both
nbg, and nbg,. Since FCACO, we have ¢,(0—A)<a (i=1,2). The
two neighborhoods HAlgy,4,a) (i=1,2) have no common  points.

Later we shall prove that if R is bicompact, then the converse
of Theorem 7 is true.

In general, we shall not assume that R is normal, and we shall
use the O-topology for M.

Point measures. Separability of M. Let p be a point
of E. We shall define the so-called point measure ¢, associated with p
by saying that @, (E)=1 or 0 according as ¥ contains p or does not.
It is easy to verify that ¢, satisfies the (Caratheodory) condi-
tions 1, 2, 3, and that all sets are ¢p-measurable. g, is not always
regular, and therefore not always admissible as an element of M.
It is obvious that ¢, is regular if and only if the set B—p is open.
Since we shall make use of point measures frequently, and since
E—p open is the minimum condition f01 their admissibility, we
shall introduce it as an axiom.

Axiom II: For each point p, R—p s o:be'n.

If E is a topological space, then Axiom IT is equivalent to the
statement that B is 7,. We shall have no occasion to refer to
Axjom IT directly. Its only use is to insure that all point measures
are actually measures in the sense of our definition.

Theorem 8: If R is separable, then M is separable.

Proof: Let w be a finitely additive countable basis for the
open sets of B. For each set 4 of v choose a point in 4 and a point
not in 4 (unless- A=R), and call D the set of all these points.

Any finite linear combination of measures of M with non-
negative coefficients is a measure of M, so long as the sum of the
coefficients is 1. Denote by N the class of measures tep+ (1—t)gq,
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where ¢ is rational, 0t<1, and p and ¢ are in D. Let Y denote
the class of neighborhoods O.¢,4,r) and their finite intersections,
where ¢ ¢ N, 4 e w, r rational. Clearly &N is countable. We shall
prove that 9 is a basis for the open sets of 3. We must prove that
if ¢, is any measure and O any unitary neighborhood of it, there
exists an element @, e N such that ¢g,¢ O,C0O.

Let ¢, be any measure and 0ig,0,a) any unitary neigh-
borhood of it. )

If O=R, then @=M. Choose Aew, pc4d, p sD, r rational.
Then ¢p(4)=0<gy(4)+r, and therefore g, ¢ O (¢p,4,7) ¢ N.

Now let O=%=R. There is an 4 in o which is contained in O
and for which

1) ' #o(0)—gold)<a/4.

Let ped, ge R—A, p,geD, |p,{d)—t[<a/4, ¢ rational. Let
g=tg,+(1—1t)p,; then ¢ N, and ¢(4)=t. Thus

@ lp(d)—gd)]<ajt

Let O, =0,(¢,4,r) where 7 is rational and a/4<<r<Ca/2. Then

(A) g4 € O, because g(Ad)—gy(d)<a/i<<r by (2).

(B) 0,CO. For let y e O,. Then py(0)<<g4(4)+ aj4 from (1),
gol4) <g(d)+af4 by (2), and p(4d)<p(4)+r because p e O,. Thus
@ 0)<p(Ad)+a/2+r<yp(A)+ a<p(0)+a. Hence y € O{g,,0,a). This
completes the proof of Theorem 8.

It is of interest to note that although the finite intersections
of the neighborhoods of measures in N form avbasis‘ for M, the
set N itself is not necessarily dense in M. Counter exemples are
furnished by the following lemma.

Lemma: Let M, denote the class of measures spp~(1—8)gq
(0<s<1). If R is separable, normal, and compact*), then M, is
closed.

Proof: Let ¢ be a limit point of M,. Since M is separable
(Theorem 8), g is the limit of a sequence of measures of M,. Since B
is compact, we can choose a subsequence ¢,=sSn@p,~+(1—Sn)¥q,
for which p,—>p, gn—>q, Sn—>S- )

1) The lemma is true even if R is not compact, but the preof is then much
longer,
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It is easy to prove that ¢ —> s@,=+ (1—s)¢g. (See Theorem 10
for the method of proof). But also ¢n—°> @. The normality of R implies
uniqueness of limits in M (Theorem 7). Hence g=s8¢,+ (1 —8)qq € M,.

Since the set N is contained in the closed set M,, it cannot
be dense in M.

The following converse of a theorem proved later is given
here because of the weak hypothesis needed.

Definition: R is called compact if every covering of R by
a non-decreasing sequence of open sets is reducible to a finite
covering.

Theorem 9: If M is compact, then R is compact.

Proof: Assume R is not compact. Let 3 0,=R, 0p1,D0,,
n=1
but no O,= R. Choose p, ¢ R—0,. The infinite set of point measures
(¢p,) has a limit measure ¢ (not necessarily a point measure, so far
as we know). Since M is a T)-space, each neighborhood of ¢ contains
infinitely many ¢p,. Name ¢>0. Infinitely many ¢, are in
O(,0x,¢), and hence ¢(04)<<q; (04)+ ¢ for these P, But ¢, (0p)=10
for n>k. Thus ¢(0)<e Hence @(0z)=0 for each k. But this
contradicts 1=¢(R) <'2¢(0k)' Hence R is compact.
k=1

Adxiom IIL: R is a iopological space (i.e. the class of open
sets is finitely multiplicative and unrestrictedly additive, and the null
set is open). )

Theorem 10: R is lopologically equivalent to the subspace M,
of point measures.

Proof: For convenience of notation, we shall identify the
point p with the corresponding point measure ¢.

Let p, be any point in R, and O any open set containing p,.
Then Ogp,;0,1/2)C0. For let ¢pe O. Then ¢,(0)>¢,(0)—1/2=
=1—1/2=1/2, hence =1, and p € 0.

Let Olgp,,0,a) be any unitary neighborhood of ¢, in M.
Then OCO. For let p € 0. Then ¢, (0) <1=¢,(0)<¢,(0)+a, and
therefore ¢, e O.

Some immediate corollaries are:

(1) If M is a Hausdorff space, so is R.

icm
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(2) If Eis bicompact, then it is normal if and only if it is a Haus-
dorff space. Hence, combining (1) with Theorem 7, we have:
If R is bicompact, then M is a Hausdorff space if and only if
R is normal.

(3) If M is separable, then R is separable. Combining with Theo-
rem 8, M is separable if and only if R is separable.

Compactness of M. Theorem 11. If R is a compact, separable,
Hausdorff space, then M is bicompact.

(The hypotheses imply that R is metrizable. In a metric space
our measures are seen to be equivalent to those of Kryloff and
Bogoliouboff?). They proved the compactness of M. Our proof
is shorter and purely topological in character, while theirs is strongly
metric).

Proof: Let o be .a finitely additive countable basis. Every
open set O is the sum of a non-decreasing sequence (4;) of sets of w.
We shall call such a representation of O admissible if 4,CO for
each i. The hypotheses of the theorem imply that R is regular, and
therefore admissible representations exist for each open set. Also,
if (4;) is an admissible representation for 0, and (B;) is an admissible
représentation for O,, then (4;+B;) is admissible for 0,4-0,.

Let a sequence of measures be given. By the diagonal process
we may choose a subsequence (p,) convergent at each set of w. Call
the limit 6. Then ¢ (4)—6(4) for each 4 in w.

We shall prove that if (4;) and (B;) are two admissible repre-
sentations for 0, then Lim 6(4;)=Lim 6(B;). Let 4; be a definite 4;.

A, is closed and contained in 3 B;, which are open. Since R is compaet,
i=1

» N
4,C3 B;=By. Hence 4,CBy. 1t follows that Lim 6(4;)<Lim 6(B;).
=1

Similarly Lim 6(4;) > Lim 6(B;). Hence the two limits are equal.
Let O be any open set. Define ¢(0) = Lim 6(4;), where (4;) is
any admissible representation for O. Aecording to the preceding
paragraph, this definition is independent of the choice of the ad-
missible representation. ’ .
We now prove that the set function ¢ (defined on the open
sets) has the following properties.

5) Kryloff N. and Bogolioubotf N., La Théorie Générale de la Mesure
dans son Application & UEHtude des Systémes Dynamiques de la.Mécanigue Non
Linéaire, Ann. of. Math. 38 (1937), p. 65.
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; @(0)20, ¢(0)=0:

Proof trivial.
(B) 0.C0,=>9(01) < 9(02).

Let (4;) and (B;) be admissible representations for 0, and 0,
respectively. Then (4,4 By) is admissible for 0,4+ 0,=0,.

@(0y) =Lim 6(4;) < Lim (4,4 B)=p(0,).

{0) (014 0p) < 9(01)+¢(05).

Let (4;) and (B;) be admissible representa.tlons for 01 and 0,.
(0,4 05) = Lim 0(4;+ By) < Lim 6(4,) + Lim 6(B;) = ¢(0,) + 9(0s)-

D) 9(20)<2¢0\
n=1
Proof by induction on N.
(E) q(20)<2¢ 0y).
n=1 .

Let: (A ) be an admissible representatmn for 0= 2 On. Let A
be a definite 4;. Then A,CO. Hence A,,C Z 0,. Therefore 4, can

be made to form part of an admissible representation for 2 On,
n=1

and 6(d4x) < ¢(20n)<2<p(0 <24’ (0,). Since @(0)=Lim 8(4,),

inequality (E) follows

{F) 0,0,=0==>¢(0;+ 0,)=¢(01)+¢(05).

Let (4;) and (B;) be admissible representations for 0, and 0,.
For each i, A;B;=0. Hence @u(d;+B)=ea(d)+¢a(By), from
which follows 6(A;+ By)=0(4;)+ 6(By). Letting ¢ approach infinity,
we obtain (F).

We now extend the set function ¢ from the open sets to all
sets by ¢(B)=LBg(0) for all ODE. It can be proved by standard
methods, as a result of Properties A, B, and B, that ¢ is a regular
outer measure (i. e. that it satisfies eondltlons 1-4 of our definition
of measure stated in the first section).

‘We must prove next that open sets are p-measurable. To do
this we could merely quote Caratheodory’s®) theorem (valid in any
‘metric space) that open sets are measurable. But we may avoid all

6) Carathéodory C., Vorlesungen iiber Reelle Funktionen (1927).
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reference to a metric by making a very slight modification in the
Caratheodory proof. Our hypotheses are the same as his except
that ¢(44B)=g¢(4)+@(B) is implied by separation of 4 and B by
non-intersecting open sets (Property F) rather than d(4,B)>0.
Let O be open. Since R is corapact, we can choose an admissible
representation (4;) for O with the additional property A;CA gy
Then proceed exactly as in Caratheodory.

This completes the proof that ¢ is a measure. Now we prove
that ¢, ~>¢. Let O be any open set, and (4,) an admissible repre-
sentation for 0.

@(0)=Lim 6(4;)= L1m legrn(A,) le le ¢,,(0)-le ¢a(0).

oo

Thus ¢,~> ¢, and M is compact.

Finally, R separable implies M separable (Theorem 8), and
therefore M is bicompact.

Theorem 9 implies the converse of Theorem 11. Combining
them: If B is separable and Hausdorff, then M is compact if and
only if R is compact. ’

Let R be a compact metrizable space.

R compact metrizable =>R compact, separable, Hausdorff,
normal => M bicompact Hausdorff => M normal. Also R separable
=> M separable. But M normal, separable => M metrizable. This
and similar reasoning applied in the reverse direction yields.

Theorem 12: M is compact and meirizable if and only if B is
compact and metrizable.

An explicit metric for M can be obtained as follows: Since E is
compact and metrizable, the space of continuous functions on & is
separable (in the umform convergence topology). Let (f) be a dense
sequence of functions in the unit sphere. Then

(#p)= "k\ f frdg— f Fady|

is a metric for M.

When R is not Hausdorff and separable, the truth of R eompact
and T;=>M compact is an open question. We have resolved the
question for the following special class of spaces E.

Let I be a T,-space, « a symbol, R=TL+c. Let the closed
sets of R be the finite subsets of L and sets F+4 a, where F is closed
Fundamenta Mathematicae, T. XXX VL. 3
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in L. R is a compact T-space. We have given a proof (omitted here)
that M is compact for such spaces R=IL-ta.

I) Let L be discrete and non-denumerable. Then R is Haus-
dorff and mot separable, and M is compact.

A special case of R=1L- « is the space K whose closed sets
are R itself and its finite subsets.

II) Let B be non-denumerable. Then R is not Hausdorff, not
- geparable, and M is compact.

IIT) Let R be denumerably infinite. Then R is separable and
not Hausdorff, and M is compact.

Thus B Hausdorff and R separable are not necessary, either
singly or together, for the compactness of M.

icm

On Free x-complete Boolean Algebras.
(With an Application to Logic).
By
Ladislav Rieger (Praha).

A Boolean algebra 4 is said to be Ns-complete if any subset
of elements of 4 the power of which does not exceed x:has a g.1. b.
and a l.u.b. in 4. An g;-ecomplete Boolean algebra A is said
to be free with m free Ne-generators (where m is any eardinal number)
if there exists a subset GCAN the power of which is m so that &
has the following properties:

(i) The only s:-complete subalgebra of Ay containing G is
A% jtself. (We say that the elements of G sg-generate A5).

(ii) If @ is any mapping of & into another xs-complete algebra
B then @ can be extended to a x:-complete !) homomorphic mapping
of the whole algebra A into B.

Familiarity with these and other (better known) basic notions
of the theory of Boolean algebras will be assumed. I refer to a brief
exposition of these notions in R. Sikorski’s papers [1] and [2]
(this Fund. Math. 1948 and 1949). For a more extensive treatise,
the monograph of G. Birkhoff [1] on Lattice Theory (sec. ed. 1948)
is recommended. B

Note that hy an e-ideal (the symbol due to M. H. Stone), I understand
what sometimes is called a dual idedl, i. e. a (nonvoid) subset I of the algebra 4
in question so that if a,be I then aNbel and if aCd, ael then bel.

Of course, to each of the theorems of the present paper there is a dual
one. The dualisation is left to the reader.

1) Instead of N:-complete Boolean algebra and Ng-complete homo(iso)-
morphie(ism) and Ng complete ideal we simply say Ns-algebra, Ng-homo(iso)-
morphie(ism), R ~1dea1 resp. Especially, & homomorphic mapping f is said to
be R -homomorphic if j(Ur.)—U jl:) holds for any set I of indices with

card (I)<<Ng. N isthen sa.ld to be the level of completeness. Instead of the prefix R -
we use the more common symbol o-(R,-algebra = o-algebra, Ry-ideal= c-ideal,...).
3%
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