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where @ri(py, s D)= [E(Fx (2, ..., 8, )] ). Olearly the two-valued
function ¢™ may be interpreted as the characteristic function of
a set K, the elements of which are m-element sequences of positive
integers.

This means (see the proof of [TG](i)) that the sequences

{n}n=1,2,... ‘and {Kgi}m,n:],Z..,.

satisfy simultaneously all the formulae aeA.

%) According to [TG], §5, the symbol [a] denotes the element (in B/p)
determined by an element a e B.
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On the application of Tychonoff’s theorem in mathe-
matical proofs.

By

J. Lo§ and C. Ryll-Nardzewski (Wroctaw).

In this paper!) we shall give two theorems: one, effective?),
on finite properties (Th. 1), the other non effective, on consistent
choices (Th. 2). Both those theorems are closely connected with
Tychonoff’s theorem on the product of bicompact spaces %), according
to which ¢)

(T) the product of as many bicompact spaces is bicompact in
product topology.

This theorem is often used in existence proofs; the theorems
presented here are to some extent a scheme of such proofs.

The proofs given in this paper are effective, with exception
of two cases in which the theorem of Tychonoff (T) is umsed. All
proofs of Tychonoff’s theorem are non effective, i. e. all in its proofs
the principle of choice is used. In another paper we shall prove
that no effective proof of this theorem exists 3).

1) Presentegl to the Polish Mathematical Society, Wroctaw Section, on
October 27, 1950. .

2) Effective, i. e. no transfinite methods are used in the proof of this
theorem.

3) By a topological space we understand in this paper a Hausdorff's space.

4) Cf. e. g. N. Bourbaki [2], p. 63.

5) In the previous volume of this Journal J. 1. Kelley [3] has shown
that the theorem of Tychonoff for Kuratowski’s closure spaces implies the axiom
of choice. In the proof of this implication unfortunately there is a mistake (the
set Zq considered on p. 76 is open and non closed), which however can be easily
corrected.
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' 1. Let X, be a set of arbitrary elements, W a property de-
fined for subset of X,; I(E) means: E has the property 2. ‘
(1.1) W is called a finite property if it fullfils two conditions:
(1.1.1) E,CE,CX, and I(H,) implies W(H,), S
(1.1.2) If W(E) for every finite BCE,CX,, then W(E,).
(1.2) Let Y, be a set, and Wy, for y ¢ ¥, a property defined
for s'u‘bset.of‘Xo. The faitiily  {B,},cv, iscalled a compact family
of finite .properties .of X,, if every property of this family is
finite and ‘ . o
(1.2.1) for every finite ECX, there exists such a y ¢ Y, that
s, (E),
(1.2.2) ¥, is a bicompact space and for every finite HCX,
the set : :

708 = F, [3,(F)]
is closed in X, ’

. Theorem 1 (on finite properties). If {Wylyey, i§ @, CoOmPact
family of finite properties of X, then Wy (X,) for some yy e X,

Proof. From (1.1.1) and {1.2.1) we have for every natural n
and for finite subset By, B,;...,E, of X,

,-Q T(E)DT (I;ZE,)#«).

Since Y, is compact and T(E), for finite &, closed in ¥,
we have v
T= ][] T(E)==0.
ELX,
E<s,

Let y,eT; then obviously W, (H) for every finite ECX,,
and by (1.1.2) By, (X,). . .

2. Application. We shall show how theorem 1 may be applied
to prove the following well-known theorem ¢):

(2.1) If — is a partial ordering relation of the set X, then

t]flere exists a (simply) ordering relation <2 which is an extension
of —.

®) Cf. E. Szpilrajn-Marczewski [4].
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Bvery binary relation B defined for elements of X, may be
considered as a funection on Xa=X,X X, such that f({zy,zs>}=1,
it 4, Rw,, and =0 in the contrary case. Let ¥, be the set of all binary
relations definite for elements of X, in view of the above statement,
¥, is the product (1,0)X3. The set (0,1), as finite, can be considered
as a bicompact space, and finally, in view of Tychonoff’s theorem,
Y, is a bicompact space. For y « ¥, and BCX,, denote by IB,(E)
the property: the -relation y is an extension of —- -and’ orders E.
Tt is easy to see that” {Wylycy, is a compact family of-finite pro-
perties of X,, and so in virtue of theorem 1 one Yo=-=3 € ¥, exists,
so. that W4 (X,), which is precisely the thesis of theorem (2.1).

8. The theorem of consistent choice.

(3.1) If P, and P, are topological spaces, ¢ a binary relation
defined for p, P, and p,eP, then we say that o is closed
between P; and P,, if the set F [p.op,] is closed in the product
space P; X P, <pup>

(8.2) If {Polrex is a family of compact. spaces, then every

symmetrical relation o defined for py,p,e 3" P, shall be called
x<PyRg

relation of consistency if it is closed between each pair of different
spaces of the above-mentioned family.

(3.3) The function y(z) defined for z¢ X, and such that y(z) e Px
is called a choice from the family {Pilrex,- If o is a relation of
consistency for the family {Py}rex,, the choice y is called o-con-
sistent on BCX,, if y(z)oy(x,) for z,x,¢ B and &=,

Theorem 2 (on consistent choice). If {Px}xex, 18 @ family
of bicompact spaces, o a relation of consistency for this family, and
if for every finite E e X, there ewists a choice from {Pi}xex, o-CON*
sistent on B, then there also ewists a o-consistent choice on X,.

Proof. Let Y, denote the product P P, and consider Y, as

xeX,
topological space in the product topology. It follows from the
theorem of Tychonoff that ¥, is a hicompaect space. Every y e Y,
is evidently a choice from {Pi}rex,. Let for ECX,, W, (B) denote
the property: ¥ is a o-consistent choice on E. The family {%y}gev,
is obviously a compact family of finite properties of X, (from the
continuity of o it follows that T(E)= E; [, (E)] is closed); therefore
e

the theorem 1 asserts that for someuyoe Y, we have Wy (X)),
which expresses that y, is a o-consistent choice on X, q. e. d.
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4. The case of finite spaces. If every space-of the family
{P:}x.x, is finite, then every symmetrical relation ¢ defined for

elements of ) P, is a relation of consistency for this family. In

xeX, . .
view of this we can formulate the theorem 2 as follows:

Theorem 2% If {P.}xcx, i a family of finite sels, o a sym-
metrical relation defined for elements of D, Px, and if for every finite
xeX,

ECX, there exists a choice from this family o-consistent on B, there
also ewists a o-consistent choice on the whole X,.

In some of the proofs it is convenient to use the theorem 2%
instead of theorem 2. It is interesting to note that both theorems
are effectively equivalent.

5. Application. Let W be a vectorial space and GCW its
subspace; let g(w) be a functional defined on W fulfilling the con-
ditions (w;,w, ¢ W, 4 a real number):

(B1) oyt < glw)+g(wy);  Aglwy)=g(hwy), 130,
and fw) a homdgeneous and additive functional on G and such

that

(5.2) flw) < g(w), for wed.

Let X, denote the family of all finite subsets of W and for
X e X, let P, be the n-dimensional closed interval JP[—g(—w),g(w)]
weX .

(where n is the power of-X). Every pe P, may be considered as
a function p(w) defined for w ¢ X and such that

(6.3) —g(—w) < p(w) < g(w).

We shall say that p e P, is a partial extemsion of the func-
tional f, if

(5.4) p(w)=f(w) for we G -X,

(5.5) for wy,wy,w+wy e X we have p(w;+w,)=p(ews)+p(w,),

(5.8) for w, 2w ¢ X we have Ap(w)=p(lw).
We set, for X, X, e X, and p, € Py, P, € Py,

(6.7) pyop, if and only if both p, and p, are partial extensions
of the functional f and, besides, are equal on X, -X,. ‘

It is easy tosee that o is a relation of consistency for {Px}xex,
and that moreover for every finite subset of X, a ¢-consistent choice
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exists. From theorem 2 we see that there exists a function ¢(X)
which is a o-consistent’ choice on X,. By setting for w e W

(5.8) F(w) =[p(X)|(w),

We obtain a functional which fulfils in the whole space W

the conditions (5.3)-(5.6) (for p=F, and X=W).
~ Thus we have proved the well-known theorem of Banach on
the extension of functional 7). .

The theorems 1 and 2 may be used in proofs of many other
theorems 8) which deal with the extension of some finite properties
from @ subset of the given set on the whole set. The application
of the theorem 1 generally requires the use of Tychonoff’s theorem.

where w e X ¢ X,.
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