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tinues {fn(é)}nco, OU fu(é) =0 pour £Ln et pour £>w et fo(€) =1
pour n<éKw.

Il est & remarquer que pour les fonctions réelles d’une variable
Téelle on a la proposition suivante:

La limite d'une swite infinie mon décroissante d’une variable
réelle continues partout du cbté gauche est une fonction continue partout
du cbté gauche.

En effet, soit f(z)=1limf,(#) la limite d’une suite infinie non

n=oo

décrf:issante de fonctions non décroissantes d’une variable réelle

continues du c6té gauche. Soit , un nombre réel quelconque et &

un nombre positif donné. Comme f(zy)=1imf,(#,), il existe un
n==co-

nombre naturel m tel que f(2g) —e<fm(®y). On a done 7= f(z,) —

—f(®y)+&>0. La fonction fn(#) étant continue au point z, du

©0té gauche, il existe un nombre 6>0, tel que fm(@)>fm(®)—n

(f’est—a-dire fm(®) >f(2y)—e pour z,—dé<w<wm, La suite {f,,(m)},,<,:.

4tant non décroissante, on a d'aprés Lm fu(#)=f(®), f(x)>fn(z),
n=co

done - f(x) ?f(wo)—e pour. g,—d<x <, et, la fonction f(x) étant

non dégrm.ssante (en tant que limite d™une suite infinie de fonctions

mnon déecroissantes) on a f(w,) > f(#) pour z<ax, On a ainsi
H@)—e< f(w) <flwy) pour m—d<az<a,

<e qui prouve que la fonction f(x) est continue pour w==m, du c6té
gauche.
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Some Remarks on.Automorphisms of Boolean
Algebras™),

By
" Ladislav Rieger (Praha).

The main subject of the present paper is the construction
of an algebra B admitting no proper homomorphic mapping onto
itself 2). :

BEspecially, B has no proper automorphism, i. e. we get 2 nega-
tive solution of the known problem (see (L), problem Nr 74, p. 162
and the problem listed at the end of the first edition (1939) of this
book) as to whether each algebra must have a proper automorphisms®).

The elementary construction of B is essentially a topological
one, i. e. we solve an equivalent topological problem in disproving
the known hypothesis (see e.g. (L), p.174) that every zero-di-
mensional bicompact space should admit some proper homeomorphie
transformation onto a suitable subspace of it. Actually, we have
an ordered zero-dimensional bicompact space without such homeo-
morphic mappings.

A remark is added concerning the construction of algebras
with rather singular automorphism-groups, which may be of some
interest from the point of view of abstract ergodic theories 4). Some
consideration of a part of problem Nr 75 of (L) (of whether a certain
dual-automorphism-property is typical in Boolean algebras) con-
cludes the paper.

1) For basic notions of the theory of Boolean algebras (in the sequel, the
attribute ,Boolean” will often be omitted) see G. Birkhoff, Lattice Theory,

Amer. Math. Soc. Coll. Publ. XXV, Sec. Ed. (1948), quoted as (L)

2) The result was communicated by the author at the session of the Po-
lish Mathematical Society in Warsaw on January 26-th 1951.

3) Recently M. Katétov (Praha) has given an elegant solution in which
he uses the theory of Cech bicompactification. Katstov’s result will be published
in Coll. Math. (1951) and has priority.

4) Cf. P. R. Halmos, Trans. Am. Math, Soc. 86 (1944), p. 1-18.
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Theorem 1. There exists a zero-dimensional bicompact ordered
(consequently hereditarily normal) space Q* without proper homeo-
morphic tramsformations onto any subspace Q, of Q*.

Proof. Let Py be the set of pairs (a,n) such that
(0 m=0,1%, . - (i)« arg.ordinals with 1<a <o,

where w, is the initial ordinal of the (n-+1)-st Cantor class (i. e
card (wa)=»~,). - .
Py is well-ordered in the following (lexicographical) sense:
Ay e Sl

(a,n)<(a’,n)
if and only if eithet n<n’ or n=n’, d<d’. ‘

Let the well-ordered’ set P, be defined for n3>1 so, that
PnpyCP,. ' " K
" We introduce the following notations:

.. ®,Y,%5... are arbitrary elements of an& Py (lbc=1,2,‘..),‘

(small"Greek letters denote ordinals), ord,(#) i3 the ordinal of the'
place.a of the element we P, in‘the well-ordering 6f P, T (%) = g is
the initial (i. e. the lowest) ordinal of the (§+1)-th Cantor claﬁé of
ordinals (i. e. catd (wg)=xs),"where # ¢ P, and =~ BN

"€ = gup (ordy_y(y))+ ord,(z)

. yEPn'—.i

{the first summand being 0 for n= 1).
'No_w let us form- the set .

(lym)7’(27w); o {ay @), ..., ("m(m),w) (

;féall<the( (;rdered pairs whose first members are 01'dinais with
<K oa<{"o(2) and whose second members i imit
iy TS are e P, with non-limit

.. Then we get P, 4DP, by adjoining this set of pairs to P,

Determine the well-ordering in Prys as follows: )

; a) The ordering relation between eleme: . i '
remains ‘the same as before. ' o Pa i P
B b)“'(ﬂ,w)<(y,y),if‘ either; <y in P, or =y yet f<y < ()
c'v),If.xa;.s,P_,..:ajnd 2= (B,y) € Ppyy—Py, then #<(B,y) whenever
o<y in ‘1;,.-, andna;_>(§,y) ‘Whenever >y in P,. ‘ :

[
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By .induction, the P, are well-ordered, as it is easy to see.

. )
Next, put P=2 P.
' n=1

Then P clearly is a densely ordered set if we define z<y in
P, whenever z<y in the first Py with # e Py, yePs.

“ Consider the subset @ of P consisting cf all the elements zeP.
of the form w:(“w(y),y) (with a suitable y e Pnyy). .

Clearly @ is a denscly ordered set. Between any two different
elem>nts # and y of @ there is an element zeP—@, whence the
gaps cf @ lie densely in Q.

Consider @ as an ordered space. Then, as can easily be seen,
any two different poinss %) u=("w(m),m) and v:(‘"w(y),y) have
diffarent topclogical characters, i. e. the cardinals ¢ and S, Where
no(@) = g, mo(y)=wy. ‘ _

_ F.nally, consider the gaps I'=(Q;,Q,) of @ (where 0,9, are
the lower and the upper classes of the corresponding proper De-
dekind cut). ’ ) ’

To any I'=(Q;,@,) let correspond the following ideal points:

(1) To the gap I'=(0,@) there corresponds only one ideal
point, i. e. the left end-point, say 0.

(2) To the gap I'==(Q,8) there corresponds only one ideal
point, i. e. the right end-point, say oo.

(3) To any I'=(Q,@,) With Q1= 0@, there correspond exactly:

. two ideal points,.i.e. the left ideal point, say 17, and the right

ideal point, say Ir. i

Adjoining all these ideal points to the real points of @ we get
the set @*. : :

Debermine the ordering-relation in @* as follows:

(a) The ordering between real points remains the same in Q%
ag in Q. ’

(b) If 4, A’, are two ideal points corresponding to the gaps
I, I, then A<A’if either I'<I” (in the obvious sense of the ordering
of the gaps cf Q) or I'=I", A=TIy, A'=T%.

(e) If # is a real point and A an ideal point corresponding to
the gap I'=(Qy,Qy), then s<A if ze@y, and o>A4 if @eQ,. ’

5) For basic notions of Genergl Topology .see e. g. Kuratowski, Topolo-
gie I. The topological character of a point x-of the topological space T is known
to be the lowest power of a system &, of open sets Ge &, containing z, 80 that

any open U containing » contains some Ge&,. Clearly, the topological chgutaeter
of a point is a topological invariant (under homeomorphie tl'ansforma,tlons).
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212 L. Rieger:

It is easily seen that @* has no gaps (and has the lowest and
the highest element) in the ordering just defined. Hence the ordered
space Q* is bicompact ) and zero-dimensional as follows from its
congtruetion.

We also easily see that @ is dense in * and that the topolo-
gical characters of the real points #e@ remain the same in Q* ag
in @ (i. e. different for two different real points). (Note that the
open-and-closed intervals of the forms ‘

Jn<i<ry= E\T<i<T) (where I'<I")
or

EI<0=E(I<t) or F<l)=F (<) .(+)

teQ* €Q* Q¥

constibute an open basis of @*).

Now, the following statement (A) follows almost immediately
from the construction of Q* (wg denotes the initial ordinal of the
(§+1)-th Cantor class):

(A) A point #e@Q* is real if and only if

(1) there exists such a countable sequence u, that

,}LI: Un=Y, Un€Q*

Un=FY,

and simultaneously

h (i) there exists such a transfinite sequence vg (1< < wg, &> 0)
at
Lim V=Y,

v,
p<og B Y,

@pEQ*.

Th_e cardinal ®g is then the topological character of x; thus
the ordinals wg are different for different real points.

Now lf“‘t us return to the proof?) that any homeomorphie
transformation & of Q* onto its subspace &(Q*) is an identit
mapping. Y

Let # ¢ Q* be a real point. Then z=lim Gn=1mn by, =k 22 by

p<og ’

) <
in the sense of the statement (A). There;o;g

Y¥=>(z)=1m &(a,)=Ilim D(bg),

n<ay p<og P(an) f’:y*qs(bﬁ)'

%) Cf. Haar-Kénig, Crelle Jour. 138 (1910) (
g, © . , P- 16-28, or (L), p. 41,
7) I owe to R. Slquskl the present simplification of this'p)roff.
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Since the convergence in the subspace ®(Q*) obviously implies
the convergence in Q*, the statement (A) requires z=y=0(x).

But since the real points xe@Q* form a dense subset of Q¥
we get @(z)=2 for each point zeQ* q.e.d.

Theorem 2. There exisis a Boolean algebra B without proper
homomorphic mappings onto iiself. :

Proof. Denote by B the set-field (i. e. the algebra) of all the
open-and-closed subsets of the space @* of theorem 1. (This algebra
is generated by the open-and-closed segments (=) below).

Then, as it is well known (cf. (L), p. 174, Ex. 3), B cannot

‘have proper automorphisms (the automorphism-group of B and

the homeomorphism-group of Q* are essentially the same).
Suppose there were a homomorphic mapping @ of B onto B
ifself. Then (by the well known first lemma on isomorphism for
algebrag) we would get the isomorphism B/I=B, where I is the
ideal of all elements of B mapped onto the zero of B.
From M. H. Stone’s representation-theory for Boolean alge-
bras 8 we know that.the ideal J is topologically characterized as

the set of all the open-and-closed subsets of @* contained in

a certain open set @3CQ* (@5 being uniquely determined by ).
Moreover, it is well known and easily seen that the above-mentioned
isomorphism B=B/J is topologically a homeomorphism of the
space Q* with its subspace @*—@Qg3. Hence our theorem follows
from the preceding one.

Remarks on theorem 2. The power of the space @ can easily
be computed: it is the cardinal m=8,+ Ry, + Ne,, + -

Hence the space @* and the algebra B both have the unsatis-
factorily high power n, where m<nu<2™ This is, of course, a dis-
advantage of our elementary construction. The above-mentioned
result of Katétov is much better in this sense, since his resulting
algebra has the power of the continuum. On the other hand, more
important questions, e. g. as to whether there exists complete, or,
at least, a o-complete algebra without proper automorphisms, seem
to require constructions of spaces of a rather high power, similar
to the present construction.

Let us return to the few remarks concerning the construction
of algebras with rather singular automorphism-groups.

8 Cf. M. H. Stone, Trans. Amer. Math. Soc. 40 (1936), p. 37-111 and
ibid. 41 (1937), pp. 375-481, or (L), p. 174.
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There are two basic methods for this purpose:
(1) We form the space '

Q' =Qt+ Q5+ .4}

-as a set-sum of disjoint spaces homeomorphic with the space @* of
theorem 1. Obviously @' is a zero-dimensional bicompact space
and the summands QF are open-and-closed in @’. The group ® of
homeomorphic transformations c¢f @’ onto itsclf, i.e. the auto-
morphism-group ® cf the algebra B’ of all open-and-closed subsets
«of @', hag the following properties:

(a) ® is an infinite group each element of which has a finite
order not exceeding n! (Remember that there are at most n different
points in the sequence ¥, O(t), P¥1)... for any D« ©).

(b) Let k& be any positive integer. Then the direct product
of k symmetric groups &, of degree n (i=1,2,...,k) is contained
a§ a subgroup in ®. Indeed let us decompose each ¢F in the same

manner in a set-sum Z Q%=@; of non-void disjoint open-and-
=1

closed summands (i. e. me Q% with fixed ¢ are mutually homeo-
morphic). Then the @ e S,y are the homeomorphic transformations
of Q' onto itself which permute all the summands @% (for fixzed
4 and §=1,2,...,n) in an arbitrary way without changing the points
of the rest of the space @'.

(c) Bspecially put n=2. Then the elements (different from
“the identity-mpp ‘ng) of & obviously are all of the order 2, whence &
is an infinite Abelian group (for (Py@,) =0 ,P,=D,P,).

(1') The above elementary construction-method of (1) csn be
considerably enriched by admitting that some of the summands
’Qj have non-void open-and-closed intersections.

) " (2) The second basic method of constructing Boolean algebras
for the given purpose is that of forming direct products. Especially,
we easily see that to any power m==0 there are various non-iso-
‘morphic tiypes cf algebras with the same symmetric group S,=G6
(cf all permutations of m elements) as the automorphism-group 9).

So e.g. the finite algebra of all subsets of some aggregate
of n elements (n=1,2,3,...) has the same symmetric automorphism-
group S, as the algebra B, X B, X ... X B,, where B;=2B and B is
the algebra of Theorem 2. ‘

9) In the case of an infinite m we also can use the known fact (see e. g. (L),
p. 45) that the Cartesian product of bicompact spaces is hicompact too.
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-Combining (1')-with (2) we get further constructive possibi-

‘lities. We do not enter here into a detailed and sys’sem&tma,l discus-

gion -of these possib lities.
Let us conclude with a small remark on problem Nr 75, p.162

_of (L). Verbatim, this problem (ascribed to M, Ward) is as follows:

Does there exist a (finite) lattice, not a Boolean algebra, which
has a dual automorphism o of period 2, permutable with every lattice

-automorphism? Must o be unique? What about non Desarguesmn
. projective geometries?

The first question can be answered in the afﬁrmamve, by
giving trivial example of a finite or of a suitable complete infinite
chain, that is by complete distributive lattices. In the finite case
L=1<2<..<n we put, of course, o(k)=n—k, whereas evidently
there is only the identical automorphism. In the infinite case, put
e. g I'=1<2<..<+oco=—00<..—2<—1, as perhaps the simplest
example of a complete distributive lattice of the desired kind,
and set o(k)=—%k for k=41,42,..,400. By an easy inductive
argument, it can be proved that also L' has only identical auto-
morphism. In both these cases, of course, ¢ was unique.

As for the second uestion, note that any example of a dual
automorphism ¢ desired in the first question furnishes at once
a negative answer to thesecond one, whenever the lattice in question
has an automorphism a of period 2 which lies in the centre of its
automorphism group. Indeed; in:this case each transformation
¢'=ca=ac is a further dual automorphism of the period 2, for
aa(a%b):a[a(a)ga(b) J=0a{a), Noa() and (oa)i=oceca=o2ed=1.

Of course, ¢’ =ca is permutable with any automorphism g
(of the lattice in question) since (by hypothesis) o'f=(ca)f=
= gBa=foa==f(ac)=fa’".

In order to ha,ve a simple concrete finite example of a (distri-
butive) lattice of this kind, let us adjoin a new unit % and a new
zero z to the four-element Boolean algebra a, ', ala’, aNa’, by
setting uiaUa’ and #SaNa’. The obvious verification of the
desired result may be left to the reader. If we wish to have an
infinite distributive lattice with more than one dual automor-
phism of period 2 permutable with any automorphism, then we
have simply to adjoin both the chain of positive and of negative
integers instead of w and #z respectively, to the above four-element
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Boolean algebra. But if we desire to have a non-distributive (though,
of course, modular) example of the kind just mentioned, then it
is sufficient to take the (simplest) five-element modular and non-
distributive lattice instead of the above four-element Boolean
algebra, and to perform further 4 symmetric adjunctions. Un-
like these almost trivial answers to the first two questions of the
problem Nr 75 of (L), an answer to the third guestion seems to be
more difficult. This is closely related to problem Nr 56 of (L) of
ﬁnding a non-Desarguesian plane projective geometry which admits
orthocomplements. I could not find any satisfactory amnswer to
this third question.
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Measures in Almost Independent Fields.
By
Edward Marczewski (Wroclaw).

Introduction. This paper deals with the existence of common
extensions of measures defined in given fields of sets to the smallest
field containing all the given fields. This problem taken in such
a general way might have more than one solution. But we propose
a restrictive condition viz., that the extension in question be multi~
plicative 1), i. e. that all given fields be stochastically independent
with respect to it. Then, as it is easy to prove, if the required extension.
exists, it is unique (Lemma 3).

Section 1 contains all the definitions and a few examples.

Section 2 contains the complete solution of the problem in
the case of the finite additivity of fields and measures: the almost-
independence is a necessary and sufficient condition for the existence.
of the multiplicative extension (Theorem 1) 2). )

In Section 3 the same problem is considered for the denume-
rable additivity. Banach [2] has proved that the o-independence
is here a sufficient condition but it is easy to see that it is not
a necessary condition?). On the other hand Helson [1] has esta-

. blished that, even in the case of two ‘fields, the almost-independence

(which is in this case identical with the almost-o-independence)
is not a sufficient condition. An analogous necessary and sufficient
condition is not known so far. In this paper only a sufficient con-
dition is given (Theorem III and IV), formulated thanks to some
ideas of Kakutani [1]: it is namely the almost-c-independence
under the additional eondition (obviously a very restrictive one)

1) Stochastic extension in the terminology of Helson [4] and Sikorski[10]-

2) I proved this theorem and I presented it to the Polish Mathematical
Society, Warsaw Section, in spring 1939; cf. Marezewski [8], p. 127, Théo-
réme IIT, and Banach [1], pp. 159-160.

3) Marczewski [8], p. 130.
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