Correction to the paper "Some Impredicative Definitions in the Axiomatic Set-Theory" by Andrzej Mostowski. (Fund. Math. 37, 1950, p. 118). Dr Hao Wang from the University of Harvard has called my attention to the fact that a statement made on p. 118 of my cited paper is incorrect. Contrary to what is said in the quoted place the scheme (Σ) if Φ is provable in (S), then Φ is true contains formulas which are certainly unprovable in (S') provided that the system (S) is consistent. Indeed, if Φ_0 is an arbitrary formula of (S) such that the negation of Φ_0 is provable in (S), then the sentence if Φ_0 is provable in (S), then Φ_0 is true could be provable in (S') only if (S) were inconsistent. The correct wording of the scheme (Σ) is as follows: (Σ^*) For every Φ — if Φ can be proved in (S) in at most n steps from at most n axioms, then Φ is true (n=1,2,3,...). It is exactly this scheme which is actually proved in the paper (cf. scheme (Σ_{11}) on p. 121). The scheme (Σ) although stated in the introductory remarks to the section 2 was neither proved nor used anywhere in the paper. For symmetry one could still reformulate the theorem (T) on p. 118 as follows: (T) For every Φ and every n — if Φ can be proved in (S) in at most n steps from at most n axioms, then Φ is true. Note that in the incorrect scheme (Σ) it is the letter " Φ " which has to be replaced by an arb trary formula of (S) in order to obtain a sentence of (S') whereas in the correct scheme (Σ^*) the variable " Φ " is bound and a sentence of (S') can be obtained upon substituting an arbitrary numeral 1.2... for the variable "n".