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Dimension Theory in Closure Algebras.
By

Roman Sikorski (Warszawa),

This paper is the continuation of my paper Closure Algebras?)
cited hereafter as CA.

The generalization of the concept of dimension to the case
of closure algebras presents no difficulty. The definition assumed
in this paper is inductive by means of separation of closed elements.
For C-algebras?), this definition is equivalent (Theorem 3.5) to
Lebesgue’s definition which clearly can be formulated without
difficulty for arbitrary closure algebras.

The generalization of fundamental theorems from Dimension
Theory to the case of arbitrary C-algebras is easy. Some theorems
can be proved analogously to the case of metric spaces (see §1);
their procfs are omitted. Other theorems follow from analogous
statements for metric spaces (see e.g. 3.2).

The specification of all theorems which hold for C-algebras
is not the purpose of this paper. As in my earlier paper CA, I shall
only show the method of generalization. Roughly speaking, all
theorems from Dimension Theory which hold for separable metric
spaces are also true for arbitrary C-algebras.

It was stated in CA that every quotient algebra 4/7, where
A4 is a C-algebra and I is a o-ideal of 4, is also a C-algebra. This
fact suggests the following general problem: Suppose the topolo-
gical properties of 4 and I are known; what topological pro-
perties has the quotient algebra 4/I?

1) See References at the end of this paper.

The knowledge of Parts I and II of CA is assumed. Theorems from CA
will be cited by their numbers together with the letters CA“

2) See the definition on p. 154.
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I shall discuss this problem in §2 and §4 from the point of
view of Dimension Theory. In §2 I shall calculate the dimension
of A/T for an arbitrary o-ideal I (Theorems 2.9 and 2.10). In §4
-1 shall examine some special o-ideals. The maid result is that
dim 4 /I<dim 4. The subject of §2 is related to Hurewiez’s
notion of a , Normalbereich”.

The representation theorem pioved in §3 shows that the
compact n-dimensional space universal for all n-dimensgional spaces
is also universal for arbitrary n-dimensional C-algebras.

Terminology and notation of this paper are the same as in CA.

C-algebras will be denoted by the letters A, B,..., their elements by 4,B,.
A G-algebra A is by definition a o-complete Boolean algebra 3) with the closure
operation A defined for all A 4 such that

' I A+ B=1+B IL 0=0
TIX Acded IV. A=4

V. there is an enumerable sequence {Rn} (called the C-basis of A) of open
elements in 4 such that each open element Ge A is the sum of all R with
Fnc6.

Clearly an element 4 e 4 is said to be

closed if A=A;

open if its complement A’ is closed;

an Fo-element if it is the sun of an enumerable sequence of closed elements;

a Gy-element if its complement is an Fs-element.

We assume the following notations:

Fr(d)=A4 -4’ and Int(d)=(d") for any AdeA.

&(4) is the class of all closed element in A.

Fo(A) is the class of all Fy-elements in 4.

B(A4) is the class of all Borel elements in 4, i. e. B(4) is the least g-sub-
algebra of 4 containing all closed elements. Clearly B(4) is itself a C-algebra.

EA (where Fed) is the relativized O-algebra formed of* all elements
A-cE with the closure operation Ag=E4.

A/I (where I is a g-ideal of A) is a quotient C-algebra defined in CA 9.
The element of A /I determined by an élement AdeA will be denoted by [4].
By definition, [4]=[B] if and only if AB'+BA‘e L
. EI (where I is a o-ideal of A4 and Fe 4) is the class of all 4 e such that
AcE. EI is thus a o-ideal of EA. We must distinguish between EA|EI and
[E]- A[I. The construction of the first O-algebra is as follows: relativize A to the
element B and divide FA by EI; the construction of the second is: divide 4
by I and relativize to the element [Fle A/[L

oo
3) A+ B, ZIA,., AB, 4’ denote the Boolean operations analogous to
n=

addition, multiplication and complementation of sets.
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S(&) is the C-algebra of all subsets of a separable metric space &
B(&X) i8 the C-algebra of all Borel subsets of a separable metric space &.
. Two C-algebras 4 and B are homeomorphic if there is a Boolean isomorphism
of A onto B such that h(4A)="h(4) for each Ae A.

Two (-algebras 4 and B are said to he weakly homeomorphw provided
B(A4) and B(B) are homeomorphie.

0 and |4| denofe respectively the greatest and the least element of 4
(i.e. 0cAclA| for each deA4).

§ 1. Definition and general properties. The dimension
of a C-algebra 4 will be denoted by dim 4. The inductive definition
is the following:

dim A=--1 if 4 has only one clement 0;

dim A< »n if for every pair of disjoint closed elements F;,Fyed
there is an open GeA such that

F,CG, GF,=0,

and dimFr(@)-A<n—1.

Clearly dim 4 is the least integer n>—1 such that dim A<n.
If there exists no integer # with dim 4 <n, we write. dim 4—=oco.

If % is a separable metric space, then dim &(&) coincides
‘with dim & in the usual sense.

1.1 dim A=dim B(4). Consequently, if A is weakly homeo-
morphic to B, then dim.4=dim B.

This follows immediately from the definition.

The following simple lemma will often be useful.

Lemma. Let {R,} be a C-basis of 4, and let {im,jm} be the
sequence of all pairs of integers 4,j such that R;CR;. If a sequence
{Sn} of open elements has the property R, C SmC-R; (in particular,
it B;, C8nCR; ) for m=1,2,..., then {Sn} is a C-basis for 4.

12. If dimA<n, then A has a C-basis {Sm} such that
AIm Fr(Sp) - A< n—1. )

Let {R,} be a C-basis for 4, and let {im,jm} be a sequenee
of all pairs 4, such that K,CR;. Since dim A< n, there is an open
Smed such that R; CSnCSnCR;, and dimFr(Sm) 4<n—1.
The sequence {8} is the required C-basis.

The converse theorem is also true and will be proved-later-(1.6).
Now we can state only:

1.3. dim A<C0 if and only if A has an enumerable basis {Sn}
with Fr(S y=0 for m=1,2,...
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The necessity follows from 1.2. The proof of the sufficiency
is the same as in Topology of Metric Spaces*). -

14. If dim.A<n, then there is o decomposition |A|=4 +n‘§1Fm
such that dim AA4 <0, Fp s closed and dim Frd<n—1.

Let {Sm} be a C-basis mentioned in 1.2. It is sufficient to

assume Fn,=Fr(S,) and 4= (ZFm) In fact, the elements S,4

aré simultaneously open and closed in'4.4 and form a C-basis of 44.
Hence dim 44<0 by 1.3.

(az) If |A|=A+ B, dim A4 <0 and dim BA<Ln—1, then
dim AL n.

(ba) If |Al=2 P, where Fr are closed in A and dim FrnAd < n,
m=1
then dim A< n.

(cn) dim A n if and only if there is a.decomposition |A|= PP
=0
with dim 4,4<0 (i=0,1,..,n).

(dn) If dimA<Ln, then dimEA<n for every Eed. Con-
sequently, if ACB, then dim 4 A< dim BA.

(en) If |A|=2 Fn, where FrneFo(A) ond dimF,A<n, then
m=1 . -
dim A< n.

The proof is by induction on =.

(ao) is true since then B=0 and A=|4]|. The proof of (by)
is the same as for separable metric spaces?). (¢,) is trivial. (dq) follows

“easily from 1.3. (eo) follows easily from (by) and (d,).

Suppose now the statements (ay—1 ), (bp—1), (Ca-),
are true.

(an) follows from (d,—;) and CA 11.2 (prove that for disjoint
F,,F;eF(A) there is an open Se.d such that F,CG, GF,=0 and
Fr (G)CB).

(bp) follows from 1.4, (en—),
is the same as for metric spaces 6).

(dn—l)y (en—l)‘

(b) and (a,). The exact proof

4) See e. g. Kuratowski [3], pp. 121-122.
5) See e.g. Kuratowski [4], p. 171; Hurewicz-Wallman [2], p. 18
) See e.g. Kuratowski [4], p. 176.
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The necessity of (c,) follows from 1.4, (bn-1) and (c,—y). The
sufficiency follows from (cp—;) and (an).

(dn) follows from (c,) and (d,). (e,) follows from (b,) and (d).

1.6. dim EA<n if and only if for every pair of disjoint elements
P FyeF(BA) there is a G open in A such that F,C@, GF,=0 and
dimFr (@) E- AL n—1.

1.7. If -dimEBALn (md F F,=0, F,F,eF(A), then there
is an eclement Ged open in A such tha,t F,CG, GF,=0 and
dimFr(E-A<n—1.

The proof of 1.6 and of 1.7 is the same as in Metric Topology 7).
It is based on 1.4, 1.5 (d), and the separation theorem CA 11.2.

1.8. dim EA<n if and only if A has a C-basis {Sm} such that
AmFr (Sp)B-A<n—1.

The proof of the necessity is analogous to that of 1.2. It is
baged on 1.7. The sufficiency follows from 1.3, 1.5 (a, b) and from

the decomposition |Ed|=E=B+(E—B) where B=E 3 Fr(8
m=1
1.9. If dim AA<k and diim BA<, then dim(4 +B)A<k+1+1.
This follows directly from 1.5 (c).

1.10. For every A <. A there is a Gselement B such that ACB
and dim A4 =dim BA.

The proof is the same as in Metric Topology.

§ 2. The dimension of 4/I. The letter I will denote in
this section a o-ideal of a C-algebra A.

The least of the integers dimA’4 (oo included), where A eI,
will be denoted by dim (4, I).

In the case of a relativized C-algebra EA4 (FeA) we shall
often write, for brevity, dim (EA4, I} instead of dim(E4, ETI).

The following five lemmas are obvious.

2.1. dim(EA, I) is the least of the integers dim A'EA4 where
AeI There always ewists an AyeI such that dim(EA, I)=

2.2. dim(BA, T)< dim EA.

2.3. If ACB, then dim (44, I)<dim (B4, I).

2.4. dim(EA, I)=—1 if and only if E eI In particular,
dim (4, T)=-—1 if and only if I=4

7) The proof is similar to that of th. (2) in Kuratowski [3], p. 118.
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2.5. If AB’ +A’BsI(1 e.if [A]=[B]e 4/I), then dim (4 4, I)
—dlm(BA. I). o
2.6. dim (B4, I)<n if. a'nd only @f 4 has a C-basis {Rmn} such
that dim (Fr(Rn)E- A, I)S<n—1 (m=1,2,...).
In particular (E=l4|),
dim (4, I)<n if and only if A has a C-basis {En} such t/mt
dim (Fr(Rp) -4, T)<n—1.
Necessity. Let 4, be such an element in I that
dim AjBA=dim (B4, I)<n. On account of 1.8, the C-algebra 4
has a C-basis {B,} such that dim Fr(Rnp)4oF-A<n—1.. Con-
sequently dim (Fr(R,)EB-4,I)<n—1.
Sufficiency. Let dim(Fr(B,)E-4,I)<<n—1 (m=1,2,...),
where {R,}is a C-basis of 4. Let 4, ¢ I satisfy the condition (see 2.1}
Aim A5 Fr (Bn)E- A= dim (Fr (B E -4, I) <n—1.

Let A= ZA Clearly AeI and dimA4'Fr(R
Hence dim A'E-,Agn by 1.8, and dlm(EA,I) <n.
2.7. If dim (4, I)<n, then dim 4 [T<n.

The proof is by induction. The case n=—1 is trivial (see 2.4).
Suppose theorem 2.7 is true for n—1.

By 2.6, the C-algebra A has a
dim(Fr( ) - A, T)<<n—1 (m=1;2,...): By the inductive hypothesis,
dim Fr (R A/I‘r ) T<n—1. "The C-a algebra Fr(Ru) A /Fr(R.) X
being homeomorphlc to [Fr(Bm)]-4/I (see CA 9.5 (ii)), we have
dim [Fr (Bn)]-4/I<n—1. By CA 9.3 (iv), Fr([R.])C[Fr(Rnx)]
Hence dimFr ([Bn))-4/I<n—1. Since {{Rn]} is a C-basis for 4/T
by CA 10.2, it follows from 1.8 that dim 4/T<n. a

2.8. If dim A/T<n, then dim (4, I) <n.

The proof is by induction. The case n=—1 follows from 2.4.
Suppose theorem 2.8 is true for n—1. We ghall prove it for n.

(A) Consider first the case where I is a boundary ideal®).

Let {Rn} be a C-basis of 4 and let {im,im} be a sequence of
all pair of integers 1, j such that R,CR;. Since [R; ] and [R} ] are
disjoint and closed in 4 /I, there is an open Hp e 4/I such that

) B AL n—1.

C-basis {Rn} with

(a) : [Rim]Cqu -ij '[R;m] =0,
(b) AimFr (Hm)Ad<n—1.

8) That is, no open element G0 belongs to 1. See CA 8, P. 179..
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By CA 9.2, we may suppose Hpn=[G,] where G, is open
in 4. By CA 8.1 (ili) and CA 9.3 (i), we have H,=[G,]. Hence

(O) ‘ Fr (Hm):[Fr(GmH
It follows from (a) that
Ry CGut Cn and GnCR; + Dp, where CpyDyel

Let Sp=Int (Gn). By CA 8.1 (i), CA 7.2, and CA 7.1 (iv) %),
Ry CR; =R} Cln+ Ch=G%h=Gn.
Hence E; CS8p. On the other hand,
8mC O =GHCR} + D=
Consequently £, CN,C R n? which proves (see Lemma in § 1)
that {Sn} is a C-basis of 4.
By (b) and (¢), dim{Fr(Gm)]-4/IT<n—1. By CA9.5 (i),
the C-algebra [Fr (Gm)] - AT is homeomorphic to Fr(Gn)4 /Fr(Gn) I
Hence dim Fr(Gn) 4/Fr(G,) I<»—1 and, by the inductive hy-
pothesis, ’ ‘ :
dim (Fr (Gp) 4, I) = dim (Fr (Gm) 4, Fr (Gp) T)<n—1.
Since Fr(S,)CFr (@), we obtain by. 2.3
) dim (Fr(Sm) 4, I) <n—
and consequently dim (4, I)<{n on account of 2

J m Rj m*

1,

(B) Now consider the case in which I is an a.rbltrary o-ideal:
Let E=|A|* (i. e. E is the complement of the sum of all open ele-
ments G ¢ I). Since EA/ET is ‘homeomorphie to [B1A[I=A4|T
(see CA 9.5 (ii)), we have dim EA/BI<n. Since ET is a boundary
"ideal of B4 by CA 8.2, we may apply the proved part (A): Con-
sequently dim(EA4,T)= dlm(EA EI)<n. Since E’'eI, we obtain
from 2.5 that din.:\(A,I)grn.

It follows directly from 2.7, 2.8 and 2.2 that

2.9. dim 4/T=dim (4, I) <dim 4.

More generally,

2.10. dim[B]-A/T=dim (E4, I) <dmEA.

Theorem 2.10 follows from 2.9 and CA 9.5 (iii).

%) A* is the complement of the sum of all open Ged such that Gdel.
See CA 7, p. 178.

One word was omitted in the formulation of CA 8.1 (iii). The correct iormu-
lation of CA 8.1 (iii) is: G*=G for every open element G.
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Notice that if I, is the o-ideal generated by all closed
elements in I (i.e. AelI, if and only if ACBeI Fs(A)), then
dim (4, T)=dim (4, I;) and consequently dim 4/T=dim A4/T,. This
vemark follows immediatley from the definition and from 1.10.

Now we establish the connection between dim (4,I) and
Hurewiez’s ,,Normalbereich® 10).

Let A=G(&) where & is a separable metric space. Every
o-ideal T of S( &) is Hurewiez’s ,Normalbereich” and dim (&(&),I)<0
if and only if & is ,,total discontinuous with respect to I'’ in Hure-
wicz’s terminology. Conversely, if N is Hurewicz’s ,Normalbereich”
of subsets of &, let F be the o-ideal generated by closed sets in V.
Then & i3 ,,total discontinuous with respect to N'' if and only
it dim (S(&),I)<0. The easy proof is left to the reader.

§ 3. Representation theorems. Lebesgue’s definition.
The representation theorem CA 15.1 can be formulated for n-dimen-
gional C-algebras in the following form:

3.1. For every n-dimensional C-algebra A there ewist an n-dimen-
sional separable metric space & ond a o-ideal T of subsets of & such
that A is weakly homeomorphic to the C-algebra S(&E)/T (i. e. B(A) is
homeomorphic to B(E)/L,, where Ty=T-B(XE) is a o-ideal of B(E))1).

By CA 15.2, 4 is weakly homeomorphic to &(Z)/J, where
9 is the Hilbert cube and J is a suitable o-ideal. Hence, by 1.1,
dim S(H)/J=n and consequently dim (S(H),J)=n by 2.9. By 2.1,
there is a set FCH such that H—FeJ and dim F=dim S(E)=
=dim &F -S(H)=n. Let I=FJ=J -S(¥). The C-algebra S(&)/I
is homeomorphic to G(H )/, thus it is weakly homeomorphic to 4.

It is known that the (2n+1)-dimensional Euclidean space
containg an n-dimensional compact set U, which is universal for
the class of all m-dimensional separable metric ‘spaces, i. e. each
such space is homeomorphic to a subset of 2U,. The space U, is
also universal for all n-dimensional C-algebras:

3.2. Bvery n-dimensional C-algebra A is weakly homeomorphic
10 the C-algebra G(U,)|J, where J i8 a suitable o-ideal of S(Uy)
(i. 6. B(A) is homeomorphic to B(Wy)[Jy, where Jy=oJ  B(Uy) is
a o-ideal of B(Un))-

10y Hurewicsz [1]; p. 754. See also Kuratowski [4], p. 187-188.
uy See CA 9.5 (iii).
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>~ Let & and J have the same meanings as in 3.1. We may siippose
FCUn. Let J be the o-ideal of all sets X CU, such that XFeF
Since T=%FJ and Un—F e, the C-algebra S(Un)jJ is homeo-
morphie to &S(&)/I, which proves-3.2.
Let & be a separable metric space and let T be a c-ideal of
S(%). A finite sequence a==(G,... G'x). is said to be an I-covmng )
of & provided that: T o

(a) all sets G; are open in &;
F—3/Gie L
=1

The space & is said to have the property Dy (with respect to.
the ideal I) if, for every I-covering a, there is an I—covermg
B=(Hy,H,,... Hk) such that

(i) B is a refinement of a (i. e. each H; is entlrely cont&med
in some Gy); <. -

(i) Hynee rn+1—0 for every sequence ty<i,<.. <z,,+,.

-3.3. Aim(S(&E), I)<n if and only if & has the property D‘
with respect to I.

In the case where I contains only the empty set theorem 3. 3
i§ the well known theorem on the equivalence of Brouwer’s definition’
of dimension with that of Lebesgue. The proof of 3.3 is ‘& slightf
modification of this equivalence by the method of imbedding in
the (2n-+ 1)-dimensional Fuclidean cubel?). One proves by use
of Baire’s theorem on cemiplete gpaces that the condition D} implies
the existence of a homeomorphism ¢ of a subset XCE (F—X e I)
into the set P, of all points in the (2n4-1)-dimensional Euclidean
cube which have at most # rational coordinates. !The spsce of
continuous mappings must be, however, somewhat differehtly de-
fined.

The idea of the proof is as follows: ) Y

Let % be a bounded metric space. :

‘We shall consider the class di of all continuous mappings ¢ satisfying the’
following conditions: .

(c) @ is defined on a set X(p)c & such that $—X(g>)e],

(d) values of @ are’in .

Two mappings ¢,pe @ are said to be equwalcm prowded they comclde
on a set Zc X(p) X(y) such that ¥F—Z el

12) This method is due to Hurewicz and Kuratowski The pmgf out-

lined below is similar to that in Hurewicz-Wallman' [2], pp. 60-66. °
Fundamenta Mathematicas. T. XXXVIIL. 1x
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The class of all mappings ¢’e & which are equivalent with a mapping
ge @ will be denoted by @*. The class o* of all @*, where ge @, is a metrio
space with the following definition of distance®): .

- b, p*) = i d(g(x), ,
a(g*, v*) 1§f sup (@), ¥(z))

where d(p,q) is the distance between points p,q in Y, and where X is an arbitrary
set such that X cX(g) - X(y) and F—X el

Lemma A). If ¥ is complete, then the space @* is also complete.

Let a=(Gy,....Gm) be an I-covering of & and let pe @. The symbol p,

m
will denote the mapping @ restricted to e X(p) 12; G;. A mapping ge & is called

an a-mapping if every point ye Y has a neighbourhood Vc % such that 9:;1(17)
is entirely contained in some set Gji.

Lemma B). If ¥ is compact, the set of all ¢*e &*, where ¢ is an ¢-mapping,
is open in &*.

Lemma C). Let ¥ be compact and M=Mc Y. The set of all p*e &*
such that4) ¢ &) -M=0 is open in &*.

Lemma D). Let ¥ be the (2n-+ 1)-dimensional Euclidean cube and let M
be the intersection of % with an n-dimensional linear subspace. If & has the
property D7, then, for every I-covering o, the set of all ¢* e @*, where ¢ is an
a-mapping and @(X)- M=0, is a dense open subset in &*.

Lemma E). Let ¥ be the (2n+ 1)-dimensional Euclidean cube and let &
have the property D3%. Then there exists a homeomorphism ¢e @ such that
9(&) CPa-

Lemmsa E) implies immediately that if & has the property Di, then
dim (S(&), I) < n.

Suppose conversely that dim (S(&),I)<n, and let ¢=(Gy...,Gm) be an
I-covering of &. By 2.1 there is a set Xc& such that dim X<{n and F—Xe I

: m

We may assume that X CZG[. Consequently there are open sets H,,...,Hp such
that X cz,k'H 1, HicGyq a,ndl—t;lie condition (ii) is satisfied 15). The space & possesses
the pro;l;:'ty Di.
A sequence a=(4;,...,4,,) is 8aid to be a covering of a C-algebra
. m

4 if all A4, are open and |A|=)2 4, A C-algebra A is said to have
=1

the property - D, if, for every— covering a=(4y,...,4d,), there is
a covering f=(By,..., By) which is a refinement of « (i. e. each B, is
contained in some A4;), and such that Bj-... By, =0 for every
BeqUENCE 1<y < i < lnty- .

8) @* may be interpreted as the space of all continuous homomorphisms
of 6(%) into G(X)/I. See CA 21.1.

) Clearly (&) is the image of the set X{g).

%) See Kuratowski [4], p. 184.
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3.4. Let & be a separable metric space, and let I be a o-ideal
of &(&). The C-algebra S(&F)/T has the property D, if and only if &
has the property D} with respect to I

Suppose & has the property Dj, and let (4y,...,4) be a co-
vering cf 4. We have 4,=[@,] where G is open in %. The sequence
(Gy; .-y Gm) is an T-covering of &. Let (H,,...,Hy) be an I-covering
of ¥ satistying the conditions (i) and (i). Consequently B,=[H]]
(i=1,..,k) is a rcfinement of (4,...,4,) and By,
Thercfore S(&)/T has the property D,.

Suppose now that G(&)/I has the property D, and let
a=(Gy,...,0m) be an T-covermg of &. Then ([Gy],...,[Gw]) is & co-
vering «f S(&¥)/I which has a ref.nement (Byy -y Br) (B;ClGyp])
such that B,o~...-B1n+1=0 whenever 4, <4;<...<iny1. We have

‘..-B,‘m:o_

k
B;=[Uj] where U; is open in &. Let Q=2Uj~Z(U,—0-...-U, o
i=1 "

the last sign X being extended over all increasing sequences
1p<...<iUpyy. Clearly —Q eI and Q(Uio"~-'Ufn+1):0' There are
open sets ) V; (j=1,...,k) such that V;,Q=7T; and V,o-u.~17,n+1=0
for each sequence 4g<4<...<4pp1. Let H;=V;@y;. The T-covering
B=(H,,...,Hy) satisfies the conditions (i) and (ii). This proves that &
has the property Dj.

3.5. For every C-algebra A, dim A<n if and only if A has
the property Dy.

Theorem 3.5 follcws immediately from 2.9, 3.1, 3.3 and 3.4.

§ 4. Ideals A% Tet A eA. The symbol Dim (4, 4) will
denote the least integcr m>=>—1 with the property: there is an element
FeFo(A) such that ACF and dim F A4 =m.

In this section the letter A will denote a fixed C-algebra of
finite dimension. For brevity, we shall write ,Dim A” instead
of ,Dim (4, 4)".

The following lemmas are obvicus.

4.1. If AeFo(d), then DimA=dim A 4. In particular,
Dim A=—1 if and only if 4=0.

4.2. Dim|d|=dim 4.

4.3. If ACB, then Dim A <Dim B.

16) See Kuratowski [4], p. 122.
11*
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4.4. dimA4<DimA < dim 4.
4.5. Let ACE. Then Dlm(A EA) <
then Dim (4, B4)=Dim4. ~

<Dim4. If Befa(d

4.6. If DlmA,<k for ’b—l 2,..., then D1mZA1<l«

. Let % be a non-negative 1nteger The o- 1decn1 (sée 4.8) of all
A<A wuch that Dim A<k will be denoted by A*. Analogously
(EAYwill denote the o-ideal of all AeEA (i. e.. ACE) such that;
Dim(4,BA)<k. If EeF.(A4), theh (BAd)t=EA* by 4.5.

‘ A sequence Ny, Ny,...,N,e 4 is said to.be a normal decompo-
sztwfn of A provided that: )

(8) |A|=No+Ny+ ..+ N,

(b) No+ N+ ...4+N;e Fof A)i T zﬁ(),1,...,fn,;

. (e) dim N4 =0 for ¢ =0,1,: .

" (d) DimN,=1 for'i=0,1,.

The existence of a normal decomposmlon (a) implies dim A=mn.
The converse statement is also true and Wﬂl be proved later (4. 8)

R “Let Ny, .. ,N be a mormal decomposmon of A, let
0w<¢0<11<z2< <ie<n, and let B= =N;+Ny+ ...+ Ny Then
(i) Dim B =1,;
(i) dim BEd=r7;
(m if 151 <k <is, then dlm(EA AR Lr—s17),
The property (i) fecllows from (d), 4.6 and 4.3.
- It follows from 1.5 (¢) that dim FA<r and dim B’ A<n—r—1.
Sinee. dim 4 =n, the equation (ii) holds (see-1.9). :
We have A=N;+...4+Ny_ leAk and dim4’ BA<Lr—s since
A'E is the sum of r—s-1 null-dimensional elements. This proves (iii).

i 4.8. dimA=mn"if and only if there is a normai decomposition
Noy-y Vi of 4. : :

Only the existence of a normal decomposition should be proved.
The proof of this fact is by induction on n=dim 4.
. The-casen==01is trivial. Let dim A=n>>0. By 1.4 and 1.5 (b),
iAl- Nn+ B, where dimN,4=0, BeF,(4) and dimBAd<<n—1.
By the induction hypothesis, BA has. a normal decomposition
No, Ny, Npoy. The sequence Ny, Ny, ..., N, is a normal decompo-
sition of 4. : ‘

17) Tt follows from 4.16 that dim (Fd, A% =r—s.

icm
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4.9. If DimB<k (0<k<<n=dim 4), then there is a normal
decomposition No,...,Npn of A such that BCNy+ ... Npy.

Let My,..,.M, be a normal decomposition of 4, and let
li's{“;,,(A ECF and dimFA<k Let A=F+ M+ .. TM](_1 By
4.6 and 4.7, we have dimAA=%-—1. Hénce there ‘is ‘a normal
decomposition Ny, ..., Nj—y of A4, Let N;=M; for j=Fk, ", Thé
sequence Ng,..., N, is a normal decomposmmn of A smce A eFo(4)
(see (b)). '_Ehe easy proof is omitted. ;"

4.108). If Dim E > I; then dlm(EA AX < Dim E—§.

Let p=DimE. By 4. 9 there is a normal decombomtmn
Ny, ..wNa0f A (Where n=dim 4) such that FCN ot . -.—N Herice,
by 4. 7 (iii), ;

dim (B4, 4% < dim (¥o+ ...+, )A Ak)<d1m(Nk+ +N )A<p~k

1.11. dlm(]yA,,A!‘)> dnnEA—-

Let A ¢ A* be ‘such an elefient that dim (EA AY— dim A'BA
{see 2.1). We-have dlmAEA<k ‘1 since HA ¢ 4*. Consequently,
by 1.9, :

! dim BA < dim A’ DA+d1mAEA+1<d1m(EA AR (k— 1)+1

which proves:4.11.
4.1218), If Dim B>k, then.

‘max(O,dimEA—k) dlm(EA A")<m1n(d1m1ﬁA DimE-= k)

This follows from 4.10, 4.11 and 2.2.
Theorem 4.12 may be otherwise formulated as follows (see 2.9):
4.12°. If Dim E >k, then :

max (0, dim BA—Fk) < dim[F]- 4/ 4F < min (dim E4, Dim E— k)

In particular, since Dim |4|=dim 4,
4.13. dim 4 /A*=dim (4, 4%) =din A—E.
More generally, by 4.1, 4.12 and 2.10,
4.14. If EeFolA) and Dim B>k, then

dim [B]-A/A*=dim BA—Fk.

18) If Dim B<k, then obviously dim.(EA4, A% =1, This case is not
interesting.
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Consequently, by CA 114, :

4.1519). If Dim E>k, then Dim ([E], 4/4%) =Dim B—k.

Theorems 4.15, 2.10, and CA 11.4 imply

4.16. If Ngy...,Nn is a mormal decomposition of A (where
n=dim 4), then [N4],..,[N.] is a normal decomposition of A[Ak

The evaluation given in 4.12 and 4.12" is exact. In fact,

4.17. If the integers 1,U,L satisfy the inequalities

I<SL<n=dimAd, 'L>%k max(0,l—k) <V<min(l,L—k)
{where kg'n ), thcm there is an element B ¢ A such that
dimEA=1, DimE=L and dim(E4,dH)=dim[B]-4/4 =T

We have 1'>0 and 0<I—I'Skh<L—V'<L<n.

Let Ny,..,N. be a normal decomposition of A, and let
Ey=Nz_p+...+Ni. Consequently [BEy]=[Np_r]+..+[Nz]ed/4x
By 4.16 and 4.7 (i), dim[E,]- A/ k=L —(L—1V)=1". .

If I=7, let By=0; if 1>V, let By=Ny+ ...+ Npp.

The element B= B, E, is the required one. In fact, it follows
from 4.7 (i) and (i) that Dim E=1 and dim BEA=1. Since [F]=[E,],
we have dim[E]-4/4*=dim[F,]-4/4%=T, q. e. d.

4.18. (A/A%[(A[AW is Romeomorphic to A [A*TL,

By CA 9.7, the C-algebra (A4 /A4%)/(A/A*! is homeomorphic to
4./ where I is the ¢-ideal of all A e 4 such that Dim ([4], 4 /4% <1.
By 4.15, I=A4* q.e. d. i :
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Panstwowy Instytut Matematyczny.

On Generalized Spheres.
By

Mieczysiaw Gindifer (Warszawa).

1. Let 4, be a non-empty subset of & spacel) 4 and 7 & po-
sitive number. By a generaliced sphere with centre 4, and radius r
we understand the set e .

0 C Eddgd)=E e 4)<r)

Frequently the topological structure of the generalized sphere
is more simple than the topological structure of the set Ay,

For instance if 4, is a compact subset of the Euclidean- 1-di-
mensional space By, then every generalized sphere is a sum of a finite
number of segments.

It follows by (1): If 4 is a convex space 2) and 0<?'<7 then
(2) ‘Kr(AmA)——“KH[K:'—H(-ANA),-A]- )

2. Lemma. If A, is a compact subset of the Euclidean n-dimen-
sional space B, and r is a positive number, then for every aye K, (Aq, Eny
there emists o commected set N with diameter S(N)<L8r, constituting
& neighbourhood of ay in Er(Ag,En). .o

Proof. Let us put-

M=F[xe K,(a,E,,), aeAg,0(a,a0) <71,
N =F[2e¢E:{a,En), 6 €4y M-K,(a‘,E,.)%O].

Evidently N is a connected subset of K,(A.,,E,.? and 8(N)<8r.
Tt remains to be proved that N. constitutes a neighbourhood of

ay in K (A, En)

1) By space we always understand here a metric space. o .
%) Ais 2:'a'rwea; if for every two points a,bed and every positive number;
O<a<p(a,b) there exists a point we A such that a= e(a,m)=e(a,b)——e(b,w). .
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