icm

Consequently, by CA 11.4,

4.15 19). If  $\operatorname{Dim} E \geqslant k$ , then  $\operatorname{Dim}([E], A/A^k) = \operatorname{Dim} E - k$ .

Theorems 4.15, 2.10, and CA 11.4 imply

4.16. If  $N_0,...,N_n$  is a normal decomposition of A (where  $n=\dim A$ ), then  $[N_k],...,[N_n]$  is a normal decomposition of  $A/A^k$ .

The evaluation given in 4.12 and 4.12' is exact. In fact,

4.17. If the integers l, l', L satisfy the inequalities

 $l \leqslant L \leqslant n = \dim A$ ,  $L \geqslant k$ ,  $\max(0, l-k) \leqslant l' \leqslant \min(l, L-k)$ 

(where  $k \le n$ ), then there is an element  $E \in A$  such that

 $\dim EA = l$ ,  $\dim E = L$  and  $\dim (EA, A^k) = \dim [E] \cdot A/A^k = l'$ .

We have  $l' \ge 0$  and  $0 \le l - l' \le k \le L - l' \le L \le n$ .

Let  $N_0,...,N_n$  be a normal decomposition of  $\pmb{A}$ , and let  $\pmb{E_1} = N_{L-l'} + ... + N_L$ . Consequently  $[\pmb{E_1}] = [N_{L-l'}] + ... + [N_L] \epsilon \pmb{A}/\pmb{A^k}$ . By 4.16 and 4.7 (ii),  $\dim[\pmb{E_1}] \cdot \pmb{A}/\pmb{A^k} = L - (L - l') = l'$ .

If l=l', let  $E_2=0$ ; if l>l', let  $E_2=N_0+...+N_{l-l'-1}$ .

The element  $E = E_1 + E_2$  is the required one. In fact, it follows from 4.7 (i) and (ii) that Dim E = L and dim EA = l. Since  $[E] = [E_1]$ , we have dim  $[E] \cdot A/A^k = \dim[E_1] \cdot A/A^k = l'$ , q. e. d.

4.18.  $(\mathbf{A}/\mathbf{A}^k)/(\mathbf{A}/\mathbf{A}^k)^l$  is homeomorphic to  $\mathbf{A}/\mathbf{A}^{k+l}$ .

By CA 9.7, the *C*-algebra  $(A/A^k)/(A/A^k)^l$  is homeomorphic to A/I where I is the  $\sigma$ -ideal of all  $A \in A$  such that  $\text{Dim}([A], A/A^k) < l$ . By 4.15,  $I = A^{k+l}$ , q. e. d.

#### References.

Hurewicz, W. [1] Normalbereiche und Dimensionstheorie, Math. Annalen 96 (1927), pp. 736-764.

— and Wallman, H. [2] Dimension Theory, Princeton 1948. Kuratowski, C. [3] Topologie I (first edition), Warszawa-Lwów 1933. — [4] Topologie I (second edition), Warszawa-Wrocław 1948. Sikorski, R. (CA) Closure algebras, Fund. Math. 36 (1949), pp. 165-206.

Państwowy Instytut Matematyczny.

## On Generalized Spheres.

By

## Mieczysław Gindifer (Warszawa).

1. Let  $A_0$  be a non-empty subset of a space 1) A and r a positive number. By a *generalized sphere* with centre  $A_0$  and radius r we understand the set

(1) 
$$K_r(A_0,A) = E_{\substack{x \in A \\ x \in A}} [\varrho(x,A_0) \leqslant r].$$

Frequently the topological structure of the generalized sphere is more simple than the topological structure of the set  $A_0$ .

For instance if  $A_0$  is a compact subset of the Euclidean 1-dimensional space  $E_1$ , then every generalized sphere is a sum of a finite number of segments.

It follows by (1): If A is a convex space 2) and 0 < r' < r then

(2) 
$$K_r(A_0,A) = K_{r'}[K_{r-r'}(A_0,A),A].$$

**2.** Lemma. If  $A_0$  is a compact subset of the Euclidean n-dimensional space  $E_n$  and r is a positive number, then for every  $a_0 \in K_r(A_0, E_n)$  there exists a connected set N with diameter  $\delta(N) \leq 8r$ , constituting a neighbourhood of  $a_0$  in  $K_r(A_0, E_n)$ .

Proof. Let us put

$$M = \underbrace{E}_{x} [x \in K_{r}(a, E_{n}), a \in A_{0}, \varrho(a, a_{0}) \leq r],$$

$$N = \underbrace{E}_{x} [x \in K_{r}(a, E_{n}), a \in A_{0}, M \cdot K_{r}(a, E_{n}) \neq 0].$$

Evidently N is a connected subset of  $K_r(A_0, E_n)$  and  $\delta(N) \leq 8r$ . It remains to be proved that N constitutes a neighbourhood of  $a_n$  in  $K_r(A_0, E_n)$ .

<sup>19)</sup> If Dim E < k, then obviously Dim  $([E], A/A^k) = -1$ .

<sup>1)</sup> By space we always understand here a metric space.

<sup>&</sup>lt;sup>2</sup>) A is convex if for every two points  $a, b \in A$  and every positive number  $0 < \alpha < \varrho(a, b)$  there exists a point  $x \in A$  such that  $\alpha = \varrho(a, x) = \varrho(a, b) - \varrho(b, x)$ .

Otherwise there would exist a sequence  $\{a_v\} \in A_0$  and a sequence  $\{b_v\} \rightarrow a_0$  so that

(3) 
$$b_{\nu} \in K_r(a_{\nu}, E_n) - N$$
 for every  $n = 1, 2, ...$ 

Let  $\{a_{r_k}\}$  be a subsequence of  $\{a_r\}$  convergent to a point  $\overline{a}_0 \in A_0$ . Then  $a_0 \in K_r(\overline{a}_0, E_n)$  and consequently  $K_r(\overline{a}_0, E_n) \subseteq M$ .

But for almost all indices k it is

$$K_r(a_{v_k}, E_n) \cdot K_r(\bar{a}_0, E_n) \neq 0$$

hence  $K_r(a_{\nu_k}, E_n) \cdot M = 0$  and finally  $K_r(a_{\nu_k}, E_n) \subset N$ . This contradicts 3.

**3.** Theorem. If A is a compact subset of the Euclidean n-dimensional space  $E_n$ , then for every r > 0 the generalized sphere  $K_r(A_0, E_n)$  is locally connected.

Proof. It is to be shown that for every point  $a_0 \in K_r(A_0, E_n)$  and every  $\varepsilon > 0$  there exists a connected neighbourhood  $N_\varepsilon$  of  $a_0$  in  $K_r(A_0, E_n)$  with diameter  $\leqslant \varepsilon$ . Let r' be a positive number, such that

$$r' < \min(r, \frac{1}{8}\varepsilon)$$
.

Then by (2)

$$K_r(A_0, E_n) = K_{r'}[K_{r-r'}(A_0, E_n), E_n].$$

By the lemma of the section 2 there exists a connected neighbourhood N of  $a_0$  in  $K_r(A_0, E_n)$  with diameter  $\delta(N) \leqslant 8r' \leqslant \varepsilon$ .

**4.** A positive number r will be called a singular radius for the set  $A_0 \subset E_n$  if there exists a point  $p \in K_r(A_0, E_n)$  such that  $K_r(A_0, E_n)$  is not locally contractible in  $p^3$ .

The purpose of this paper is to show that there exist in the Euclidean plane  $E_2$  compact sets having continuum singular radii.

Let  $\{i_{\nu}\}, \nu=0,1,2,...$ , be a sequence such that for every  $\nu$  it is  $i_{\nu}=0$  or  $i_{\nu}=1$ . Consider all systems of the form

$$[\{i_{m{
u}}\},l],$$

where l=0 if in the sequence  $\{i_{\nu}\}$  the equality  $i_{\nu}=1$  holds for an infinite set of indices  $\nu$ , and where l is an arbitrary integer  $\geq 0$  if in the sequence  $\{i_{\nu}\}$  the equality  $i_{\nu}=1$  holds only for a finite set of indices  $\nu$ .

Let  $k=k(\{i_v\})$  denote 0 if  $i_v=0$  for every v=0,1,... or if  $i_v=1$  for an infinite set of indices v. In all other cases  $k=k(\{i_v\})$  denotes the maximal index v such that  $i_v=1$ . Putting

$$8_{\nu} = \sum_{\mu=0}^{\nu} i_{\mu}$$

consider the set  $X_0$  composed of all numbers  $x[\{i_v\},l]$  given by the formula

(4) 
$$x[\{i_{\nu}\}, l] = 48 \cdot \sum_{\nu=0}^{\infty} 3^{-2^{\nu}} i_{\nu} (-1)^{1+s_{\nu}} + l \cdot 3^{-2^{k+l+1}} (-1)^{1+s_{k}}.$$

**Lemma.** If the systems  $[\{i_v\},l]$  and  $[\{i'_v\},l']$  are different, then  $x[\{i_v\},l] + x[\{i'_v\},l']$ .

Proof. Putting

$$s_{\nu}' = \sum_{\mu=0}^{\nu} i_{\mu}',$$

$$P = 48 \left[ \sum_{\nu=0}^{\infty} 3^{-2^{\nu}} i_{\nu} (-1)^{1+s_{\nu}} - \sum_{\nu=0}^{\infty} 3^{-2^{\nu}} i'_{\nu} (-1)^{1+s'_{\nu}} \right],$$

$$Q = l \cdot 3^{-2^{k+l+1}} (-1)^{1+s_k}, \qquad Q' = l' \cdot 3^{-2^{k'+l'+1}} (-1)^{1+s'_{k'}},$$

we have

$$x[\{i_{\nu}\},l]-x[\{i'_{\nu}\},l']=P+Q-Q'.$$

In order to prove that  $x[\{i_v\},l] \pm x[\{i_v'\},l']$  we distinguish two cases:

1. The case in which  $\{i_{\nu}\} \neq \{i'_{\nu}\}$ .

Let j denote the minimal index, such that  $i_j = i'_j$ ; for instance  $i_j = 1$  and  $i'_j = 0$ . Hence  $i_v = i'_v$  for every v < j. Then

$$\begin{split} |P| = &|48 \cdot 3^{-2^{J}} (-1)^{1+s_{J}} + 48 \sum_{\nu=J+1}^{\infty} 3^{-2^{\nu}} [i_{\nu} (-1)^{1+s_{\nu}} - i'_{\nu} (-1)^{1+s'_{\nu}}]| > \\ &48 (3^{-2^{J}} - 2 \cdot 3^{-2^{J+1}} - 2 \cdot 3^{-2^{J+2}} - \ldots) > 48 \cdot 3^{-2^{J}} \left( 1 - \frac{2}{3} - \frac{2}{5^{4}} - \ldots \right) > \\ &48 \cdot 3^{-2^{J}} \cdot \left[ 1 - \frac{2}{3} - \frac{2}{9} \left( 1 + \frac{1}{3^{2}} + \frac{1}{3^{4}} + \ldots \right) \right] = 48 \cdot 3^{-2^{J}} \cdot \frac{1}{12} = 4 \cdot 3^{-2^{J}}. \end{split}$$

a) A is locally contractible in the point  $a \in A$  if for every neighbourhood N of a in A there exists a neighbourhood  $N_0 \subset N$  of a in A and a continuous mapping f(x,t) defined in the Cartesian product of  $N_0$  and of the interval  $0 \le t \le 1$ , with values lying in  $N_1$  such that f(x,0) = x and f(x,1) = a for every  $x \in N$ .

Moreover, let us observe that the sign of P is equal to  $(-1)^{1+s_j}$ (where  $i_j=1,\ i_j'=0$ ). The absolute value of Q is  $\leqslant 3^{-2^{j+2}}$  (since  $k \geqslant j$  or l=0). Also the absolute value of Q' is  $\leqslant 3^{-2^{j+2}}$ , if there exists an index  $\nu > j$  such that  $i'_{\nu} = 1$ , or if l' = 0. If  $i'_{\nu} = 0$  for  $\nu > i$ and  $l' \neq 0$  then the sign of Q' is opposite to the sign of P, since the sum  $1+\sum_{i=0}^{K}i'_{i}$  contains exactly one unity less than the sum  $1+\sum_{i=0}^{K}i'_{i}$  $(i_{\mu}=i'_{\mu} \text{ for } \mu < j, i'_{j}=0, i_{j}=1)$ . It follows that if P and Q-Q' have opposite signs then

$$|Q-Q'| \leqslant 2 \cdot 3^{-2^{j+2}}.$$

Hence

 $(5) |x[\{i_{\nu}\},l]-x[\{i'_{\nu}\},l']| = |P+Q-Q'| > 4 \cdot 3^{-2l} - 2 \cdot 3^{-2l+2} > 34 \cdot 3^{-2l-2}.$ where j denotes the minimal index  $\nu$ , such that  $i_{\nu} + i'_{\nu}$ .

Moreover, let us observe that

(5') the sign of 
$$x[\{i_{\nu}\},l]-x[\{i'_{\nu}\},l']$$

is the same as the sign of P and equal to  $(-1)^{1+s}$ , (where  $i_i=1, i_i'=0$ ).

2. The case in which  $\{i_v\} = \{i'_v\}$ .

Since the systems  $[\{i_r\}, l]$  and  $[\{i_r\}, l']$  are different,  $l \neq l'$ . In this case k=k' and P=0. Consequently

$$|x[\{i_{\nu}\},l]-x[\{i'_{\nu}\},l']| = |l\cdot 3^{-2^{k+l+1}}-l'\cdot 3^{-2^{k+l'+1}}| \neq 0.$$

**5.** Lemma. If  $x[\{i_v\},l] \neq x[\{i_v\},\bar{l}]$  and  $\{i_v'\} \neq \{i_v\}$ , then  $x[\{i_v'\},l']$ does not lie between  $x[\{i_v\}, \bar{l}]$  and  $x[\{i_v\}, \bar{l}]$ .

**Proof.** Since  $x[\{i_r\},l] \neq x[\{i_r\},\bar{l}]$  the sequence  $\{i_r\}$  is finite. Let j denote the minimal index  $\nu$ , such that  $i_{\nu} \neq i'_{\nu}$ . If there exists an index  $v \ge j$ , such that  $i_v = 1$  then  $k \ge j$  and we have

$$|x[\{i_{\nu}\},l]-x[\{i_{\nu}\},l]| = |l\cdot 3^{-2^{k+l+1}}-l\cdot 3^{-2^{k+l+1}}| \le 3^{-2^{l-2}}.$$

It follows by (5) that  $x[\{i'_r\}, l']$  does not lie between  $x[\{i_r\}, l]$ and  $x[\{i_{\nu}\},\bar{l}]$ . If  $i_{\nu}=0$  for every  $\nu \geqslant j$  then  $i_{j}=0$  and  $i_{j}'=1$  and, by (5'), the sign of the difference  $x[\{i'_{\nu}\}, l'] - x[\{i_{\nu}\}, 0]$  is  $(-1)^{1+s'_{\mu}}$  and consequently (since  $i_{\mu} = i'_{\mu}$  for  $\mu < j$  and next unity in the sequence  $\{i'_{\nu}\}$ after  $i'_k$  is  $i'_i$ ) opposite to the sign of the difference

$$x[\{i_v\},l]-x[\{i_v\},0]=l\cdot 3^{-2^{k+l+1}}\cdot (-1)^{1+s_k}=l\cdot 3^{-2^{k+l+1}}\cdot (-1)^{1+s_k}.$$



It follows that  $x[\{i_v\},l]$  and  $x[\{i_v\},\tilde{l}]$  lie on one side of  $x[\{i_v\},0]$ and  $x(\{i'_i\},l')$  on the opposite side. Hence the lemma is also true in this case.

**6.** Lemma. Between  $x[\{i_r\},l]$  and  $x[\{i_r\},l+1]$  there does not lie any number of  $X_0$ .

Proof. With regard to the lemma of the section 5 it is enough to observe that the sign of the difference.

$$x[\{i_v\},l]-x[\{i_v\},0]=l\cdot 3^{-2^{k+l+1}}\cdot (-1)^{1+s_k}$$

is independent of l and the absolute value of this difference diminishes when l increases.

7. For every  $x=x[\{i_{\nu}\},l] \in X_{\alpha}$  let us put

(6) 
$$y = f(x) = 1 + \sum_{\nu=0}^{\infty} 3^{-2^{\nu+1}} i_{\nu}.$$

Let Yo denote the set composed by all the numbers

$$y = f(x)$$
 where  $x \in X_0$ .

According to (6) we have

(7) 
$$f(x) \le 1 + \frac{1}{3^2} + \frac{1}{3^4} + \frac{1}{3^8} + \dots < \frac{1}{1 - \frac{1}{8}} = \frac{9}{8}.$$

Let us denote by  $Z_l(x_0)$  for every  $x_0 = x[\{l_v^0\}, l_0] \in X_0$  and every natural j the set composed of all points  $x=x[\{i_v\},l] \in X_0$  such that  $i_{\nu} = i_{\nu}^{0}$  for every  $\nu \leqslant j$ .

**Lemma.** Let  $x_0 = x[\{i_v^0\}, l_0]$  and  $\overline{x}_0 = x[\{\overline{i}_v^0\}, \overline{l}_0]$  be two points of  $X_0$  such that  $\{i_v^0\} \neq \{\bar{i}_v^0\}$  and let j denote the minimal index v, such that  $i_{\nu}^{0} \neq \bar{i}_{\nu}^{0}$ . Then for every  $x \in Z_{I}(x_{0})$  and  $\bar{x} \in Z(\bar{x}_{0})$ 

(8) 
$$f(x_0) < \sqrt{[f(\overline{x}_0)]^2 + \left(\frac{\overline{x} - x}{2}\right)^2}.$$

Proof. According to (6) we have

$$|f(x_0) - f(\overline{x}_0)| < 3^{-2f+1} + 3^{-2f+2} + 3^{-2f+3} + \dots < 3^{-2f+1} (1 + 3^{-2} + 3^{-4} + 3^{-8} + \dots) < \frac{9}{8} \cdot 3^{-2f+1}.$$

Hence 
$$f(x_0) < f(\overline{x}_0) + \frac{2}{8} \cdot 3^{-2J+1}.$$

In order to prove (8) it is sufficient to show by (5) and (9), that

 $(f(\overline{x}_0) + \frac{9}{8} \cdot 3^{-2^{J+1}})^2 < [f(\overline{x}_0)]^2 + (\frac{1}{9} \cdot 3^{-2^J})^2,$ 

i. e. tha

nat 
$$[f(\overline{x}_0)]^2 + \frac{9}{4}f(\overline{x}_0) \cdot 3^{-2J+1} + \frac{8}{8} \frac{1}{4} \cdot 3^{-2J+2} < [f(x_0)]^2 + \frac{289}{81} \cdot 3^{-2J+1} .$$

But the above inequality is the result of (7) and the inequality  $\frac{1}{12} + \frac{81}{64} \cdot 3^{-2^{j+1}} < \frac{289}{81}$  which holds for every j = 0, 1...

8. Lemma. The set Yo is of potency 2 No.

Proof. It is sufficient to show that if  $\{i_v\} + \{i'_v\}$  and  $x = x[\{i_v\}, l]$ ,  $x' = x[\{i'_v\}, l']$  then f(x) + f(x').

Let j denote the minimal index  $\nu$  such that  $i_{\nu} \neq i'_{\nu}$ . For instance let be  $i_{l} = 0$  and  $i'_{l} = 1$ . Then

(10) 
$$f(x') - f(x) = 3^{-2^{f+1}} + \sum_{\nu=f+1}^{\infty} 3^{-2^{\nu+1}} (i'_{\nu} - i_{\nu}) >$$

$$3^{-2^{f+1}} - 3^{-2^{f+2}} (1 + 3^{-2} + 3^{-4} + \dots) > 0.$$

**9. Theorem.** There exists a compactum  $A_0 \subset E_2$ , such that the set of singular radii of  $A_0$  is of potency  $2^{\aleph_0}$ .

Proof. We shall prove that the set

$$A_0 = \underset{(xy)}{E} [x \in X_0, |y| = f(x)]$$

has the property required. It is enough to show that every number  $y \in Y_0$  is a singular radius of  $A_0$ .

Case 1. Let  $y_0 = f(x_0)$  where  $x_0 = x[\{i_\nu^0\}, l_0]$  and  $i_\nu^0 = 1$  holds only for a finite number of indices r.

If we put  $x_{0l} = x[\{i_{\nu}^{0}\}, l]$  we can see at once that all points of the form

$$p_{0l} = (x_{0l}, f(x_{0l}))$$
 or  $p'_{0l} = (x_{0l}, -f(x_{0l}))$ 

belong to  $A_0$  and are at the same distance  $y_0 = f(x_{0l})$  from the x-axis. The circles with centers  $p_{0l}$  and  $p'_{0l}$  and radius  $y_0$  are tangent to the x-axis at the point  $(x_{0l}, 0)$ .

Let us show that none of the points

$$q_{0l} = [\frac{1}{2}(x_{0l} + x_{0l+1}), 0]$$
 for  $l = 0, 1, ...$ 

belong to the generalized sphere  $K_{y_0}(A_0, E_2)$ . Let  $x=x[\{i_v\}, l]$  and  $y=\pm f(x)$  be the coordinates of an arbitrary point p=(xy) of  $A_0$ .



If  $\{i_p\} = \{i_p^0\}$  then  $f(x) = y_0$  and by the lemma of the section 6  $x + \frac{1}{4}(x_{0l} + x_{0l+1})$ , consequently  $\varrho(q_{0l}, p) > y_0$ .

If  $\{i_{\nu}\} \neq \{i_{\nu}^{0}\}$  then let j denote the minimal index  $\nu$ , such that  $i_{\nu} \neq i_{\nu}^{0}$ . Now let us observe that  $x_{0l} \in Z_{f}(x_{0})$ . According to the lemma of the section 7 we have

$$y_0 = f(x_0) < \sqrt{[f(x)]^2 + \left(\frac{x - x_{01}}{2}\right)^2}.$$

Therefore the distance between p and  $(x_{0l}, 0)$  is greater than  $y_0$ . The lemma of the section 6 leads us to the conclusion that the points  $q_{0l}, l=0,1,2,...$  do not belong to  $K_{y_0}(A_0, E_2)$ . Moreover it is evident that for  $l \neq l'$  the points  $q_{0l}$  and  $q_{0l'}$  belong to the different components of  $E_2 - K_{y_0}(A_0, E_2)$ , because the circles

$$K_{y_0}(p_{0l}), \quad K_{y_0}(p_{0l}^{'}), \quad K_{y_0}(p_{0l+1}) \quad \text{and} \quad K_{y_0}(p_{0l+1}^{'})$$

cut the plane  $E_2$  between these points. Hence  $E_2 - K_{y_0}(A_0, E_2)$  contains an infinite number of components. Consequently 4) the set  $K_{y_0}(A_0, E_2)$  is not locally contractible.

Case 2. Let  $y_0 = f(x_0)$  where  $x_0 = x[\{i_v^0\}, l]$  and  $i_v^0 = 1$  holds for an infinite number of indices  $\nu$ . By the definition of the systems  $\{\{i_v^0\}, l_0\}$  we infer that  $l_0 = 0$ .

Let  $\{v_i\}$  denote the increasing sequence composed of all the natural v such that  $i_v^0 = 1$ .

Furthermore, let us denote by  $\{i_{\nu}^{(j)}\}$  for every j=1,2,... the sequence defined by the formulae

$$i_{\nu}^{(f)} = i_{\nu}^{0} \quad \text{for} \quad \nu \leqslant \nu_{f},$$

$$i_{\nu}^{(f)} = 0 \quad \text{for} \quad \nu > \nu_{f}.$$

Let us put

$$x_i = x[\{i_n^{(j)}\}, 0]$$
 for every  $j = 1, 2, ...$ 

Since for  $x_0$  it is  $l=l_0=0$  and by (4)  $x_j$  is the j-th partial-sum of an alternating series convergent at  $x_0$ .

<sup>4)</sup> K. Borsuk, Über eine Klasse von lokal zusammenhängenden Räumen, Fund. Math. 18 (1932), p. 230 and 240.

Thereby, since  $3^{-2^{\nu_j}} > 2 \cdot 3^{-2^{\nu_j+1}}$  we may conclude that

$$x_{2j+1} - \frac{x_{2j+1} + x_{2j+2}}{2} = \frac{x_{2j+1} - x_{2j+2}}{2} = \frac{1}{2} \cdot 48 \cdot 3^{-2^{\nu_{2j+2}}} > 0,$$

$$\frac{x_{2j+1} + x_{2j+2}}{2} - x_{2j+3} = \frac{1}{2}(x_{2j+2} + 48 \cdot 3^{-2^{\nu_{2j+2}}} + x_{2j+2}) - x_{2j+2} - 48 \cdot 3^{-2^{\nu_{2j+3}}} =$$

$$= \frac{1}{2} \cdot 48 \cdot 3^{-2^{\nu_{2j+2}}} - 48 \cdot 3^{-2^{\nu_{2j+3}}} > 0,$$

$$x_{2j+2} - \frac{x_{2j} + x_{2j+1}}{2} = x_{2j+1} - 48 \cdot 3^{-2^{2} \cdot 2j+2} - \frac{1}{2} \cdot (x_{2j+1} - 48 \cdot 3^{-2^{2} \cdot 2j+1} + x_{2j+1}) =$$

$$= \frac{1}{2} \cdot 48 \cdot 3^{-2^{\nu_{2j+1}}} - 48 \cdot 3^{-2^{\nu_{2j+2}}} > 0,$$

$$\frac{x_{2j} + x_{2j+1}}{2} - x_{2j} = \frac{1}{2} \cdot (x_{2j} + x_{2j} + 48 \cdot 3^{-2^{\nu_{2j+1}}}) - x_{2j} = \frac{1}{2} \cdot 48 \cdot 3^{-2^{\nu_{2j+1}}} > 0.$$

Hence

$$\begin{aligned} x_1 > & \frac{x_1 + x_2}{2} > x_3 > \frac{x_3 + x_4}{2} > x_5 > \frac{x_5 + x_6}{2} > \dots > x_{2j+1} > \frac{x_{2j+1} + x_{2j+2}}{2} > x_{2j+3} \end{aligned}$$
 (11) 
$$\dots > x_0 > \dots > x_{2j+2} > \frac{x_{2j} + x_{2j+1}}{2} > \dots > x_4 > \frac{x_2 + x_3}{2} > x_2.$$

We shall show that the points

$$\left(\frac{x_j+x_{j+1}}{2},0\right)$$

do not belong to  $K_{y_0}(A_0, E_2)$ . Let  $x[\{i_v\}, l]$  and  $y = \pm f(x)$  be the coordinates of an arbitrary point p = p(x, y) of  $A_0$ . It is sufficient to prove that

(12) 
$$f(x_0) < \sqrt{[f(x)]^2 + (x - \frac{x_j + x_{j+1}}{2})^2}$$
 for every  $j = 1, 2, ...$ 

The proof of the inequality 12 will be divided into three cases:

- (a)  $x \in Z_{\nu_i}(x_0) Z_{\nu_{i+1}}(x_0)$ ,
- (b)  $x \in Z_{\nu_j}(x_0) \cdot Z_{\nu_{j+1}}(x_0)$ ,
- (c)  $x \in Z_{\nu_j}(x_0)$ .

The case (a) may be subdivided into two cases:

- (a<sub>1</sub>)  $x \in Z_{v_j}(x_0) Z_{v_{j+1}}(x_0)$  and there exists an index  $\overline{v}$  such that  $v_1 < \overline{v} < v_{j+1}$  and  $i_v = 0$  for  $v_j < v < \overline{v}$ ,  $i_v = 1$ ;
  - $(a_2) \ x \in Z_{\nu_j}(x_0) Z_{\nu_{j+1}}(x_0) \ \text{and} \ i_{\nu} = 0 \ \text{for} \ \nu_j < \nu < \nu_{j+1} \ \text{and} \ i_{\nu_{j+1}} = 0.$



In case (a<sub>1</sub>) according to (10),  $f(x) > f(x_0)$  and consequently also (12) is true.

In the case of  $(a_2)$  let us denote by x' the number  $x[\{i'_v\},l]$  where  $i'_v = i_v$  for  $v \neq v_{j+1}$  and  $i'_{v_{j+1}} = 1 = i^0_{v_{j+1}}$  (while  $i_{v_{j+1}} = 0$ ), l is the same as for x. Applying the lemma of the section 7 (where we preserve the sense of  $x_0$ , and replace j by  $v_{j+1}$ ,  $\overline{x}_0$  and  $\overline{x}$  by x and x by  $x' \in Z_{v_{j+1}}(x_0)$ , we obtain

(13) 
$$f(x_0) < \sqrt{[f(x)]^2 + \left(\frac{x - x'}{2}\right)^2}.$$

Let us observe now that in the formula (4) defining the numbers  $x=x[\{i_v\},l]$  and  $x'=x[\{i_v\},l]$  the coefficients  $(-1)^{1+s_v}$  and  $(-1)^{1+s_v}$  have opposite signs for  $v>v_j$ . Therefore if there exists an index  $v'>v_{j+1}$  (that is  $v>v_j$ ), such that  $i_{v'}=i_v=1$ , then (according to (4))

$$\left| \frac{x - x'}{2} \right| = \left| x - \frac{x + x'}{2} \right| = \left| x - \frac{x_j + x_{j+1}}{2} \right|$$

and consequently (13) implies (12).

If  $i_v = 0$  for  $v > v_j$  and  $j = 2j_1 + 1$  then in the formula (4) defining x, the coefficient

$$(-1)^{1+s_k} = (-1)^{1+s_{\nu_j}} = (-1)^{1+s_{\nu_j}^\circ} \quad \text{where} \quad s_{\nu}^0 = \sum_{\mu=0}^{\nu} i_{\mu}^0$$

is positive and in the formula (4) defining x' the coefficient

$$(-1)^{1+s'_{k'}} = (-1)^{1+s'_{\nu_{j+1}}} = (-1)^{1+s'_{\nu_{j+1}}}$$
 is negative.

Consequently

$$x > x_j > x_{j+1} > x',$$

and

$$\begin{aligned} 0 < & \frac{x - x'}{2} = x - \frac{x + x'}{2} = x - \frac{1}{2}(x_j + l \cdot 3^{-2^{\nu_j + l + 1}} + x_{j + 1} - l \cdot 3^{-2^{\nu_j + 1 + l + 1}} = \\ & x - \frac{x_j + x_{j + 1}}{2} - \frac{l}{2} \cdot 3^{-2^{\nu_j + l + 1}} + \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} < x - \frac{x_j + x_{j + 1}}{2} - \frac{l}{2} \cdot 3^{-2^{\nu_j + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + l + l + 1}} = x - \frac{x_j + x_{j + 1}}{2} - \frac{l}{2} \cdot 3^{-2^{\nu_j + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + l + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + l + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + l + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + l + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + l + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} - \frac{l}{2} \cdot 3^{-2^{\nu_j + 1 + l + 1}} -$$

Hence

$$\left|\frac{x-x'}{2}\right| < \left|x - \frac{x_j + x_{j+1}}{2}\right|.$$

If  $i_{\nu}=0$  for  $\nu>\nu_{I}$  and  $j=2j_{1}$  then in the formula (4) defining x the coefficient  $(-1)^{1+s_{k}}=(-1)^{1+s_{\nu_{I}}}=(-1)^{1+s_{\nu_{I}}}$  is negative and in the formula (4) defining x' the coefficient

$$(-1)^{1+s'_{k'}} = (-1)^{1+s'_{\nu_{j+1}}} = (-1)^{1+s'_{\nu_{j+1}}}$$

is positive.

Consequently

$$x < x_i < x_{i+1} < x'$$

and

$$0 > \frac{x - x'}{2} = x - \frac{x + x'}{2} = x - \frac{1}{2}(x_{l} - l \cdot 3^{-2^{\nu_{l} + l + 1}} + x_{l+1} + l \cdot 3^{-2^{\nu_{l} + 1 + l + 1}}) = x - \frac{x_{l} + x_{l+1}}{2} + l \cdot 3^{-2^{\nu_{l} + l + 1}} - l \cdot 3^{-2^{\nu_{l} + 1 + l + 1}} > x - \frac{x_{l} + x_{l+1}}{2}$$

Therefore

$$\left|\frac{x-x'}{2}\right| < \left|x-\frac{x_j+x_{j+1}}{2}\right|.$$

From (13) and (14) or (14') follows (12).

In case (b), let us denote by x'' the number  $x = x[\{i_p''\}, l''\}$  where  $i'' = i_p$  for  $p \neq p_{j+1}$  and  $i_{p_{j+1}}'' = 0$  (while  $i_{p_{j+1}} = 1$ ), l'' = l, when  $i_{p_{j+1}}$  is not the last unity in the sequence  $\{i_p\}$  and l'' = 0 if it is the last one:

Applying the lemma of the section 7 (where we preserve the sense of  $x_0$  and  $x \in Z_{\nu_{j+1}}(x_0)$  and replace j by  $\nu_{j+1}$ , and  $\overline{x}_0$  and  $\overline{x}$  by x'') we obtain

(15) 
$$f(x_0) < \sqrt{[f(x'')]^2 + \left(\frac{\dot{x} - x''}{2}\right)^2}.$$

From (10) may be derived

$$f(x'') < f(x).$$

As in the case (a<sub>2</sub>), we may say that in the formula (4) defining the numbers  $x = [\{i_{\nu}\}, l]$  and  $x'' = x[\{i_{\nu}'\}, l'']$  the coefficients  $(-1)^{1+s\nu}$  and  $(-1)^{1+s\nu}$ , where  $s_{\nu}'' = \sum_{\mu=0}^{\nu} i_{\mu}''$ , have opposite signs for  $\nu > \nu_{I}$ .

Consequently if an index  $\nu > \nu_{j+1}$  then an  $i_{\nu} = 1$  exists

(17) 
$$\left| \frac{x - x''}{2} \right| = \left| x - \frac{x + x''}{2} \right| = \left| x - \frac{x_j + x_{j+1}}{2} \right|.$$



If  $i_{\nu}=0$  for  $\nu>\nu_{j+1}$  and  $j=2j_1$  then in the formula (4) defining x the coefficient  $(-1)^{1+s_k}=(-1)^{1+s_{\nu_{j+1}}}=(-1)^{1+s_{\nu_{j+1}}}$  is positive.

$$x'' = x_j < x_{j+1} < x$$

and

$$0 < \frac{x - x^{\prime \prime}}{2} = x - \frac{x + x^{\prime \prime}}{2} = x - \frac{x_{j+1} + x_j}{2} - \frac{1}{2 \cdot 3^{2^j j + 1^{l + 1}}} < x - \frac{x_{j+1} + x_j}{2}$$

So

$$\left|\frac{x-x^{\prime\prime}}{2}\right| < \left|x-\frac{x_j+x_{j+1}}{2}\right|.$$

If  $i_{\nu}=0$  for  $\nu>\nu_{j+1}$  and  $j=2j_1+1$  then in the formula (4) defining x the coefficient

$$(-1)^{1+s_k} = (-1)^{1+s_{\nu_{j+1}}} = (-1)^{1+s_{\nu_{j+1}}}$$

is negative.

Hence

$$w^{\prime\prime} = w_j > w_{j+1} > w$$

and

$$\begin{split} 0 > & \frac{x - x^{\prime\prime}}{2} = x - \frac{x + x^{\prime\prime}}{2} = x - \frac{1}{2}(x_{j+1} - l \cdot 3^{-2^{\nu_{j+1}+l+1}} + x_j) = \\ & \qquad \qquad x - \frac{x_j + x_{j+1}}{2} + \frac{l}{2} \cdot 3^{-2^{\nu_{j+1}+l+1}} > x - \frac{x_j + x_{j+1}}{2}. \end{split}$$

Hence

$$\left|\frac{x-x^{\prime\prime}}{2}\right| < \left|x-\frac{x_j+x_{j+1}}{2}\right|.$$

The formulae (15), (16) and (17) or (17'), or (17'') imply (12). In case (c) there exists an index  $v < v_j$  that  $x \in Z_{\nu}(x_0)$  and  $x \in Z_{\nu+1}(x_0)$ . Applying the lemma of the section 7 where we preserve the sense of  $x_0$  and replace j by v, and  $\overline{x}_0$  and  $\overline{x}$  by x, and x firstly by  $x_j \in Z_{\nu+1}(x_0)$ , secondly by  $x_{j+1} \in Z_{\nu+1}(x_0)$  we obtain two inequalities:

$$(18) f(x_0) < \sqrt{[f(x)]^2 + \left(\frac{x - x_j}{2}\right)^2} \text{and} f(x_0) < \sqrt{[f(x)]^2 + \left(\frac{x - x_{j+1}}{2}\right)^2}.$$

The numbers  $x-x_J$  and  $x-x_{J+1}$  appearing in (5'), have the same sign because the differences have the same sign of the term P.

Hence either

$$x - x_{j} \! < \! x - \frac{x_{j} \! + x_{j+1}}{2} \! < \! x - x_{j+1} \quad \text{or} \quad x - x_{j} \! > \! x - \frac{x_{j} \! + x_{j+1}}{2} \! > \! x - x_{j+1}$$

then either

$$(x-x_{j})^{2} < \left(x-\frac{x_{j}+x_{j+1}}{2}\right)^{2} er^{-(x-x_{j+1})^{2}} < \left(x-\frac{x_{j}+x_{j+1}}{2}\right)^{2}.$$

Consequently it is

(19) either 
$$\left(\frac{x-x_{j}}{2}\right)^{2} < \left(x-\frac{x_{j}+x_{j+1}}{2}\right)^{2}$$
 or  $\left(\frac{x-x_{j+1}}{2}\right)^{2} < \left(x-\frac{x_{j}+x_{j+1}}{2}\right)^{2}$ .

The inequalities (18) and (19) imply (12). Therefore the inequality (12) is true in all cases.

Thus we have shown that no point  $\left(\frac{x_j+x_{j+1}}{2},0\right)$  belongs to  $K_{B_0}(A_0,E_2).$ 

Formula (11) implies that between two points

$$\left(\frac{x_{j_t}+x_{j_t+1}}{2},0\right)$$
 and  $\left(\frac{x_{j_t}+x_{j_t+1}}{2},0\right)$ 

for  $j_1 \neq j_2$  lies at least one point  $x_{j'}$  belonging to  $K_{y_0}(A_0, E_2)$  since according to (6)  $f(x_{j'}) < f(x_0)$ . Consequently the points  $\left(\frac{x_{j_1} + x_{j_1+1}}{2}, 0\right)$  and  $\left(\frac{x_{j_2} + x_{j_2+1}}{2}, 0\right)$  for  $j_1 \neq j_2$  lie in the different components of  $E_2 - K_{y_0}(A_0, E_2)$ .

Consequently  $E_2 - K_{y_0}(A_0, E_2)$  contains an infinite number of components. Hence  $K_{y_0}(A_0, E_2)$  is not locally contractible.

**10.** Problem. Let  $A_0$  be a compact subset of the n-dimensional Euclidean space  $E_n$ . Let R denote the set of all positive numbers r, such that  $K_r(A_0, E_n)$  is not homeomorphic to a polytope. The problem is, whether the set R is necessarily of first category (in the sense of Baire) and of measure zero (in the sense of Lebesgue)?



# Simply connected spaces.

By

## Tudor Ganea (Bucarest).

1. There are two ways of defining simple connectedness for topological spaces.

The first way is based on closed paths and their deformation:

An arcwise and locally arcwise connected topological space is termed *simply connected* whenever each of its closed paths is homotopic to a point ([9], p. 310; [10], p. 221) 1). Such spaces will be referred to hereafter as *pathwise simply connected*.

Another way of defining simple connectedness makes use of the idea of a covering space:

A connected and locally connected topological space is termed simply connected whenever it admits only a trivial covering space ([5], p. 44). These will be referred to merely as simply connected spaces.

The first definition requires arcwise connectedness, while the second has a meaning even for Hausdorff-Lennes connected and locally connected spaces.

Similarly, the fundamental group of a space may be defined either as the group of paths, or as the group of covering homeomorphisms of the simply connected covering space (*Deckbewe-gungsgruppe*).

2. It is the purpose of this paper to state some theorems on simply connected spaces, which do not hold true for pathwise simple connectedness. As a consequence, it will be shown that, without further local assumptions, the two definitions are not equivalent.

Our main goal is the proof of two kinds of approximation theorems: one related to the so-called  $\varepsilon$ -mappings, the other concerning convergent families of sets.

<sup>1)</sup> Numbers in brackets refer to the bibliography at the end of the paper.

<sup>2)</sup> Pathwise simple connectedness implies simple connectedness, but less than that is needed.