166 : R. Sikorski.

Consequently, by CA 114, :

4.1519). If Dim E>k, then Dim ([E], 4/4%) =Dim B—k.

Theorems 4.15, 2.10, and CA 11.4 imply

4.16. If Ngy...,Nn is a mormal decomposition of A (where
n=dim 4), then [N4],..,[N.] is a normal decomposition of A[Ak

The evaluation given in 4.12 and 4.12" is exact. In fact,

4.17. If the integers 1,U,L satisfy the inequalities

I<SL<n=dimAd, 'L>%k max(0,l—k) <V<min(l,L—k)
{where kg'n ), thcm there is an element B ¢ A such that
dimEA=1, DimE=L and dim(E4,dH)=dim[B]-4/4 =T

We have 1'>0 and 0<I—I'Skh<L—V'<L<n.

Let Ny,..,N. be a normal decomposition of A, and let
Ey=Nz_p+...+Ni. Consequently [BEy]=[Np_r]+..+[Nz]ed/4x
By 4.16 and 4.7 (i), dim[E,]- A/ k=L —(L—1V)=1". .

If I=7, let By=0; if 1>V, let By=Ny+ ...+ Npp.

The element B= B, E, is the required one. In fact, it follows
from 4.7 (i) and (i) that Dim E=1 and dim BEA=1. Since [F]=[E,],
we have dim[E]-4/4*=dim[F,]-4/4%=T, q. e. d.

4.18. (A/A%[(A[AW is Romeomorphic to A [A*TL,

By CA 9.7, the C-algebra (A4 /A4%)/(A/A*! is homeomorphic to
4./ where I is the ¢-ideal of all A e 4 such that Dim ([4], 4 /4% <1.
By 4.15, I=A4* q.e. d. i :

References.
Hurewicz, W. [1] Normalbereiche und Dimensionsthéorie, Math. Anna-
len 96 (1927), pp. 736-764. '
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-— [4] Topologie I (second edition), ‘Warszawa-Wroctaw 1948.
Sikorski, R. (CA) Closure algebras,. Fund. Math. 86 (1949), pp. 165-206.

19) If Dim E< k, then obviously Dim([li.‘j,A/A*)c_-. o
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On Generalized Spheres.
By

Mieczysiaw Gindifer (Warszawa).

1. Let 4, be a non-empty subset of & spacel) 4 and 7 & po-
sitive number. By a generaliced sphere with centre 4, and radius r
we understand the set e .

0 C Eddgd)=E e 4)<r)

Frequently the topological structure of the generalized sphere
is more simple than the topological structure of the set Ay,

For instance if 4, is a compact subset of the Euclidean- 1-di-
mensional space By, then every generalized sphere is a sum of a finite
number of segments.

It follows by (1): If 4 is a convex space 2) and 0<?'<7 then
(2) ‘Kr(AmA)——“KH[K:'—H(-ANA),-A]- )

2. Lemma. If A, is a compact subset of the Euclidean n-dimen-
sional space B, and r is a positive number, then for every aye K, (Aq, Eny
there emists o commected set N with diameter S(N)<L8r, constituting
& neighbourhood of ay in Er(Ag,En). .o

Proof. Let us put-

M=F[xe K,(a,E,,), aeAg,0(a,a0) <71,
N =F[2e¢E:{a,En), 6 €4y M-K,(a‘,E,.)%O].

Evidently N is a connected subset of K,(A.,,E,.? and 8(N)<8r.
Tt remains to be proved that N. constitutes a neighbourhood of

ay in K (A, En)

1) By space we always understand here a metric space. o .
%) Ais 2:'a'rwea; if for every two points a,bed and every positive number;
O<a<p(a,b) there exists a point we A such that a= e(a,m)=e(a,b)——e(b,w). .
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Otherwise there would exist a sequence {a,}ed, and a se-
quence {b,}—a, 80 that

(3) bye Kp(an, BEn)—N for every n=1,2,..

Let {a,} be a subsequence of {a,} convergent to a point ;e 4,.
Then &, K (@, Bn) and foonsequently K, (@, Ex) CM.
But for almost all indices 70 it is

y K (au.k,E’ ) uo, %()

SR

hence K (s, Bn)- M40 and fmally K, (auk,lb,,) CN.
‘This contradlcts

" 8. Theorem. IfAisa cimiz.oact‘ ‘éubs‘ét of the Buclidean n-di-
mensional space By, then for every v >0 the qeneml@zed sphere K, (AO,E,,)
18 locally connected.

. Proof. It is to be shown that for every point age K (4, En)
and every >0 there exigts a. connected nelghbourhood N, of a,
in K (4y,Bn) Wlth dlameter <e. Let 7" be a posmve number, such
tha.t . S
o 7' <Min (7, ¥e).
Then by (2)

Kr(Ad;En) = Kr’[Kr—-r'(Au; Br); Bal-

... By the lemma, of the section 2 there exists, a connected neigh-
bmu'hood N of an in K,(Ao, E,) with dmmeter 8(W) s8rise.

X

4. A posmlve number r W111 be called a smgulcw mdms f.or
the set A,CH, if there exists a point p'eK.(4,E ,.) such that
K.(A44,Ey) is not locally contractible in p 3).
The purpose of this paper is. to show that there exist in the
Euclidean plane ¥, compa,ct sety having continuum singular radii.
Let {i}, »=0,1,2,., be a sequence such that for every » it
is 4y==0 or i,=1. Qopsmer_ all systems of the form

R

P . AR

®) 4 i8 locally contractible in the point ae A if for every neighbourhood N
of ¢ in A there exists-a neighbourhood N, ¥ of a in 4 and a continuous. mapping
Faity defined: i the: Carfesian “product « of N; and of the-interval 0 <t 1, wxih
walués lying in' ¥such. that f@,0)=2 and f(®,1) =u for every we N. i
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where l—O if in thé sequence {i,} the equality 4,=1 holds for an
infinité ‘Yot of indices v, and where I is an arbitrary integer >0 if
in the. seqiience {@.,} the equality 4,=1 holds only for a fn:ube set
of indices ».

Let k—k ({i,}) denote 0 if z,,_O for every v~0 1,..0r if 4,=1
for, an infinite set of indices ». In all other cases k= 70({%,} denotes
tghe mammal index » such that 4,=1. Putting .

congider the set X, cornposed of all numbers [ {.},1] given by the
formula

@ alfish =48 237

Py RREY

Ay 13T (e,

Lemma. If the systems [{i,},1] and [{iL},1'] are different, t}ien
al{i}, V==l {i}, 17
Proof. Putting

v v e 35‘—’2%,
;4=0
p—18] S5 iy—1 Jrtn, — 3377 i (1)),
() p=0
Q=1-37 " Ly @r=r 37T (e,

we have

Cw{ig, —al{in), V1= P+Q—¢".

In order to prove that x[{z,,},l]:!:m[{@,,},l] we dlstmgulsh two
cases:

1. The case in which {%}:}:{u} :

Let j denote the minimal index, such that 4;7=4;; for instance
4=1 and %)=0. Hence i,=1, for every »<j. Then

[Pl=]18 -3 (— 1)1+ + 48 _%; ) 372, (1)t — iy (— 1)) >
g ; 2 9
483~ Y9 3= g5 )5 s 3“”(1-3—33~... >
L ey

- 9 2f 1,1
48-3 ’5[ —g—q(1+3—2+3;+..,)] —48-3
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Moreover, let us observe that the sign of P is equal to (—1)1+°/

. {where %;=1, @,_—0) The absolute value of @ is <3 z (since
k=i or 1=0). Also thie absolute value of @’ i <37, it there
exists an index »>j such that ¢,=1, or if I'=0. If i,=0 for »>j

and l’:§=0 then the sign of @' is opposwe to the mgn of P, smce the ..

sum 1+Z‘ T contams exactly one umty less than the sum 1—}-5 iy
=)
{tp =1, for u<j, zj-O 4y=1). It follows that if P and @—@’ h’we

-opposite signs then
e—@l<z 37
Hence

—af —-2I+2

. —2J
>34-3 2

—9.

(8) [w[{in},N—al{i},V]|=P+Q—+Q'|>4-3
where § denotes the minimal index », such that d,=1i,.
Moreover, let us observe that .
(5') the sign of 2[{&.},l]—a[{i},1]
is the same as the sign of P and equalto (—1)*+s; (where 4;==1, 4j="0).
2. The case in which {i,}={iL}.

Since the systems [{i,},!] and [{¢}},1'] are different,
In this case k=%" and P=0. Consequently

[ {an}, —@[{i}, V) = [I- g2ttt

- 5, Lemma. If o[{i,},l]d=2[{i.},]] and {z,,}:t:{z,,}, then w[{z,},l]
does mot lie between z[{i,},1] and a[{i,},1].

Proof. Since «[{i,},l]+o[{i,},]] the sequence {i,} is finite.
Let j denote the minimal index », such that i,9=4,. If there exists
an index v»>9§, such that 7,=1 then k>j and we have

10

—ok: 1
—1-37* 0.

okt _2k+1+1

e ({i}, L i, | =li-3 —I-3 l<s

It follows by (5) that «[{i,},I'] does not lie hetween a[{i,},1]
and #[{i,},1). Tt i,=0 for every »>7 then i;=0 and 4j=1 and, by (58'),
the sign of the difference #[{i}},1']—[{is},0] is (—1)!*+$} and con-
sequently (since 4, =1, for <4 and next unity in the sequence {i,}

after 4 is ij) opposite to the sign of the difference

a[{i}, U—al{in},01=1-3

N TEITI
L Cayreem 13T iy,
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It follows that #[{i.},1] and #[{i,},]] lie on one side of 2{{i,},0]
and 2[{i»},1'] on the opposite side. Hence the lemma is also true
in this case. '

6. Lemma. Between x[{i,},1] and o[{i,},1+1] there does not
lie any number of X,.
Proof. With regard fo the lemma of the section 5 it is
enough to observe that the sign of the difference,
al{i, 11— al{is}, 0 =137

is independent of 7 and the absolute value of this difference di-
minishes when I increases.

. (—-—1)”"}!

7. For every w=u[{i},l]e X, let us put

._21"{"1

(6) y=f(») 1+Z3

Let ¥, denote the set composed by all the numbers

y=f(w) where =eXy.

According to (6) we have
1 9
™M o) <1 g5+ g5 <=7

Let us denote by Zj(x,) for every mo—w[{z,,},lojeXu and every
natural j the set composed of all points o=x[{i,},l] € X, such tha.t
i, =1y for every r<j.

Lemma. Let mo—w[{@,},lo] and To=u[{in},l] be two points
of X, such that {10}=={is} and let j denote the minimal index v, such
that io4=15. Then for every @ eZy(my} and EeZ (%)

@) 4« f<%><|/§&m+(i}“)?
Proot. According to (6) we have
W) —H(To)| < gt gaht e
~21*”(1 4872433 L)<t 32t
@ - fiao) <flg+a
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In order to prove | (8) i, JS “sufficient .to show by (5) and (9),
that e ; R
o —otL, - .
7+ 45~ <@y 37,
ie. that ) o e
T3~ 457 < g 057
But the above mequahty is the result of (7) and the inequality
FTUIEY s b which holds for overy j=0,1..

8. Lemma. The set Yo 48 of potwa gk
. Proof. It is sufficient to show that if {u}:i:{z,,} and z= w[{z,,}, l],
o' =w[{i},I'] then f(z)=f(z

Let § denote the Immmal index » such that z,,#u For mstd.nce
let be 4;=0 and ¢j=1. Then Lo s

') —fla) = ‘“*j+ _213-2"+ (i) >
(10) 2+ 21+2' =
3TET =TT 43T ) >

9. Theorem. There exists a compactim A,CE,, such that the
sét of singular radii of A, is of potency 2%.
Proof. We shall prove that the set

; Ao:‘E [meXO,’Iy(:

has the property requu‘ed Ttis enough ‘to" show that every mlmber
y € ¥y iy a-singular-radius of A

Case 1. Let y,=f(x,) where wo—x[{zy},lo] and 7,,,-—1 Jhol(i&
only. for a finite number of indices ». .. " == wl
If 'we put mo,—w[{'z,.},l] Wwe can see at onc,e that all pomts Qt
the form R
Py =($501,f(w01)‘) . or pm (woz,—-f(ﬂfoz))
belong to 4, and are at the same distance y,=f(%o) from the z- axiéi

The circles with centers p,, and pm and radius yo are tangenb to the
z-axis at the point (g, 0).

Let us show that none of the pomts

. ——[fr(ﬁcoz-}-woz-u ),0] for 1=0,1,...

belong to the generahzed sphere Ky (4q,Hy). Let z=2a[{i;},]] and
y==+f(z) be the coordinates of an arbitrary point p=(zy) of Ay

icm
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If {i}= {@'2} then f(z) = y; and by thelemma of the section 6
w4 (@or+ Torta), consequently o(go,p) >y,
If {i,}= {is} then let j denote the minimal index » such that
iy 1. Now leti us observe that @y e Z(%,). According to the lemma
of the section 7 we have

o= f(mo)< ‘/U (m) P+ “” - ””"’) .

‘- Therefore the distance bétween p and (z,0) is greater than y,.
The lemma of the section 6 leads us to the conclusion that the points
o!=0,1,2,... do not belong to Ky,(4,,E,). Moreover it is evident
that for I==1' the points g, and g, belong to the different com-
ponents of By,—K, (A4, H,), because the circles

K, (0o)y K, (04 Ko (Pop) a4 K, (P
. B 'bv T e B .- E
¢fit the plane B, between these points. Hence E,—Ky,(do,B,) con-
taing an infinite number of components. Ccnsequently ¢) the set
K, (Aq,By) is not Iocally contractible. -

Case 2. Let y,=f(w,) where zy=a[{is},l] and iy=1 holds
for an infinite number of indices ». By the defmition of the systems
{{i%},1;] we infer that ly=0.

Let {»} denote the increasing sequence composed of all the
natural » such that ip=1.

Furthermore, let us dencte by {iP) for every 7 1, 2 . the
sequence defined by the formulae

(ﬁ

7— 2 for v Vi

15,’) =0 for r>w.

Let us put
'rj=a/[{z },U] for every 7-1,2,

Since for @, it is l=l,="0 and by (4) »; is the j-th partial-sum
of an alternating series convergent ab . . :

9 K. Borsuk, Uber. ecine Klasse von lokal zusammenhdngendén Réumen:,
Fund Ma.th 19 (1932) p7 230 .and 240. .
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—o¥j+1

Thereby, since 3~27/>2-3 we may conclude that

Topr1+Topge | By — P20

_o¥at2
DBojp1— 5 = 5 =}-48-377 A >0,
Loj11-+ Tojqe —2¥2+2 i —_o¥bi18
DT oy =$(@y4at+ 4873 4 gj0) —ayqp— 48377 Tz

—1-48-37 7 _yg. 37

e @M}——fﬂﬂ = 9321+1—4~8v' 37U —48-87 T gy )=
=%—‘4:8 . 3-—2‘"2}-}4._48 .3_2'»2”_2 - ()?
?ﬂ'flﬂ Tyy=4 + (Bgy+ Wy + 48* 3—21‘2]“)_@2]:?1:,48_3—2”2j+1 0.
Hence )
m1>9ﬁg—m—2>w3>%_;i>ms> %—'@ > .. >m;j+l>@zi+_1_t5£?zﬂ>w2]+a
. nte

> Ly > > Tgpto >

Loy =+ Tojp
AT >y %

‘We shall show that the points
(w,+w,+, 0)

3

do not belong to Ky (A, B,). Let x[{i,},]] and y=4f(x) be the
coordinates of an arbitrary point p=gp(z,y) of 4, It is sufficient
to prove that

(12) flw) < l/[f P+

The proof of the inequality 12 will be divided into three cases:

(a) meZ"j(wl)) Yir1 (mo)

(b) .{UEZvj(wo) Zvj_H(mo)

(€) @€ Zy (). .

The case (a) may be subdivided into two cases:

(ay) a)eZ,,J,(aao)——ZyJ +1(%) and there exists an index ¥ such
that n<v<wyy and i,=0 for y<v<y, z..=1,

(ay) msZ,,j(mo) Zw,.H(%) and 4,=0 for v,<w<v,+1 and ’lmH_l—O

-4 Hf”') for every j=1,2,...

icm
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In case (ay) according to (10), f(x)>f(x,) and eonsequently
also (12) is true.
In the case of (a,) let us denote by %' the number a[{i}},l]
where i, =1, for v==v1 and ’vy+1—1‘—“j+1 (while 4y;,,=0), 1 is
the same as for @. Applying the lemma of the section 7 (where we-
preserve the sense of w,, and replace j by ¥i41, %, and Z by # and z by
m'eZyH_l(mo), we obtain

as) feoo < |fi@rr+ (52

Let us observe now that in the formula (4) defining the numbers-:
p=w[{i,},1] and o'=a[{i},1] the coefficients (—1)"+* and (—1)ttss
bave opposite signs for »>w;. Therefore if there exists an index
' >y (that is v>v;), such that iy=1,=1, then (according to (4))

ot _lmwﬂi%‘
%

2

r—x
= |2

and consequently (13) implies (12).
If 4,=0 for »> and j=2j+1 then in the formula (4) de-

fining &, the coefficient

(—1)1+8k = (—1)1+oyy = (—1)1+5%;  where

8= Fé’oi;"
is positive and in the formula (4) defining &’ the coefficient

(=)o = (L) = (—1) 8 8 negative.

Consequently )
B> 0> Bt >,

and

—z' ! e — ¥t
0<m2w =w_m—;w —o—}(ay 137 +agp—l3 T =

m__w,-t-mprx”__, —z"rH+1 12 3—2"j+1+’+1 < _ T
2 2 2 2
Hence
T— 4 Bj41

(14) 5 < \‘w____j_z.i_ i
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If iy=0 for » >»; and j=2j, then in the formula (4) defining g
the coefficient (—1)1+% == (—1)t+sw = (~—1)1+9v, is nega,tlve and in the
formula ( ) defining &’ the coeffmlent "

is positi (1) = (— 1)1+3v1+1—<~'i)1+“%,-+,1
18 positive.

Consequently
.‘I’<.'T,‘j<$j+1<.'vl
and .

r—x' x4 g oyl
0> —F—=u— "") =~ (w—1-37% ++mj+1+l.3 PrrEE,
. L@ — ¥4l _- 141 Lt

e e 1Ty
Therefore
r—x' X+
) [ 2 < |t f+1|

From (13) and (14) or (14 ") follows (12).
In case (b), let us denote by 2 the number x— w[{z"} (44
where 1" =1, for v==v;44 and zgf_l_ =0 (while z.,ﬂ_]_l), 1"=1, when
vipq 18 DOG the last unity in the sequence {i,} and 1”"=0 if it is
the last one:

Applying the lemma of the section 7 (Where we .preserve the

sense of x;, and er,,J +1(®%o) and replace j by 3,44, and Z, and %
by z”') we obtain :

as feo <)/ ttee+ (ET

From (10) may be derived
(16) He'") < f(m)

As In the case (a,), we may say that in the formula (4) de-
fining the numbers z=[{i,},1] and w '=ua[{iy},1'"] the coefflments

(L)t and (—1)i+s; v, where sy—Ezy, have opposite signs for
>y,

Consequently if an index »>wy4q then an 4,=1 exists

an)

e

$+a?"
D) =

o
o J“f‘;”H—l i

. ‘ .
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If 4,=0 for ¥ >4 and j=2j; then in the formula (4) defi-
ning « the coefficient (1) 8= (—1)1+a, +1_(_1)1+s,j +1 is positive.

Hence
2 =wj<m,+1<ac
and . :
s—a’ _ wte’  agtwy, < g Tty
0<—p— =8-—= 5 =— 2 1 guggprtE 2
= v @ !
So
) r—a'’ Ty By |
(17") 9 <, g L 'g

If 4y=0 for »>u»4q and j=2j;+1 then in the formula (4)
defining @ the coefficient .
(LY (1)t = (1) St
is negative.

Hence
&=y > By >0 \
" and S EIN
ot o ' 2V _
0>w—rfw*“=w“mt =o—§(@ga—1"3 g ta)= :
3 2
: Gyt | Logmwpatit L 8O
——z *tg§°® o2
Hence ‘
p—a" 5+ P
(1711) o) < w-—- 7. ..

The formulae (15), (16) and (17) or (17'), or (17”) imply (12).
In case (c) there exists an index <ty that @ € 2o} and
.'béZg+1(w0) Applying the lemma of the section 7 where we preserve
the sense of @z, and replace §j by », and %, and % by @, and &
tirstly by @€ Zuta(), aecondly by wj+1sZ,,+1(wo) ‘we obtain tWO
inequalities: . N

(18)  f(mo) l/m and  f(m)< I/[f (@)P+ w mm)

The numbers »—x; and w——mj.H appearmg in (8 ), have the
same sign because the differences have the same gign of the
term P.

Fundamenta Mathematicae, T. XXXVIIL

1z
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Hence either

T+
B—y< X — —————’—lj) an

<w—dpy or aw—ay>a— AT

> =gy

then. either

L+ x5 41\2 Ly, 4\2
(;1;—<vj)2<(;v~——_’j_‘—)ﬂl) or (.r,——-;z;j+,)~z<(m_%f)ﬁjn).

Consequently it is

A [
(19) either (w ij) < (w—mf_';mfﬂ)z or (m_wf+1)2< (m_wj—l-:vjn)?
2 9 P 2_‘“‘ .

. + The inequalities (18) and (19) imply (12). Therefore the inequa-
lity (12) is true in all cases.

Thus we have shown that no point (ﬁj’——%%, O) belongs to
(Ao, Bp). :
Formula (11) implies that between two points

( j1+2 j|+1’ 0) and (‘T.Iz‘l‘;‘r]x‘F" 0)

for jy==j, lies af least one point xy belonging to I, (d,,B,) since
according to (6) fzp)<f(z,). Gonsequeptly the points (ﬂi‘)ﬂﬂ, U)
and (mj’—'zm’—""l,o) for j==j, lie in the different aomp();ents of
Ea_Kya(Ao;Ez)-

Consequently H,—Ky,(4,,H,) contains an infinite number of
components. Hence K, (4,,H,) is not locally contractible.

Ky

fo

10. Problem. Let A, be a compact subset of the n-dimensional
Buclidean space E,. Let B denote the set of all positive numbers r
,s:uoh that K, (Ag,FBy,) is not homeomorphic to a polytope. The problem’,
18, whether the set. R is necessarily of first category (m the semse of
Baire) and of measure zero (in the sense of Lebesgue )?

~ Simply connected spaces.
By
Tudor Ganea (Bucarest).

1. There are two ways of defining simple connectedness for
topological spaces. L
The first way is based on closed paths and their deformation:

An arcwise and locally arcwise connected topological space
is termed simply commected whenever each of its closed paths is
homotopic to a point ([9], p. 310; [10], p. 221) *). Such spaces will
be referred to hereafter as pathwise simply connected.

Another way of defining simple ccnnectedness makes use of
the idea of a covering space: R i

A connected and locally connected topological space is termed
simply conmected whenever it admits only a trivial covering space
([8], p-44). These will be referred to merely as simply connected
spaces. :

The first definition requires arcwise connectedness, while the
second has a meaning even for Hausdorff-Lennes connected and
locally connected spaces.

Similarly, the fundamental group of a space may be defined
either as the group of paths, or as the group of covering homeo-
morphisms of the simply connected covering space (Deckbewe-

JUNYSgruppe).

2. Tt is the purpose of this paper to state some theorems on
simply connected spaces, which do not hold true for pathwise.simple
connectedness. As a consequence, it will be shown that, without
further local assumptions, the two definitions are not equivalent 3.

Our main goal is the proof of two kinds of approximation
theorems: one related to the so-called e-mappings, the other con-
cerning convergent families of sets. .

1) Numbers in brackets refer to the bibliography at the end of the paper.

?) Pathwise simple connectedness implies simple connectedness, . hut: leks
than that is needed. . DD
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