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Hence either

T+
B—y< X — —————’—lj) an

<w—dpy or aw—ay>a— AT

> =gy

then. either

L+ x5 41\2 Ly, 4\2
(;1;—<vj)2<(;v~——_’j_‘—)ﬂl) or (.r,——-;z;j+,)~z<(m_%f)ﬁjn).

Consequently it is

A [
(19) either (w ij) < (w—mf_';mfﬂ)z or (m_wf+1)2< (m_wj—l-:vjn)?
2 9 P 2_‘“‘ .

. + The inequalities (18) and (19) imply (12). Therefore the inequa-
lity (12) is true in all cases.

Thus we have shown that no point (ﬁj’——%%, O) belongs to
(Ao, Bp). :
Formula (11) implies that between two points

( j1+2 j|+1’ 0) and (‘T.Iz‘l‘;‘r]x‘F" 0)

for jy==j, lies af least one point xy belonging to I, (d,,B,) since
according to (6) fzp)<f(z,). Gonsequeptly the points (ﬂi‘)ﬂﬂ, U)
and (mj’—'zm’—""l,o) for j==j, lie in the different aomp();ents of
Ea_Kya(Ao;Ez)-

Consequently H,—Ky,(4,,H,) contains an infinite number of
components. Hence K, (4,,H,) is not locally contractible.

Ky

fo

10. Problem. Let A, be a compact subset of the n-dimensional
Buclidean space E,. Let B denote the set of all positive numbers r
,s:uoh that K, (Ag,FBy,) is not homeomorphic to a polytope. The problem’,
18, whether the set. R is necessarily of first category (m the semse of
Baire) and of measure zero (in the sense of Lebesgue )?

~ Simply connected spaces.
By
Tudor Ganea (Bucarest).

1. There are two ways of defining simple connectedness for
topological spaces. L
The first way is based on closed paths and their deformation:

An arcwise and locally arcwise connected topological space
is termed simply commected whenever each of its closed paths is
homotopic to a point ([9], p. 310; [10], p. 221) *). Such spaces will
be referred to hereafter as pathwise simply connected.

Another way of defining simple ccnnectedness makes use of
the idea of a covering space: R i

A connected and locally connected topological space is termed
simply conmected whenever it admits only a trivial covering space
([8], p-44). These will be referred to merely as simply connected
spaces. :

The first definition requires arcwise connectedness, while the
second has a meaning even for Hausdorff-Lennes connected and
locally connected spaces.

Similarly, the fundamental group of a space may be defined
either as the group of paths, or as the group of covering homeo-
morphisms of the simply connected covering space (Deckbewe-

JUNYSgruppe).

2. Tt is the purpose of this paper to state some theorems on
simply connected spaces, which do not hold true for pathwise.simple
connectedness. As a consequence, it will be shown that, without
further local assumptions, the two definitions are not equivalent 3.

Our main goal is the proof of two kinds of approximation
theorems: one related to the so-called e-mappings, the other con-
cerning convergent families of sets. .

1) Numbers in brackets refer to the bibliography at the end of the paper.

?) Pathwise simple connectedness implies simple connectedness, . hut: leks
than that is needed. . DD
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There is a striking analogy between our theorems concerning
the fundamental group, defined in terms of covering spaces, and
some known results regarding the behaviour of the homology groups
of a space {(compare namely our §6 with [7], our §7 with [12],
finally our § 8 with [13]). This analogy ceases to exist when the
fundamental group is defined in terms of paths, as will be seen
with the help of an example described in [3].

3. The terminology adopted is generally that of [9] (p. 1-40)

’

and for the parts concerning the theory of covering spaces, we follow -

[5](p. 40-60). The few group-theoretic concepts used, are in accord-
ance. with [10] (p. 3-25), and for limit-groups we refer again to
9] (p. 54-56). - - . - .

We recall here the basic definitions: A topological space is a set
of points, in-which open subsets have been-selected, satistying the
usual axioms ([9]; p. 5). We shall always assume in addition, that
the Hausdortf separation aziom T, holds ([9], p: 24). A netghbourhood
of a subset is an open set, containing that subset. No distinction
is made-between - a point and the set consisting of that single point.
A point is adherent to a set if each of its neighbourhoods meets that;
set.- Subspaces: are always understood with the relative topology
{[9], p. 10). AXB denotes the cariesian product of the two sets 4
and B. Let ¥Y=¢(X), where X is a space, ¥ a set and ¢ a trans-
formation; the strongest topology in ¥, for which @ is continuous,
is obtained by specifying ¥CY to be open if and only if =}V ) is
open in X-(ef. [9], p.12). If {4,) and {Bg} denote collections of sets,
{4.o}&{Bg} means;: each set- 4, 1is contained in some set Bg; StA, s
the wnion of all the ‘4, meeting 4, ([9], p- 13, 324). Sometimés,_
when considering collections of sets, we shall omit the subscripts,
and write merely {4} instead of {4,}; but then 4y, 4, will always
mean sets of the given collection. If {V} is a’collection 6f sibsets
of ¥=p(X); {g=1¥)} is the aggregate of all the ¢—(V)CX with
V e {V}. A space is connedted if it:is not the union of. tWo non-void
disjoint open sets. Tt is locally commected when' eachneighbourhood:
ef any point céntains a conhected neighbourhood of that point
(83 p. 40). Compact is nsedhere in the sense.of bicompact ([9], p. 175
[1], . 86). SRR : R

- Let ¢:X>¥, :¥Y—>Z be transformations. o : X5Z 15 The
transformation defined by ye(z)=y[e(z)] for z¢X. For ACX we
denote by w:A—+ACX the inclusion map, which 'is defined by
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wia)=0eX for aeAd. P=gw is termed the commctioxp, of  to 4;
it is defined on 4 and satisfies @(a)=g(a)e ¥ for a e ACX.. W(,
whall denote a map and its contraction to a subset by the same
symbol, i. e. we write ¢:X—>Y and ¢:4A—Y, for ACX, when no
misunderstanding is to be feared. : .

Let f:E—>E be continuous, into. A subset ACE is .termed
evenly covered by (H,7), it F44) is not empty and each.component
of 17H4) is topologically mapped by f onto 4 ([5], p. 4{)‘, D:‘iZ).
A ‘covering space %) of the topological space E js~a pair (114,}_‘)
formed by a cannected and locally connected space &, and a co‘n'txf
nuous map f of & ento B, su~ch that each point of B has a ne1gh-
bourhood evenly covered by (&,f). If the space E-admits a covering
space; since'f is-a local homeomorphism, E is connected and locally
conneeted.- If B is a Hausdorff- space,‘,]y‘ has the same- property.
Let (B,f) be a covering space of B, A 4 tonnected, locally cfmnee.ted
subset of B and A a component ofo_l_('A); then (4,f)y with f de-
noting the contraction to A of fr Bi=>E, is a covermg space of A
([5], p-42, L.5). Two covering spaces (J '1;f1) and (dy'z,fg)_:of the SR‘WQ}?
are isomorphie, if there exists an onto-homeomorphism f=1f/1—.>ﬂ.'x
such that fy=f,f ([5], p-43). The space E is simply -comwcted 1f 1? is
connected, locally connected and’ each of its covering spaces is iso-
morphic to (H,0), where 0:E—F is the identity map ([5],p.44,1D.1.)”.
If (E, f) is a covering space of B, the cardinal number of f~ (oﬁ;) is
indépcndent of z ¢ B, and iz known as the mcﬂzbcr of. leaves cf. (sz).
The group & of those homeomorphisms § of & (?ntlo itself, satmfy%ng-
FE=f on H, is termed the group of automorg?hzsms of the covering
space (E, f). When B is simply connected, & is termed t_he‘ Pomccmf{
or fundamental group of the space F, ([5]'\‘,_1)_.~ 52, P 1), and is denqtet
by my(B). If & is a Hausdorff space and &y,4, ¢ 4/ are any tWOﬁ)(;l}l; :
with- (%) =f(3,), there exists at most one eleﬁt;nenf: £§V9i sgc la
-&(@y) =, ([8], p. 51, L. 1). The covering space ('E,fN) is termefl regu wg
‘Whenéver for each pair ¥, with f(@)=1(T3) there is a £e
With &)=, The simply connected covering space, if it emsssi
.is always regular ([5], p.52, P.3). Fi..nally.we r.eeall 2 fundame;l .2:1
‘property of simply connected spaces, which wlll often be used i
‘the sequel: - : - .

3) This definition is due to C. Chevalley (5], p: 40, D. 3).511&}4%;;2:
defining a covering space as a pair formed by u."topolo.glca‘l sPacekan a‘; immn
map has already been exploited by S. Stoilow in his wor 36on Hemanr
surfaces; see for instance C. R. Congrés Int. Math. Oslo, II (1936), p. 44.
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Let be: X a simply connected space, (Y,g) a covering space of ¥,
@: XY continuous, into, zeX and Fe ¥ two points with p(a)=g(3.
There exists then a uniquely determined continunous, into, 5:X—>17
with §(z)=Y and gg=¢ on the whole of X ([5], p. 50, P.1).

4. We state first some elementary lemmas which we shall
need later.

" 4.1. Lemma. Let ¢: X—Y be continuous, into, where X and ¥
are both connected, locally connected Hausdorff spaces. Let (X,f ) and
(¥,9) be regular covering spaces of X and ¥, with & and G as their
groups of automorphisms. Bach into, continuous §: X—¥ with g=pf
on the whole of X, is called paired to ¢. Then:

() If X is simply commected, for each pair ¥eX, §e¥ with
PH(F) = g(7), there ewisis a single § paired to @, with §(F)=7.

(1) If ¢ is paired to @, for each &e & there ewists o single ne G
such that ng=pé& holds on the whole of X. By assigning to each &cF
that element n e G satisfying np=9¢ on X, we produce an into-homo-
merphism ©: F— G, called paired to .

(iif) The superposition of an inner automorphism of G and
a homomorphism paired to ¢, is again a homomorphism of & into G,
‘paired to g.

(iv) For any two homomorphisms paired to @, there ewists an
inner automorphism of G, such that its superposition with the first
homomorphism produces the second.

(v) If one of the homomorphisms paired to ¢ is onto, or am iso-
morphism into, so are the others.

Proof. (i) Follows directly from [5] (p. 50, P. 1).

(i) gFEE) =of&(F) =¢/(F) =g3(Z) and since (¥,9) is regular,
there exists a single ne G with 73(J) =& ).Nniﬁ and £ also satisfy
919=gP=9f=¢fé=gg% on the whole of X, so that 5F=g¢ is
4 consequenee of [5] (p. 51, L.1). If #,,7,¢ G are images of &,& ¢ &F
under @, from np=g5, 157 =3%, it follows that 7,m,§ =@ =08E,,
and thus @ is a homomorphism.

(iii) With (e G, let ®": F— G be the homomorphism assigning .

to each £e¢& the element 5'={7{"'e¢(, where neC is the
image of & under @, that is 7p=9¢. §'=(3 maps X into ¥ and
g9’ =gly=gp=gf on X, i.e. §' is also paired to ¢. From

N = TG =g =FE=F"E
it follows now that the homomorphism &’ is also paired to .

@ N
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(iv) For i=1,2,-let ®;:F->@G both be paired to K2 produced
by n7,=0£ With ¢§,=¢f, §eF, 7,¢@. Choose & if. Ehfn
g(}‘z’l(w'”-)-:(pf(w“’):gqﬂz(a?) and there exists (e@ with 9’2(””)=~C‘*’1(“i)'
Since ¢§a=pf=gf1=0¢Py, from [5](p.51,L.1) it follows that (p2=C£},
hence 7725'(171=772$2=$2§:C$1§=C771$1: i.e. naf=Cny. Then ge={ml™,
where ¢ ¢ G is independent of £eF, and thus @, is the superpo-
sition of @, with an inner automorphism of G-

(v) Is an easy consequence of (iii) and (iv).

4.2, Lemma. Let ¢: X—Y be continuous, tnto, where X and ¥
are both conmected, locally comnected Hausdorff spaces, a,dmittin.g
simply connected covering spaces (7\.’, f) and (X,g). #(X) is ‘isomorgzhw
to a retract®) of my(¥) if there ewisis a regular covering space (Y, k)
of X, whose group G of automorphisms 18 the isomm‘phw image of

smy(X), under an isomorphism of my(X) onto G, ptm’ei to @.

Proot. There exists ¢ : X+ ¥ with hy=g¢f on X, (4.1.1), a_,nd,
by assumption, the relation y=0p&, where £em(X), yeG, defines
an onto-isomorphism @ : my(X)— G, (4.1. V). N

There exists a map 1p:T(—+Y with hy=g on Y, and as can
readily be seen, p is onto, (17',1,;) is a covering space o.f Y and the
homomorphism ¥:m(¥)—G produced by yp=yn, With nem(Y),
yeG, is onto (4.1.1,1). _

There exists ¢ : X—F such that yg=p, hence

9§ = hyg=hp=9of
on X, and the relation np=¢&, where §en1(li), nemy(Y), defines
an into-homomorphism & 1o ( X)—my(¥), (4.1 1). )

From & emy(X), nem(Y) with 7g=pé, and y <G with yp=vym,
it follows that $&=ygé =ynp = yyp =y, hence P(£) =PO(§) for
any &em(X). - -

o 5’(1\)'(511)(=)$(§2) implies @(El)=‘}’@(£1)=‘I’Q(£2)=¢(£2)_, hence & =6y,
since @ is.an isomorphism. Thus )

@ (X)) —>my(¥)

ig an isomorphism into. R=8[m,(X)]Cmy(¥) is a snbgroup of m(Y),
isomorphic under @ to my(X). - y
i Llet P=Go Wy ¥)—>RCoy( ¥). If 7€ R, then "zw(.é). with
Eem(X), and P(n) =00 PB(§) =00 P(£)=P(¢) =1, thab is: Pis
a retraction of my(Y) onto RCm(Y).

4 The subgroup Rc@ is a retract of ﬂ.le group
phism ¢: G—+Rc@, termed retraction, satisfying e(r)=

@, if there is an endomor=
r for each reR.
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4.3, Lem/ma Let ( f) be da’ regular covering spaee of the con-
nected, Zocally connected Haqesdorff space B, with G as, its group of
a/u,tomorph'bsms Let ACE be & connected, locully connected subspace
and X a component of f‘l(A CH: Then (A J‘ is o regula,r COVEYING Space
of Ay its group: Fof- automorphesms s isomorphic to a subgioup
'SCG, under an:into-isomorphism Q: F-G, paired to the snclusion
map ©:A—ACE.- Necessary emd sufficient for =G is the con-'
nectedness of f{A)..

U Proof. That (4,/) i§ a covering space of A.. follows i‘rom
(5] (p. 42, Li.5). Let eS’ be the set of all the G, satislying o(d)=4.
It 1 is cIezur that. §-is a subgl oup of g Let 0:.4- —>A CI be the inclusion
map: it satisties fo= of on the whole of’ A. Tor oed, 5__ it
is & homeomorphlsm of 4 onto itsclf, sat: sfylng fé=f on A hence
tc&. Since (¥,f) is Teglar, for ¥,dpeAd with @) =F(ay), there\
exists ce G With o(3y)=0,; thus” o and the regularity of (4,7)
follows from E(a,-l)—~a,2, with &=G100 e &

The relation ne=0f on A; with £e ¥, neG, defines an into-
homomorphlsm Q: 57~>g, pairéd t0 w, (4.1.ii). From no=ot it
follows that n(A)_A hence QF)CSTG. I oe, E=01oD e F and
w§-—0w holds on 4; in addition, from W =om=0t,, with Enbpe F
and o€, follows &=£&, Thus 2 is an 1somorph1sm of & onto the
subgroup é’ cg. s -

L If FNA) s eonnected., Fid)=4, nf'l( )=f"Y(4) for any
ne g, and so §=G. Converselv, if: eS‘ g, B is any component of
FHA), ed, a=f(a) and beﬁﬂf ), there is an 5 ¢ G=4 with

(e ) b hence A=R andf ( is connected

5. Essenhal for our purpose, is the possrblhty of extending a co-
vermg space of a subset ACH to 3 suitable neighbourhood of 4 in 7.
- -Denoting by E anormal (9], . 26) ), locally connected Haus-
“Tortt space, aid by ACE a compact, connected locally connected
subspace, we shall prove ‘the followmg two propositions:

5.1. Proposwtum Let ( ) be & coverin,
g space of U, where
ACUCE and U s open in B aml conmectéd: There ewists then, @ set @,
opeez in E’ and conmected, satisfy ying ACGCU, omcl swuch that:
SO0 ) @n gHA)=A holds for. umy eomponent A of g4, if &
‘denotes the component of ¢—NG) that conmms A ’
(ii) Under the same a;ssumptw%s ‘the cover
) g Space ] !
regular, if so is the covering space (A,g) of 4. ¢ opeee | ,g) e

) Where f in (A,f ) medns the contraction to' 4 of f:E’—»E
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5.2. Propositwn. For each’ covering space (:Af) of A, there
(em.sts G set UDA, open in B and: canneeted, “possessing @ eo'ue'rmg
fpaice. (U g). such. that L.

g (i) g™4) is connected; N o

. (ii) The covering- spaces (A ,]‘l and (7‘1(11),9) of the space A
are %omorphw, in the sense of [5] (p. 43, §VII -

- Proof of (5.1). Since A4 is comlmet and Igeally connected,
and “then. by a suitable- star-refinement ([9], p. 234) in the normal
and ‘locally connected space F; one can find:

L) flmtc collection of n sets V;CU, dpen in E_and evenly.
covered by.( U ,9), with each AOV, non- emptv and connected sabis-
fying ACUL V3

b) & finbe collection of m- sets Gi, open in ¥ and conneeted
with each AN G;==0, satisfying ACU,_lGi and {GtGi}>{VJ} ]

G=U{,G, is then connected, open in B, hence locally con-
mnected and ACGCU: :

Notice firgt that.if Vj is any component of a g—(¥;), ~since
V;is evenly covered by (U, ¢) and thus g—l(Ajm/ ; is topologically
mapped by g onto AﬂV,, each g—1(4) Ny ; is itself conneected. 'l‘hus,
if it meets a component A of g~} 4), it is entlrdy contained in A

Now let: A" be an arbitrary component of g—i(A) and’ let &
denote the union of all the components meet ng A rf the different
sets g~L(G), 4=1,..,m. It is clear thb: D4, @ is connected,
GCy1(G) and_ (rﬂg'l( )DA Any we&ﬁg—i(A) is contained in
a component (:r),, meeting A, of some g1 (Gr), 1<h<<m. There is
now a VD GI,, 1<<k<n, and let Vk dencte the component of g~1(V4)
éontaining (11. Since 0:£=Aﬂ(xhC q-l( )ﬂVk, it follows that
g 1{4)NV,CA, hence Fed and so GOg—1(d)= A.

’ To prove (‘) it only remains to shuw that (r is a component
“of g—l(G‘), and, since’ & is connected, this will be accomplished by
provmg & to :be open ahd closed in ¢g—1(@). For this purpose, let
P eg (@) be adherent to @, and let p=g(P) € G.- There is a Gi>p,
1LI<m; let & be the component of g—Y@) containing P. The local
eonuoetedness (I U 1mphes tlmt & is a neighbourhood of P; thus
there is a q ¢ G NG, hence Te @, where @, is & component of g—Y(G),
meeting 4, 1<r<m. From 9@ 7)€ 6N G, it follows that GUGCV,
for some s, 1<s<vm, and -if V,is the component of ¢ in g'(V,).
then GU GHCV,, 04 ANG,.Coi(4 )ﬂVs, hence g4 )OVSCA From
ANG 016 llnws that O=|=g“( )ﬂ(r,Cg“(A)ﬂV CA hence AN G0,
and fmd.lly Pe &C@&. Thus P is also interior to G and this proves (1)
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Before considering (ii), note that, since ib is connected and
contained in some Vj, each G; is also evenly covered ([57, D 41, L.2)
by (U,g) Then, for any 2 ¢ @; and component G of g~ Gy), (nﬂg-‘l( )
contains exa,ctly one point. Snce G C@ and @ is a component of
g1, it is clear that if G, meets G it is entirely contained in Q.
hence (nﬁ_(r‘(A)C(xﬁg—lM) =A.

_ Let now & and G be the groups of antomorphisms of the co-
vering spaces (4 ,g) and (G ,g) Choose a;eANG; for i=1,...,m and
put_H(x)={h|Gs>x} for each ze@ We extend now to the whole
of G any glven te &.

For ..bEG hence x=g(@ )eG and any ke H(x) 1(4t be: Gk the
component of g~ Gy) conmlmng Z, dr=00 g—l(ak)CA wr=&(axr),
@ the component of &j in g-l(Gk) and 7,(%) = (r,,ﬂJ—l (z). First
we prove, that for given &, #,(%) is independent of the subscript
% e H(z) which served for its computation. In fact, for any other
leH(z), 2 e@rN G implies 2, az, a;e GxU G CV, for some s, 1<s<n.
1f ¥, denotes the component of & in g—4V,), from [5] (p.41, L.2)
it follows that (%I=Vsﬂg-1(G;,) and Fr="V ﬂg—i(a},) for h—kl
Since it is connected and meets 4, g—'(4)NV,CA and for h=E,l,
'E},sf[g“l(A)ﬁV,] which is stil connected If V; IS the component
of g~Y(V,) containing &g~ (4 )], from Fae @by and GRCV, it
follows that @},CV;, hence, since g is univalent on Vi

0, () =V50g-2w) for h=Fk,L

Denotmg this common value by 5(%), we have a single valued
function #: G—>(7 satisfying gn=g, and a stralghtforward calcu-
lation shows that 7 is a homeomorphlsm of & onto 1tself neG.

Suppose now that (4,g) is regular and let L @ with
(@)= g(F?)=w, hence e, for some he H(x). Let G4 he the com-
ponent of g='(@) containing &, and N‘—(:r,.ﬂg—l(ah\cjf for t=1,2.
Since (4,g) is regular, there exists &e¢ & with @=a? and the
corresponding 7¢G satisties n(3)=82 hence (&,g) is regular.

Proof of (:“3.2). Since 4 is compact and locally connected,
then by suitable star-refinements ([9], p. 324) in the normal and
locally connected space E, one can find:

a) a finite collection of 7 sets W,, open in B, with each ANW,
evenly covered by (4, ,f), such that ACULL,W,;

b) a finite collection of n sets V;, open in B and connected,
with each ANV; non-empty and connected, such that ACUL,V,
and {StV3S{W.};
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¢) a fin'te collection of m sets Ui, open in # and connected,
with each A(’\UH:O, such that ACUi_qu and {QtUi}>{Vj}

U=UL U, is connected, open in FE, henee locally connected
and ACU.

Choose a;e ANU, for i=1,...,m, and for each xeU put:

={h|Un>3}, S@=UncmnUn and o@)={an|hecH(x)};

thus a(@)C8(@). f:A—ACE maps 4 into B and for any subset
BCE, f(B)=/""(4NB). This remark will be extensively used to
ghorten the notation in the sequel.

Let S=UEU;xf~ (a, ). It is remdlly seen that taking as a base
for X the family cf all 1he sets NyX @y, with N,CU; connected and
open in U, and Gief Y@y, 1<i<<m, turns X into a topological
space which is locally connected.

Now let U bp the collection of all the sebs & X %) such that
xeU and Fw)= e} [ a(x)], where ¥, is & component of f (V)
with V;:D8(x)D «(a); such V; exist according to ).

Bach X S(w) is a subset of £ and each point of X'is in a seb

of . Suppose @ X & ey X u(y)]1N[#X %(2)]. Then
y=w=2, F)=PiNf (@), UN=ViOf @),

where Vl, ¥, are components of v, 717, satisfying
ViOVD8(@)D (). From b) follows VUV ,CW, for some s, I8y
henee, With W, denoting the compement cf 3 v [TYW), thus
VZUV;;CWS, since f is univalent on W,, it follows that

2w) =V @] =W [a(@)] = Va0 17 [a(0)] = ().

Thus any two gets of U are disjoint or identical.

Let ¢ >0/ assign to each point Qf X that set cf U in which
the given point is contained: @(Z)=U. Topologize I/ with the
strongest trpoloxzy for which ¢ is continuous.

From mxus({—lfp(Nixai) where N,CU; IS connected, open
in U, and ¥ ef (@), it foliows that =0 ef(ay) and weN,NU
for some j, 1<j<<m. If N; is now the component of N;NU; contai- .
ning =, it is readily seen on account of b) that

TXE eN]XajC«p—iqo(l\,-Xm),

thus g—1p(N;x & is open in Z, and since {N,;x %3} is a base for X,
¢ 18 an open map.
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. As g eonséq_uence, U=p(Z) is locally connected.
~ Por FXTeZ; also let.pr(zxd)=u. pr(Z)=V and pr is con-
-tinuous and open. Finally, let - ‘ S s

DR g=proTt

- Notice that y:U—U is stngle-valued, onto; and sincé pr and ¢
.are continuous and open, the same holds for-y.

It is readily seen that epr—'(U)=g[U;x fT*(a)] and it fol-
lows that: o ‘ '
g7HU)=_ U U XTp..

Vo e
The sets @(U;xay), for &'is]‘“( ,'me bﬁen in Z7 7conne’-(’,t(,‘cji
-and no two of them meet. Thus they are the compohents of g—1(T,),
andsince each of them is ufivalently ‘mapped-ohto U{bv ¢, which
is open and contmuous, each U;is evenly covered by (U ).

Now, for Fed let: a= = (%) eA V,DS(a)Da,Ua(a) with
1<Z<n, Vibe bhe component-of & n f CV;),- q (u) hﬂf‘ [a(@)T and

(u)ﬂzxu(a,)e . On account of b) Y A—»U is smwle valued and
gw(@)=H&) for each @ed, thus gyJ(A)—A and w(a A)CTg—1(A4). Let
0*eg~(A4)Cp(Z), hence ,a,*—q:(a,x(;,,\ with ae Uy, - ajcala) d.rlld
g(a*)=a e ACU. Lét: VZDS’( )DuUa( ), Vib= the component off (V3
containing. &y, T(a}=V;Nf *fa(a)]5a; and u—vmf Yw). It follows
that y(&)=ax3(a)= (axm}—a* hence ’l/J(A)'— g4y, . .

From y(g’)= y)(“") it Zfoll<:ws that &’ and @" are in the same
compongnt of sone 7“ (V) and @) =f(a"), hende ¢'=25"" and thus
P A——>g*1(A) is one- -one, onto. ' '

Let ueA a ——1/)(a,)etp(N1Xa,-) Wlth N.CU, connected, open
in U and_Gref Ya). It follows that o(@)= Plax &) with a ¢ N,CU,
and f(@)=ae4d. Let @' be open in T, w1th ae@ CNI and G=4ANG
evenly covered by (A ). The eomponent Gt jae oontmnmg a is8
‘open in 4, and on account cf b). a,*s’lp((r)C¢(N1>(a1) Since ¢
ig “open and oontmuous {g(Nyx @)} is a base for U hence
R’ A—-)-g“l(A)CU is contmuous :

As a consequence, g—YA4)= (11') is connected, and so is U-
(U ,9) and (g=Y(4),g)-are thus covering spaces ¢f U and A. Bince
It A4 g continuous and open, while P A——>g**(A i3 continuous

and satisfies f=gy on A a8 can easily be seen, y iy also an open
map, thus a homeomorph.lsm
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The covering spaces ( A~ ;) and (g~%(4),g) of -A are thus iso-
morphlc under .p and (5.2) is proved. .~ | .

An immediate consequence of (6.1) is the SR
Y

5 3. Corollwry. If A s evenly covered by ( 59), there emsts
a set @, open in B, satisfying AC @CU, and evenly covered by ¢ ,g)

5.4. Remark. Throughout this section, the assumed com-
pactness of the set 4 is used only to derive-the statements a), b)'
and a), b), ¢) in the proofs of (5.1) and (5.2). Similar stetements
hold, however, in some other cases too. For instance, they. hold
when F is a metric, even non-separable, connected and loeally c.on-‘_
nected space, while 4 is an arbitrary connected and locally connected
subspace. The open coverings of A, there considered, need not. be
finite any longer, but this requires no change whatever-n the re:
mainder of the proofs. Thus (5.1) and.(5.2) may be restated with 4
denoting an arbitrary connécted and locally connected- ‘subspace
of the metuc, connected and locally connected space E -

6. We' pass now to the investigation of the 80 called e-mappmgs,
but firgt define: :

6.1. & denoting an open covering ([9], D 13 ) of the space X,
‘¢: X—Y is an e-mapping when it is onto, continuous, and eackh pomt
Ye Y has a neighbourhood ivhose imverse-image s emwely contamed
i a member of ¢.-The space Y is an e- @mage of X thhere is-am

e-mapping ¢ i X—¥.
The two spaces X and Y. are_tlermed --quasi-homeomorphic

([8], p- 252) if, for each open- co'umng € o}‘ X, Y zs an e-zmage of X
and, coawersely . X . -

For metrlc compact spaces, these definitions become the usual
é‘.pecml cases “(f1], p. 103), with e replaced by a posmve number

We' shall also 11eed - . -

6.2. X denoting & connected-~ omd lpcally connected apace,
@: XY s termed quam -monotorie if it is onto, contmuous, and for
each domain (opefn, “Gommected subset) VCY and component U of
@=1(V), (U)=V holds. It is monotone 4f it is onto, continuous, and
for each point ye.Y (md domain VC Y,-p=Yy) and ¢ (V) are con-
wected- (cf. [14], p. 151,152,127). - . . :
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We are now in position to state and prove:

6.3. Lemma. Lat (X,f) be a covering space of X, with F _as
group of automorphisms, and let Y=¢(X), ¢ continuous, where X
and Y are connected, locally connected Hausdorff spaces.

Consider the following two assumptions:

a) There exists an open connected ) base {V} for XY and an open
connected covering®) {U} of X, such that: {p— V)}s{U} and U,0T,
is evenly covered by ( (X, 1) for any two Uy, Uge{U} with U;NU,==0;

b) ¢: X=X is monotone and there exvists: an open connected
base {V} for X, and also am open connecled covering {U} of X, such
that each U is evenly covered by (X,f) and {p=(V) N {U}

Bach assumption implies that Y possesses a covering space (¥, h),
with G as s group of automorphisms, such that:

(1) (X,f) and (Y,h) have the same number of leaves;

(il) G is the isomorphic image of &, under an onto-isomorphism *

b : F—G, paired to g;

(iii) T'he covering spaces ( X 1) and (Y h) are both regulcw or not;

(iv). Assumption b) implies the existence of a monotone P : : X ¥,
paired to @.

Proof. Let ¥ denote the family of all the sets Un f_l(pﬁl(y),,
such that:

yeX, g7 y)Ce—(V)CU for some U and V, ¥ is a component
of 7(T).

Each e X is in a set of ¥ and each set of ¥ is a subset of X-
Suppose

: BelU0f e O [T,0 1™ (V)]

where (&) e¢g—X(V)CU,NT, and T, is the component of (U
containing #, for i=1,2.

If a), from (& )sUlﬂU it follows that W="U,UU, is evenly
covered by (X, f), and if W denotes the component of (W) that
contains &, since f is univalent on W it follows that:

Dinf e =Wl ™(v), i=1,2.

- It b), T, f¢™'(V) is the component of /~'¢™(V") containing &,
1=1,2. ‘
Hence in both cases U, Nflp™{(V)=U,nf (V).

As a consequence, any two sets of ¥ Aare either disjoint or
identical.

®) i. e. each of its members iz connected.
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Let ¢(% %) eY denote the set.of ¥ containing FeX. 5: XY is
smglo valued, onto, and the same holds for

h=gf¢—1: ¥—T.

In omddition 'h$ =¢f holds on the whole of EN(, and from
F(@)=1(F2), ¢(F)=¢ () it follows easily that &) =,.

If We take as a base for. ¥, the family of all the sefs
GLUNf ™V ], with p=V)CU, Ve{V}, Ue{U}, and ¥ a com-

ponent 0[ F7(U), then the set g becomes a topological space.
Choose now V and UDe Y V). Let T, be the components of .
IO

The definition of ¢ implies
5700 e WI=Tan TP,
which is open in X, hence, since <p[Uaﬂf" m_I(I/ Y] is basic for Y.

¢ is continuous. As a consequence, _g:(X is connected.
Under the same assumptions, from

K V) = Uap[0.0F 9 H(7)]
w0 0f g (M= l00f ¢ (TN=T
it follows that % is continuous and open. In addition, from
SieVunflp™(v), i=1,2, and h{(F)=hi(F,)
it follows that

and

of(F)="hg (@)= hip(Tp) = ¢f(@o) =y €V,

hence (&) ep—Hy)Cy—(V)CU and e U0 9 (), i=1,2, thus
finally 47)(1,1)— 5(%p), which shows that R is univalent on each set
q;[Uuﬂ;f @ *(V)]. Since it is continuous and open, h maps ;aach
such set topologically onto V. It follows that each ¢[U¢ﬂf“1<p_ V)1
is connected.

One consequence is, that ¥ is locally connected.

On the other hand, as they are connected, open and no two
of them meet, the sets go[U,,ﬂf_ 174 (7)], for fixed V and U2~ YV),
are the components of V), and 80 each V is evenly covered by
(Y R). Since {V} is a base for Y, (Y 1) is a covering space of Y.

Tor seX and y=¢(@) <Y, ¢ is a one-one transformation
of f(x) to K'(y), and this proves (i)-

If Ee F, y=0(£)=pEG " is easily seen to be & homeomorph1sm
of ¥ onto itself, satisfying on the whole of Y:

hy= hpEpi=gfest=gfpr=h.
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" Hence yeG and in addition: yj=@fp—lg= gaf holds, on x.
If ye@ let &@ y=F (& nq‘;—‘yqﬁ(m) for any FeX. £ is
a single-valued transformatlon of X into 1‘Use1f satistying fé=7%.
To prove its contmmty, choose U, V, and W open in X, evenly

covered by - Xf such that WC(p“l(V)CU If W i now a compo-

nent of j—l W) and U the component of /™ contammg W then.
wcn e "‘1 henee e
*) - ol )pr[Uﬂf i "( )1 ; ‘

Taking into account the fact that the components of k(W)
are sets H[UNF e (V)], with T, a component of f~(T), and
since ye§G carries -components. of h. (V) onto -snch components,
it follows that: >

- RN -~

® ClT R g e W, .

fwhere T is also a component of [']( U) From (*) and (¥) it follows.
that PR

W AWING e (WICFH IG5 ™ (7=
=0y )= Uﬂf'lW)—W’t

where W’ is again a component of f' (W). Since X is locally con-
nected, W and W' are epen and & is proved. to be eontmuous The
same holds for .£/= j"fﬂ“‘{;‘z_’qu, and from &=¢" it follows
that & is a homeomorphism of X onto 1tself that is £e 9
As can easily be seen, from &=f" fﬁ“”‘w it follows that
=1y, hence each’ yeg is the image under @ of some £ e .
=PI =ph5G Tollows from yi=je¢, i=1,2,
and &=§, follows from @&¢ 1= p=p,=@&p~2. :

‘We have thus produced an onto-isomorphism &: F— g, which
on account of hp=g¢f and yg—tpf, s padired to ¢.

Suppose now that (X,f) is regular, and let yl, Uy € Y,
h(‘) Mio)=y. It follows that ¢ (5) =0, N1 (y), with

—(y )qu'—l(V)CU for some U _and V, U, denotmg a component

of FUT), i=1,2. If mepNy) and e Uinf (@) C 67NG),y 1=1,2,
there is a & e éf with &&,)=F, and y=G(£)_ satisties Y(Hy) =4, " Con-
versely, it (¥,h) is regular and f(%,) ={(#;)=w, then hd¥,)= =h@(,)
follows and there is a yeg W1th y¢(a}1)~yq)(w2) Then £ =@ (y)
satisfies &(&)) =&,

PEG1
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NOW assume b). Then, with :p"l(y)qu-'l( )CU for some U, 7V,
and ¥ denoting a component of j (), ¢ Ug)=Tnf o) is
a component ([5], p. 41, L. . 2) of f—' T (y), hence connected. In addi-
txon, for any & open in Y, ¢'1(G) 1s 2 union of connected open sets
Tnf e (v), with g~V)CU and U a component of f(T), and
the connectedness of (p“l(G) is an easy consequence of that of G-

6.4. Let X ,f) be a covering space of the connected, locally
connected paracompact ?) space X. Let {W} be an open covering
of X, whose members are evenly covered by (X,7). {W} has a bary-
centric open refinement 8) {N}. Let {U} denote the family of all the
components of the sets N. Sinece X is locally connected, {U} is
an open covering of X, and from U,, U,e{U} with U,NU,=%0 it
follows that U,;UU, is connected and contained in some W, hence
([5], p- 41, L. 2) is evenly covered by (X ).

Our theorems on e-mappings, now follow easily from (6.3):

6.5. Theorem, If for each open covering e, the connected,
locally connected, paracompact space X has a simply connected Haus-
dorff e-image (depending on &), then X is diself simply connected.

Proof. Let (X,f) be a covering space of X, and e=={U} be an
open covering such that U,V U, is evenly covered by ()Y, f, it
U;NU,==0 (6.4). If Y is a simply connected e-image of X, by (6.3)
Y possesses a covering space (¥,h) with the same number of
leaves as (f,f). Since Y is simply conpected, this number equals
unity, hence f is univalent and X simply connected.

6.6, Theorem, Quasi-homeomorphic connected, locally connected,
paracompact spaces X and Y are both simply connected or not.

6.7. Theorem. Let X be a paracompact, connected, locally
connected space, admitting a simply comnected coverimg space (X, h.
There ewists an open covering & of X, depending solely on X, such
that for each Hausdorff e-image Y of X, possessing a simply con-
nected covering space, m(Y) contains a retract which is isomorphic
10 7y(X).

7) A Hausdorff space is paracompact if each open covering has a neigh-
bourhood-finite ([9], p. 13) open refinement ([6]). Paracompact spaces are nor-
mal. Each compact or metric (even non-separable) space is paracompact ([11]).

8) That is, for each z € X, the union of all the ¥ containing , is included
in a W. Each open covering of a paracompact space has a barycentric refine.
ment ([11]).

Fundamenta Mathematicae. T. XXXVII{ 13
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Proof. Let e={U} be an open covering of X, such that
U,UT, is evenly covered by (X,f), for any two Ul, U,ee with
U,NU,+0, (6.4). Since the simply connected covering space, if
--it exists, is unique, up to an isomorphism ([5], p. 51, P.2), & depends
-solely upon X, i.e. e=¢(X). Now let ¥=¢(X) be an & image of X,
admitting a simply connected covering space (1/ g). By (6.3. ii),
Y admits a covering space (¥,1), whose group G of automorphisms
is the isomorphic image of my(X), under an onto-isomorphism
@:m(X)—G, paired to . Since (X,f) is regular ([5], p.52, P.3),
_BO is (1’ h), according to (6.3.iii), and our statement iz now an
immediate consequence of (4.2).

6.8. Theorem. Let X and Y be quasi-homeomorphic connecled,
Tocally conmected paracompact spaces, both admitting simply con-
nected covering spaces. Then each of the fundamental groups m(X)
and = (Y), contwins a retract isomorphic to the other.

I have been unable to decide whether or not the fundamental groups in
question are isomorphic. Purely algebraic methods give partial results:

6.9. Corollary.-If one of the groups in question is a Q-group ([2], p. 267),
in particular if it is finite, or free and finitely generated, the Poincaré groups m,(X)
and =, (¥) are isomorphic.

On the other hand, by use of topological methods, the problem has been
answered in the-affirmative for orientable manifelds ([7], p. 95).

Finally, @ mere restatement of (6.5) is the

6.10. Corollary. Let X be a compact, connected, locally connected
subspace of a meiric space’ M. If for each positive number &, X can'be
e-displaced (e-verschoben, ([1], p. 110)) in M, onto a simply connected
subspace Y,CM, then X is diself simply-connected.

7. Monotone transformations are now subjected to investi-
gation, owing to their property of inducing, as proved below, a ho-
momorphism of the fundamental group of their range onto that
of the image space.

Combining the results of this section with those cf the pre-

ceding one, yields a class of transformations inducing isomorphisms
of fundamental groups.

icm
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7.1. Lemma, Let (f 1, (Y, g) be covering spaces. of the connecied,
locally conmected spaces X and Y=¢(X). Let p: X—~Y be quasi-mo-
notone (6. 2) and 3:X—>T continuous, into, satisfying gp=gqf on the
whole of X

Thfm @ is onto. In addition, for each open VCY, evenly covered
by (¥,q), and any component V of g U V), there exists a componmt U
of ]‘"’1 ”1 ) with (p(ﬁ) =¥. :

Proof Let: er be adherent to (p(X) y=¢7), Vsy open
in Y, evenly covered by ( ,g), finally let V be the component
of g—NV) oontonnmg %. Since ¥ is locally connected, V is a neich-
borhood of 7, and as such there exists Fe¥n <p(X), ie. 2=93),
FeX. It follows that:

of(®)=gF(®)= () e g(V)CV
hence, with z=f(2), acecp-l(V) Let U denote the component of
¢~X(V) containing # and U the component cf [ containing F.
Smce U and V are connected and open, henee locally connected
from [5] (p. 42, L. B) it follows that f(U)=U and g( )y=V. In
addition, the qu_asi monotony of ¢ implies c;o(U)—-V Thus:
g (V) =gf(T) =p(U)=V.

Since rp(l7) is connected 7 is a component of g~1(V),
F= )eq)(U) and st if follows that (,;(U)CV Finally, since
g is univalent on v, (p(U )=V and erCq;(X)

The set (,,(X ) is thus open and closed in Y whose conneetedness
implies (X ¥)=Y. Since now any § Fe¥is adherent to $(X) and Tis
easily seen to be a component of [~ 1cp‘l(V) the assertion is com-
pletely proved.

An easy by-product is the

7.2. Corollary. Let X and Y=gp(X) be compact, connected, lacuﬂy con-
ﬂet‘tcd Hausdor[f spaces, admiiting simply conmected covering spaces (&, f) and

. (1 ). If @ is quasi-monotone, in particular if it is opm ([14], p. 152), and =, (X)

48 finite, so 18 7,(¥)-

Pron[ Since m,(X) is finite a.nd X compact, 8o is X. There ¢ exists (4.1.1)
a map ¢ (XY, with pf= 9% on X, Lemma (7.1) implies q>(n)—-1 hence T is
compact and =,(¥) finite.

7.3. Theorem, Let Y=g¢(X), where X s simply connected,
Y Hausdorff, connected, locally connected and @ monotone. Then Y 18
itself simply connected.

Proof. Let (Y,g) be a covering space of ¥. Accordmg to

. [5] (p. 50, P. 1) there is a continuous, into, 7:X—~Y with gg=¢
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on X. Since ¢ i§ also quasi-monotone, (7.1) implies 2(X)=Y, hence
g Yy)=ppYy) for any y Y. Since ¢ is monotone and ¢ continuous,
g~'y) is connected. On the other hand, as ¢ is the covering map,
g~(y) is discrete. These two properties imply that g—(y) is a single
point, hence ¢ is univalent and (7.3) proved.

7.4. Theorem, Let Y =¢(X), where X and ¥ are both connected,
locally conneoted,~ Hausdorff spaces, admitting simply connected
covering spaces (X,f) and (Y,g). If ¢ is monotone, = (Y) is the
homomorphic image of 7y(X), under an onto-homomorphism paired to ¢.

Proof. According to (4.1.i) there is a map &:fﬁf with
g3=¢f on X, and, by (4.1.1ii), the relation np=g¢, where & em(X),
nem(Y), defines an into-homomorphism @7y (X)—m(¥) paired
to p. Choose nem(¥), ZeX; let §,=9(@;), J>=n(¥1), hence
g(g?’l)zg(g'z)=&1/, and pub mff(a?'l). Now let V>4 be open, evenly
covered by (Y,g), and let V denote the component of g=(V) con-
taining zz. By (7.1), since ¢ is also quasi-monotone, there is a com-
ponent U of ¢ (V) with $(T)=V, and since ¢p—1(V) is connected
and open, hence locally connected, f( l7)=<;a—'1(V). It follows that

p(@)=@f(F1)=gp(B1) =g (T)=y €V
hence xeg—Y(V). There is a &, ¢ U with f(F,)=a and so:
P F)=gf(@)=0(a)=y eV with F(@&)eV.
Since ¢ is univalent on V, F@)eVNgi(y)=7F, From

f(&)=f,) follows the existence of a £em(X) with &(&F))=0,.
If now n'=®(£), i. e. n'g=g§, then:

7' (T =1"0(F) =¢&(F) =¢(@) =7,
hence n=mn7'is the image of a &em(X) under @.

Lemma (6.3), together with (7.3), now yields the following
isomorphism condition: .

7.5. Theorem, Let Y=g¢(X), where X and Y are comnected,
locally comnected Hausdorff spaces. Assume X 1o admit a simply
connected covering space (X,f) and let ¢ : X—Y be monotone, '

The following two assertions are then equivalent: ,

a) Eacinoint y ¢ Y has a neighbourhood VCY with o—(V) evenly
covered by (X,f);

- b) The space Y possesses a simply conmected covering space
(XY,g), and each into-homomorphism @ :m(X)—nm(Y), paired to ¢
18 an onto-isomorphism. ’
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Proof. a) implies b).

We may as well assume the collection of all the sets ¥ to be
abase {V'} for ¥, and let {U}={p~(V)}. By (6.3.ii), ¥ then admits
a covering space (Y,h), regular by (6.3. iii), whose group G of auto-
morphisms is the isomorphic image, paired to ¢, of =y(X). In ad-
dition, by (6.3.1iv), there is a ¢ :f—+f‘, paired to @, which is onto
and monotone. From (7.3), it follows now that ¥ =<}5(2N{) is simply
connected, and with ?:Y, g=", m(¥)=G, b) is proved.

b) implies a). ‘

There is, (4.1. i), a 7: X, paired to p, and by (7.1), since @
is also quasi-monotone, &’(Xv)=1'7. We shall prove that, for each
open VCY, evenly covered by (¥ ,9), T is univalent on any com-
ponent U of F e {(V). Since ¢—*(V) is eonnected and open, hence

o~

locally connected, by [5] (p.42, L.5), f(U)=¢ V) and so
g3 D)=l T) =gy V)=V

9( /) is connected, and as such contained in a component 7 of

V). Now let FeU, with f(#)=wep~(V), i=1,2. There exists

in consequence, a & emy(X) with &@&))=%,. Let §;=(@)), hence:
Tied( DT and  gF)=gp@)=of@)=ple) <V, i=1,2.

~

Since VNis evenly covered by (Y,g), g is univalent on 17, and
from gy, 57, ¢ 7 with g(§)=g(F) follows §1=Fs

If now p=>0(&), i. e. ng=0p§, it follows that:

77(?71)=7]6”’(%1)=";’J§("/""1)=$(R‘Jz)=gz=§,1

and 7 is the neutral element of =(Y). Since @ is assumed an iso-
morphism, it follows that & is the neutral element of =,(X), hence
%, = &(F,) =} and the univalence of f on U is proved.

In case X is compact, we may assume, instead of a) in (7.5),
each ¢—'(y), ye¢¥, to be locally connected and evenly covered by
(X,f). More precisely:

7.6. Theorem. Let ¥=q(X), where X and Y are compact,
connected, loeally commected Hausdorff spaces. Assume X to admit
a simply connecled covering space (X, f) and let ¢: X—X be monotone.

If for each point ye¥, ¢g~X(y) is locally commected and evenly
covered by (X,1), hence in particular, if it is simply eonnected, then ¥
admils a simply connected covering space and 7,(Y) is the isomorphic
image of my(X).
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Proof. On account of (7.5) it suffices to show that each y e ¥
has a neighborhood V, with ¢—(V) evenly covered by (X ,f). This
will now be accomplished, chiefly with the aid of (5.3).

Since ¢~(y) is connected, loecally connected, closed in X,
hence compact, and evenly covered by (i\:",f), there exists, by (5.3),
an open, connected set GD¢—'(y), evenly covered by (X, f) too.
Let W denote the union of all the ¢—*(2) contained in ¢. From
o~ Yy)C@ it follows that W==0, and since ¢ is a closed, continuous
transformation, W is easily seen to be open in X. Now let U denote
the component of W containing the connected set ¢—(y). Since
X is locally connected and W open, U is open in X. As it i3 con-
nected, contained in W, hence in @, U is evenly covered by (X,f)
([F], p.41, L.2). Let V=g¢(U) and suppose ¢ ep~(V). It follows that
p(z)=gp(s) for some se UCW, hence sep—'(z) for some p—1(2)CQ,
and 8o wep~(2). Since p—(2¢) is connected, contained in @, hence
in W, and since ¢—'(2) meets the component U of W, it follows that
2ep(2)CU, i.e. ¢ YV)=U. Thus y=gp=L(y)ep(U)=V with
U=¢— V) evenly covered by (f, 7). In addition, as ¢ is closed and
continuous, since ¢—Y(V) is open in X, s0 is ¥ in ¥.

Finally:

7.7. Theorem, Let ¥ =o(X), where ¢ is continuous end X, ¥
are both connected, locally comnected, compact Hausdorff spaces. If ¥
and ¢7(y), for each ye¥, are simply connected, then X iiself is
simply connected.

Proof. Let (ANTN,]‘) be a covering space of X. Bach ¢—(y) is
evenly covered by (X,f), and since it is closed in X, hence compact,
it possesses on account of (5.3) a neighboorhod @, evenly covered
by (XN, f)- Let W be the union of all the ¢—(z) contained in @, and
let U denote the component of W that contains the connected
seb @='(y). As before one realizes that U is evenly covered by
(X,f), U=g¢= (V) and V=¢(p) is open in Y. By (6.3.b,i) ¥ now
possesses a covering space (Y,h) with the same number of leaves
a8 (X,f). Since Y is simply connected, this numbers equals unity,
and so X is itself simply connected.

" 8. The object of our investigation now is to find the funda-
mental group of the intersection of a family of sets. The results of
this section depend very much upon those of § 5.
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Let A be a compact, connected, locally connected subspace
of the normal, locally connected Hausdorff space E. Then (5.2),
together with (4.3), yield at once the

8.1. Proposition, If A is not simply comnected, there ewisis
a set UDA, open in E and comnected, such that any connected, locally
connected subspace C of B, with ACOCU, is not simply connected.

An immediate consequence of (8.1) is the

8.2. Theorem. Let {F;} be o family of mon-empty, simply
connected, closed subsets of the locally connedted, compact Hausdorff
space B. Suppose each finite intersection of sets F'z to contain a member
of the family. Suppose in addition the intersection F' of all the Fz be
Tocally conmected. Then F is simply connected.

With respect to the fundamental group, we prove first the

8.3. Theorem. Let A and B be as in (8.1). Suﬁpose in addition
that A possesses a simply connected covering space (A,f). There ewi‘sts
then a set GDA, open in E and connected, such that m(C) contains
a retract isomorphic to my(A), for amy connected, locally. connected .
subspace C of B, satisfying ACOCGE and possessing a simply con-
nected covering space.

Proof. By (5.2), there exists a seb UDA, open in B a,n.d con~
nected, possessing a covering space (U,9), such that g—(4) is con-~
nected and the two covering spaces (4,f) and (g7(4),g) of the
space 4 are isomorphie. -

Notice first that ¢g—(0) is connected and containg g—1(4), for
any connected, locally connected subspace C of F, with ACG’C.U.

Since (g~%4),q) is a simply connected, h(?nce regular, covering
space of 4, by (8.1), there is & set @, open in B and connected,
satisfying ACGCU, hence with t(}:ﬁnnecttled g 4@), and such that
its “ i ace (g—X@),g) is still regular.

- cogzl;;nlgets% be (sfny( c()),rfl)lected, locally connecte.d subspace of 1?,
with ACOCGQCU, hence with connected g*(l(Gl)(.Oim)ce; f(g;((i‘), g) 1§
¥ o i 4.3) the covering space (§—(0),§ . )
legﬂl‘g‘i,ncﬂg _;S"}()i)( is )connected, simply connected, and gontaaned
in ¢—4(0), the group of automorphisms of.thfa regular Foﬁmi hspaglef_.
(g=X0),q) of 0, is by (4.3) the isomorphic image, paired to et'on
clusion map A—-ACC, of the group nl(A).'Under the assumpti
that ¢ possesses a simply connected covering space, (8.3) is now
an immediate consequence of (4.2). . .
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For our final result, we shall be dealing with inverse systems
of groups. They are taken with the discrete topology, and are not
supposed commutative. The terminology wused is the -one in
[9] (p. 54, B5), and the few propositions thereof, used in the sequel,
hold also for the noncommutative case.

We need first the following algebraic

8.4. Proposition, Assume:

(i) {S[Z;Qf,} is am inverse system of discrete, not necessarily
commutative groups; ' )

(ii) For each 1, there is a retraction Pp: FHy— RuCFHy;

(iii) For each pair AS>pu, the coniraction ‘.Qf‘:,?,;—n‘?(,, 8 an iso-
morphism of Ry onto RuC Hy;

(iv) For each pair Asp, P24 =04P, holds on (.

Then:

{Ra; G5, with the 27 contracted to Ray is am inverse system of
“groups. Its limit R is o retract of the limdt G of {FH; 5. For
each A, Ri is isomorphic to R, in the algebraic sense.

Proof. Since Q4(R)NCR, and the contractions obviously
satisfy QUCL=01 for 15uSy, {Ri;04 is an inverse system
of groups. For h={hi}eH, let P(h) = {Py(h2)}. If A& p,
Puhp)=PuSi(hi)=L4Pa(hs) so that IP(FHCR and clearly P is
& homomorphism. For r={r} R, P(r)={Ps(r3)}={rs}=r which
proves the retraction. That R; and R are fisomorphic follows
from (iii) and [9] (p. 55).

8.5. Theorem. Let {F;} be a family of closed, conmected, locally
conmected non-empty subsets of the locally connected, compact Hausdorff
space E. Suppose each finite intersection of sets Ty to contain a member
of the family, and partially order the aggregate {1} of subscripts
by: A& p whenewer F,CF,. Suppose in addition all the Fy as well
as F=NF, to posses simply conmected covering spaces. There emists
then a family of intohomomorphisms QF : m(F2) = my(Ty), for Asp,
paired to the corresponding inclusion maps, such that:

Ay s .
{m(Fa); L0} is an inverse system of groups, whose limit contains
@& relract isomorphic to m(F).

Proof. Notice first that the partial ordering imposed on {4}
turns it into a directed set ([9], p. 4).

Now let (¥,f) and (#s, /1) be simply connected covering spaces

o

of F and each F;. Since (#,1) is regular, by successive application
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of (5.2) and (5.1), as in the proof of (8.3), one can find a set G,
open in B and eonnected, possessing a regular covering space (&, g),
such that ¢g—(¥) iy connected and the two covering spaces (B, fy
and (9~%F),g) of F are isomorphic. Let F=g—Y(F). There-is an
onto-homeomorphism ’

1/):i7f-+f’ with gy=f on .

Denote by G the group of automorphisms of (#,g); it iso-
morphism to = (F) will be taken into account later.

Replacing, if necessary, {F:} by a cofinal subfamily, since
L is compact, G open and each F, closed, we may admit each
F,CG. Let Vi =y"1(1¢’,z)CG‘ and let g, be the cogtmction to F; of
g:6—@. Bach 1y is connected, and by (4.3), (¥1,¢:) is a regular
covering space of F';, with G, as its group of automorphisms. By
[5] (p. 50, P. 1), there exists for each 3, a map

wz:'ﬁz—>ﬁ‘; with  gp,=f, on 7,

and as can be seen, v, is onto and (¥,,y,) is a covering space of #,.
For any A and p<<A, let

wi: By, ok Fi—Fy, 0: 517, 02:17',1—>17‘F,
be inclusion maps. It follows that for any 1 and x-<Ai:
9a0,=wz9 on ﬁ’; 9,461‘;‘:0’291 on Fj.

Now choose 4 e, T ey1(3)CH, and for any 1, let d,=04(a)
and take a @ ey;}(d,)CHa. Since (F,,y,) is a covering space of ¥,
while ¥ and &, are simply connected, by (4.1.1) there exist, for
any 2 and x-<<J, into, continuous maps:

{%l:lf""-rﬁz with  &,(a)=a, and %52:621,0 on Fj
F: ForFy with wﬁ(ﬁ'z)=ﬁp and  p wu="0uy, on Fj.

Next, on account of (4.1), for any 4 and p~<31, we have the

into-homomorphisms

Yim(F—>G defined by yy=yt, Eemy(F), ve§

Yy “I(Fﬂ)*gl » I 72w1=1/)4527 EXEHI(FI): ?gfg;.
I':G—~ G ” " ‘}’;,9;::9)17’7 veG, 72¢Ga
P;f:g%—’gy » ” yygﬂ=£!‘yl.’ ‘_'yiegh VMEQATF
Q4 751(F) —*711(17'2) m ” fi.w;,:w;fy §em(F), Eremy(Fa)

Qs iy (F2) > (T v w E=ThE, Erem(Fa), wemy(Fu)-
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Since y produces an isomorphism of covering spaces:

¥ is an isomorphism onto.

 Taking advantage of the fact that (17’,1,1/)1) is a simply con-
mected covering space of #,, it is readily seen that: ‘

* ¥, is an homomorphism onto.

Since F=g—1(F)= g7 (F) and ﬁ;:g;l(Fz)=g;1(F;,) are con-

mected subsets, respectively, of Bz and F,, (4.3) implies that:
Iy and TE are isomorphisms onto.

A mere calculation yields, for A& uS»:

fuldh=wkis, HE)=THT), v UTi=y,3: on Iy
‘hence the @% are paired to the inclusion maps w?, and by [5] (p. 51,
L. 1) it follows that ohai=w}.

As a consequence:

The homomorphisms !2',’1 are paired to the inclusion maps wf
and CEQE=0% holds for any ASuSv.

Thus:

() {m(F2); 8% is an imverse system of groups.

As above, we realize the pairing of the @, to the inclusion
maps w, and @id,=, for A&pu. As a consequence:

The- homomorphisms L, are paired to the o, and Q;‘,Q,gz!),,
For A

Paraphrasing the reasoning in the proof of (4.2) we see that:

2, is an isomorphism into,

and with Ry=Qa[m;(F)]Cmy(Fz):

() Pa=Q¥ ' I W, is a retraction of my(F3) onto R;.

Since they are isomorphisms-into and the 2, satisfy .Q,i!!,q,: Qu,
it follows that:

(iil) For each pair A&y, the contraction Qﬁ:(ﬂz—>n1(11’#) s an
somorphism of Ry onto RuCry(Fy).

From v, &p=04y, and 646,=0,, it follows that:

Yo QU=Ti¥; and Tily=T,, A1>u.
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, Sincfl Iy, Iy and I";f are isomorphisms onto, it follows thab
Iy=I'yI'3", and, again using .Q,‘=.Q,’3.Q,;, we finally obtain:

(1v) Pplu=0, P I\ W, Gh=0, ¥ I i, —
=0 T LI W= 0 T T = 0 0,0 T =02 P,
Theorem (8.5) is now a consequence of (8.4).

9. Consider now Borsuk’s well-known acyclic continuum, as
described in [3]. This is an arcwise and locally arcwise connected,
compact subset of Buclidian 3-space, which is not pathwise simply
connected [3]. It may be viewed as an intersection of a decreasing
sequence of 3-cells in the 3-space [3], and is in addition, quasi-
homeomorphic to such a cell [4].

This startling example makes it clear that the theorems in
sections 6 and 8 of this paper, do not hold true for pathwise simple
connectedness, nor for the fundamental group defined in terms
«of paths. By these very theorems, Borsuk’s acyclic confinuum is
simply connected, in terms of covering spaces, and thus the two
definitions are not equivalent, in the absence of further local as-
sumptions.
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