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The measure 7 is isomorphic to | ¥, since there is a measure-
preserving Baire transformation of Ix I onto I. The measure » is
trivially isomorphic to z|X,. The measures u and v, however, are
not isomorphie since the.e is no Boolean isomorphism of X onto ¥.

In faet, suppose  is an isomorphism of X onto ¥. Since all
one-point subsets of IxI belong to X and to Y, there is a one-one
mapping®) ¢ of IxI into IxI such that R({X)= —1X) e X,
for XeX. Thus ¢ is a Baire mapping. Oonsequently et is
also a Baire mapping). Let X, e X—¥. We have ¢(X,) ¢ X and
Xy=g—1p(Xy)) =h(g(X,)) € ¥ which is impossible.

The above example shows that the assumption in Theorem (T)
that measures are strictly positive is essential.

10) See o, g. E. Szpilrajn-Marczewski, On the isomorphism and ihe
equivalence of classes and sequences of sets, Fund. Math. 82 (1939), pp. 133-148;
in particular p. 137.

1) See e. g. C. Kuratowski, Topologie I (seeond edition), Warszawa-
Wroctaw 1948, p. 398, th. 3.
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Algebraic Treatment of the Functional Calculi
of Heyting and Lewis ).
By

H. Rasiowa?) (Warszawa).

Every formula ¢ of a funetional calculus can be interpreted
as a functional on an abstract set I with values in a syitable abstract
algebra . This functional will be denoted by ,,@,” and will be
called the (I,%)-functional determined by «3}.

For instance, every formula of the ordinary functional calculus
can be interpreted as an (I,A)-functional, where % is a complete
Boolean algebra4); every formula of the funetional calculus of
Heyting can be interpreted as an (I,B)functional, where B is
a complete Brouwerian algebra5), and every formula of the functional
calculus of Lewis®) can be interpreted as an (I,€)-functional,
where © is a complete elosure algebra?).

The above interpretation is a generalization of the well-known
matrix method in sentential calculi. The comnection bebtween the

1) This paper was presented to the Warsaw University in candidacy for
the degree of Doctor of Philosophy and accepted in May 1950. The results
were announced at the Polish-Czechoslovak Mathematical Congress in Prague
in September 1949. The results of this paper together with that of ,4 Proof
of the Compleieness Theorem of Gédel” published by the author and R. Sikorski
(Fundamenta Mathematicae 37 (1950), pp. 193-200) were announced at the
meeting of the Association for Symbolic Logic in December 1949 The Journal
of Symbolic Logic 15 (1950), p. 79).

2) The author wishes to thank Professor A. Mostowski for suggestions
and criticisms in connection with the writing of this Thesis.

3) The notion of the (I, ¥)-functional and the idea of treating the fune-
tional calculi algebraically is due to Mostowski [2]. For a definition of the
(I, )-functional @ see § 4, p. 113.

1) See Rasiowa and Sikorski 1]

5) See Mostowski [2].

¢) The system considered here is based on the system S 5.4 of the sentential
ealeulus of Lewis and Langford [1], p. 501

7) See § 5, p. 119.

7%
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two-valued sentential ealeulus and Boolean algebras is well known.
An analogous connection has been established between the sen-
tential calculus of Heyting and Brouwerian algebras, and between
the sentential ealculus of Lewis and closure algebras 8). This explaing
the fact that algebras of these kinds appear in the discussion of the
caleuli mentioned above. The hypothesis, that all these algebras
are complete, has to be assumed in order to make certain that all
the infinite operations (corresponding to logical quantifiers), which
occur in the functionals, can be performed.

In the case of the ordinary functional ealculus the interpre-
tation of formulae, as algebraic functionals, permit us to put in
algebraic terms the semantic notions of satisfiability and validity °).
(6del’s completeness theorem?) can then be formulated in the
following equivalent form, where I, is the set of all positive integers
and %, is the (complete) two-element Boolean algebra:

{A) A formula o of the ordinary functional caleulus is pro-
vable if and only if the (L, W,)-functional D, is tdentically equal to
the unit element of Wy ™).

It is easily shown that, if this formula « is provable, then
the (I,%)-functional ®, is identically equal to the unit element
of U, for every complete Boolean algebra W and every non-void

set I. Consequently, by (A), we have:
' (A") A formula o of the ordinary functional caleulus is pro-
vable if and only if for every non-void set I and for every complete
Boolean algebra U the (I,%)-functional @, is identically equal to the
unit element of A.

It will be proved that there exists a complete Brouwerian
algebra B, and a complete closure algebra €, such that the following
conditions are satisfied (where I, is the set of all positive integers):

(B) A formula a of the functional caleulus of Heyting is pro-
vable 3f and only if the (I,,B;)-functional P, is identically equal to
the zero-element of By'2).

®) See McKinsey and Tarski [3]. .

%) See Rasiowa and Sikorski [1]. For the explanation of the notions of
satisfiability and validity, see Tarski [1].

10y See Godel [11.

1) See Rasiowa and Sikorski [1].

:2) Theorem (B) is the solution of the problem proposed by Mostowski [2],
p. 207. :

i
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(C) A formula a of the functional caleulus of Lewis is provable
if amd only if the (I,,C,)-functional D, is identically equal to the
wnit element of ;.

The above theorems imply 13):

(B') A formula a of the functional caleulus of Heyting is pro-
vable if and only if, for every nom-empty sei I amd every complete
Browwerian algebra B, the (I,B)-functional O, is identically equal
to the zero element of B4).

(0" A formula a of the functional caloulus of Lewis is provable
if and only if, for every non-empty sei I amd every complete closure
algebra €, the (I,C)-functional D, is identically equal to the wmil
element of ©15),

It is clear that theorems (B) ((B’)) and (C} ({(€’)) ) are comple-
teness theorems (in the same sense that theorem (A)((A")) is the
completeness theorem for ordinary functional ecaleulus) for the
functional calculi of Heyting and Lewis, respectively. ’

The proof of theorems (B}, (B’) and (C), (C") is the subject
of § 4 and § 5. Paragraphs 1-3 contain the deseription of the systems
considered and some lemmas on extensions of Brouwerian and
closure algebras (§ 3).

§ 1. The functional calculus of Heyting.

We shall refer to the functional caleulus of Heyting as the
system . H can be described briefly as follows.

The symbols of the system are: the individual variables &y, &y, ...,
the sentential variables ai,ay,..., the k-argument functional variables
FEPE, ... (E=1,2,..), constants and parentheses.

The constants are: the conjunction sign A, the disjunction
sign v, the implication sign D, the negation sign ~, the sign of the
general quantifier (), and the sign of the existential quantifier ().

The class of formulae of the system F{ is the smallest class H
which contains all sentential variables, all expressions of the form
Ff(mji,...,mjk) and which is closed under the following six opera-

1) See § 4, p. 119 and § 5, p. 125.

14) Theorem (B’) is the solution of the problem proposed by Mostowski[2],

. 207.
? 18) Theorems () and (C’) solve the question proposed to me by Mo-

stowski. .
16) Theorems (B) ((B’)), (C)((C")) are stronger than similar results obtained

independently by Henkin. See Henkin [1}.
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tions: forming theé conjunction. (e Af), the disjunction (avg), the
implication (¢Dp) from two expressions '« and g, taking the negation
(~a) of an expression «; and putting the existential quantifier
(Hap) or the universal quantifier (z;) in front of an expression «
to obtain the expression ((Hwzpa), or ((zx)a), respectively.

" Among’ the oceurrences of individual variables in a formula,
we distingiish in a familiar way between free and bound oceurrences.
By awzgy...,2s,) We mean 3 formula in which at least one oceurrence
of each of the variables a, (i=1,2,...,n) is free.

We- introduce the ‘follpwihg abbreviation:

(L) : (a=p) for ({(«DB)A(BDa)).

In writing formulae, we shall practice the omission of paren-
theses, the rule being that: (1) each of the operators ~, A, D, =, v
binds one or two expressions less strongly than the preceding one,
and (2) the quantifiers bind them more strongly than any one of
the operators just listed.

If a, B, y, aré arbitrary formulae, the following formulae are
called awioms7):

A.1 aDdaAaqg AT ad(avp)

A.2 aABDBAa A8 (aVB)D(BVa)

A3 (aDP)D(([@AP)D(BAY)) A 9 (aDy) A(BIY)D((aV §) Dy)

A4 (@DBYA(BDy)D(ady)  A.10 ~aD(aDp)

A5 BD(aDB) A1l (aDB)A(aDd~p)D~a

A6 aA(aDB)DB A.12 (@p)ada

S i A.13 aD(Hzp)a.

There are four rules of inference in the system S:

R. 1.1 modus ponens: from « and aJf to infer g;

R. 1.2 the rule of substitution for individual variables 18);
~--R. 1.3 the rule for (x,): from aJf to infer aD(w)f provided

that no free occurrence of , appears in a.

R. 1.4 the rule for (Hay): from aDp to infer (Hay) aDf provided
that no free oceurrence of m, appears in B.

A finite sequence of formulae each of which is either an axiom,
or regults from one of two preceding formulae of the sequence by
applying one of the rules R.1.1-R. 1.4, is called a formal proof in .
*—“)ATIII are substitutions of the
of Heyting. See Heyting [1].

; 18) This rule is the well-known rule of
in the ordinary funetional caleulus of the Hiry

axioms of the sentential caleulus

substitution for individual variables
st order. See Mostowski [1], p. 53.
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If o is the last formula of a formal proof then a iy called a pro-
vable formula of H. We write then p-o.

It is easy to show that every a ¢ ¥, which is a substitution
of a provable formula of the sentential “calculus of Heyting2®),
ig also a provable one in . Hence, if a, B, y, 6, are any formiilae,
the following are provable formulae of FH 20):

2.2 aAfla 2.3 F(aAP)AyDaA(BAY)
2.21 pada 232 RaABAY)D(aAB) Ay
2.22 aABIp 32 F(avB)VyDavV(fVy)

2.23  F(adB)IN(pI)D(a\yDBNS) 321 aV(BVy)D(aVBIVy
24 (aDB)A(eDy)=aDfAy 3.22 ravaeda
2.26 BD(adaAp) 3.3 F{(aDBAFID((aVy)D(BVE)}
2.27 aD(f2y)=aABDy 3.6  (avB)D((aDB)DP)
2.271 FaD(8Dy)=pD(aDy) 41  Fe~ad(adf)
2.29  H(aDB)D((FO¥)I(aDy)) 4.2 paDdBD(~pI~a)
2.291 (BDy)D((eDf)D(ady)) 421 (aD~F)D(fD~a)
43 Fad~r~a.

[5)

The following formulae are also provable #) in H:

T.1 Fa=a [2.21, 2.26, 1]

T.2 FaAB=fAa [A.2, 2.26, 1]
T.3 pavVf=pvae [A.8, 2.26, I]

T.4 pFalAa=o [2.2, A. 1, 2.26, I]
T.5 r(aVa)=a [3.22, A.7,2.26,1]
T.6 FaA(BAy)=(aAB)Ay [2.32, 2.3, 2.26, I]
T.7 pH(ev(Bvy)={aVvphVy) [321,32, 226 1]
T.8 aABI(a=p)

19) By the sentential calculus of Heyting we understand the system
based on the following axioms (see Heyting [1]):
2.1 a; DA, 211 g AGDa A, 212 (4D ag) D (0 At D ax Aag),
2,18 (a,D85) A(8:D3) D(@:D85),  2.14 a3 D(a; D), 215 ay Ay D) Dta,
3.1 g, D(a,Vag), 311 (6, Va) D@ Vay),  3.12 (@ Dag) Al Daa) D((63 Vite) Dtg)»
41 ~a D (@D0), 4.2 (6 D6) A6 D ~a5)D ~ay. o
Tl}asre &1‘(: two rules of inference: R. 1.1 and the rule of substitution for
sentential variables.
20y The numbers 2.2-4.3 of these formulae wefer to the nuinbers (see Héy-
ting [1]) of the provable formulae of Heyting’s sentential caleulus, from which
they are obtained by substitution. )
2y In the description of the formal proofs of T.1-T.17 we do not mention
applications of the rule R.1.1.
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Proof. 8.1 {aAB)AaDdp [2.2, 2.22, 2.29]
8.2 FaABD(adp) [8.1, 2.27, 1, 2.22]
8.3 B Aad(adp) [A.2, 8.2, 2.29]
8.4 FaABD(fDa) [8.3]
85 FaABD(adB)A(fDa) [8.2, 8.4, 2.26,2.24, 1, 2.2]
8.6 FaABD(a=p) [8.5, I

T.9 pai(eyB)=a

Proof. 9.1 FaudaA(aVp) [2.21, A. 7, 2.26, 2.24, 1, 2.2}
9.2 ha /\(a\/ﬁ)%(t [9,1, 2.2, 226, I]

T.10 (aVaAp)=u

Proof, 10.1 (aVaAB)da [2.21, 2.2, 2.26, A. 9]

10.2 F(aVaAf)=u [10.1, A.7, 2.26, T]
T.11 FAA~(eDa)=~(aDa)
Proof. 11.1 (aDda)d(~(aDa)Df) [A.10, 2.271, I, 2.2}
11.2 ~(aDa)Dp [11.1, 2.21]
11.3 | ~(ada)Df~A(aDaj [11.2,2.21,2.26,2.24,1, 2.2]
114 pBA~(ada)y=~(ada) [2.22, 11.3, 2.26, I]
T.12 p~pf=pD~(aDa)
Proof. 12.1 (ada)y ~f [A. 7,2.21]
12.2 ((eDa)D~p)D~p [12.1, 3.6]
123 (fD~(ada)D((adu)Dd~F) [4.21]
124 (D ~(ada))D~p [12.3, 2.271, 2.21]
12,5 b ~p=pD~(aDa) [4.1, 12.4, 2.26, I]

T. 13 b (zs) (a AB) == (r) a A(24) B )

T. 14 (28 (aDB8)D((2r) aD(2r) B)

T.15 (2 (aDB)D((Hawp) D (Ha) )

T. 16 Fa=(mp)a }provided that there is no free occurrence
T. 17 o=(Tzp)u fof z; in a.

Lemma 1.1, If |—aA(BAy)=p8 Ay, then =(BDa)Ay=y (for
arbitrary o, B, v e H).

Proof. Suppose aA(BAy)=p Ay, then

(1) FEAyDan(BAY) (L, 2.22]

(2) FyABDa [A.2,(1), 2.2, 2.20]

(3) Fy2(BDa) [(2), 2.27, 1, 2.22]

(4) +yI(BDa)Ay [(3), 2.21, 2.26, 2.24, I, 2.2]
(5) H(pDayAy=y [2.22, (4), 2.26, I]

) The formal proofs of T.13-T.17 are omitted; they coincide with the
formal proofs of T.13-T.17 in the ordinary functional caleulus.
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Lemma 1.2. If —(fJa)A\y=vy, then maA(BAv)=BAy (for
arbitrary «a, B, v € H).

Proof. Suppose - (fDa)Ay=y, then
(1) FyD(BDa) Ay [1, 2.22]
@) FBAYD(BA(PIL) Ay [(1), A.3, A.2, 2.29, 2.32, 2.29]
(3) FBA(BIa)DuAB [A.6,2.22, 2.26, 2.24, T, 2.2]
(4) FBAYDaA(BAY) [(2), (3), A.3, 2.29, 2.3, 2.29]
(8) FaA(BAY)=BAy  [2.22, (4), 2.26,I]

Lemma 1.3. If o and B, then \assp (for arbitrary
a,f e H).

Proof. [2.26, T.8].

Lemma 1.4. If b-a, then b (xp)a (for arbitrary o e H).

Lemma 1.5, If k, 1, are arbitrary positive integers such that
neither of (Hay) and (m), nor »; itself ocours im o(wy) e H, then

F(zh) a(@e) = (g a(@y) and +(How) aley) = (T a(z),

where a(x;) arises jmm a(y) by the substitution the variable z; for the
variable ©.
The proofs of Lemmas 1.4 and 1.5 are obvious.

8§ 2. Functional calculus of Lewis.‘

We shall refer to the functional calculus of Lewis as the
system L. L can be described briefly as follows: »

The symbols of the system are: the individual variables
24,%g, ..., the sentential variables ay,a,, ..., the k-argument functional
variables Ff,F{;,.‘. (k=1,2,...), constants and parentheses.

The constants are: the negation sign~, the conjunction
sign A, the sign of possibility <, the sign of the general quantifier
(@) and the sign of the existential quantifier (Hux,).

The class of formulae of the system L is the smallest class L
which contains all sentential variables, all expressions of the form
Ff(ach,.”,w,k) and which is closed under the following five opera-
tions: forming the conjunction (a Af) of two expressions a and f,
taking the negation (~a) or the possibility ((a) of an expression a,
and putting the existential quantifier (Hw,) or the universal quan-
tifier (@) in front of an expression « to obtain the expressions
{((Hzp)a) or ((2)a) respectively.
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The*meaning of bound and free occurrences of individual
variables remains the same as in the system . The same applies
to the notation a(@g,,...,%s,).

We introduce the following abbreviations 2¥):

L (avp) for (~((~a)A (~ﬁ))

IL. (¢ DB) for (~(aA(~p)))

III. (a=B) for ((aDB)A ,BDa)),

IV. (a<f) for (~(O(aA(~P)),

V. (a=g) for ((a<P)A(f<a)).

In writing formulae, we shall practice the omission of paran-
theses, the rule being that: (1) each of the operators A, v,D, <, =, =
binds two expressions less strongly than the previous one; (2) each
of the operators ~ and <> binds an expression more strongly than
any one of the two-argument operators; (3) the quantifiers bind
them more strongly than any one of the operators just listed.

If a, B, y are arbitrary formulae, the following formulae are
called amioms *4):

B 1 +aAB<pAa, B*. 6

6 F(a<fA(B<y)<(a<y),
B*. 2 aAf<a, BX. 7 FalA(e<p)<p,
B*. 3 la<aAa, B* 8  FO@AB)<Oa,
B*. 4 (@ AP Ay<a ABAY), O 101 FOCa=Ca,
B*. 5 Fa<~~ag, D.1 (@ a<a,
D.2 pa<(Hzpa. '

There arve six rules of inferemece in the system L:

R. 2.1 modus ponens: from o and a<p to infer §;

R. 2.2 the rule of adjunction: from « and p to infer a AB;

R. 2.3 the rule of replacement: if § oceurs as a part of a{fy),
then from f;,=f, we infer a(f,), where a(g,) is the formula obtained
from a(B,) by substitution of g, for B;;

R. 2.4 the rule of substitution for individual variables;

R. 2.5 the rule for (xs): from a<p we infer a< (z;)p provided
that no free occurrence of z, appears in a;

R. 2.6 the rule for (Hazy): from a<f we infer (Hzp)a<f pro-
-vided that no free occurrence of z, appears in f.

#) See the definitions 11.01 (p. 128), 14.01, 14.02 (p. 136), 11.02 and 11,03
(p. 124) of Lewis and Langford [1]. .
*) The axioms B*.1-B*.8, C*.10.1 are substitutions of the axioms of

the system S. 4 of the sentential caleulus of Lewis. See Lewis and Lan gford [1],
Pp- 493 and 497.
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The notions of a formal proof and of a provable formuls in
the system L are analogous to those of a formal proof and a pro-
vable formula in F{25).

It is easy to show that every formula of the system £ which
is a substitution of a provable formula of the system 8.4 of the
sentential calculus of Lewis?8), is also provable in .L.

Let a, 8, y, 8, be arbitrary formulae of L. It follows from the
above remark that the following formulae are provable in L:

T*.1 Fo=a [12.11]
T* 2 FaAB<B [12.17]
T, 8 pa=~ru [12.3]

T* 4 pa<f=~f<~u [12.44]
T*. 5 paVf=fVa [13.11]
T* 6 {oa<fVa [13.211
T*. 7 (aVh)Vy=aV(BVy) [13.41]
T*.8 Fay~a [13.5]

T*. 9 p(a<pf)<(aDp) [14.1]

T*. 10 p~(~ay ~p)=aAp [14.211
T* 11 Fa<a [18.4]

T*, 12 pa<f=~~(adB) [18.7]

T*. 13 | ~O~(ay ~a) [18.81]
T* 14 Fa=aABVaA~p [18.92]
T*. 15 FaA~aVyp=p [19.58]
T*. 16 H(a<y) A(B<p)<((aVB)<?): [19.65}
T* 17 b ~Omva<(f<a) [19.75]
T*, 18 | ~O~a A~ O =~ a/\ﬁ [19.81]
T*.19 ey fy=Cav OB [19.82]
T*, 20 - ~Orva A~ O < (a=p) [19.84]
T*. 21 t—~<>~a=~<>~~<>~a [C.10]

T*. 22 O(aeA~a)=aA~a
T*, 23 (a<f)<(Oa<OP)-

%) See p. 102 and 103.
26) By the system S.4 of the sentential calenlus of Lewis we understand

" the system based on the following axioms:

B.1 g A<tz Al B.2 agAap<<ay, B.3 ay<ay Ay, B.4 (“1/\“2)/\“3<“1/\(%/\aa):
B.5 gy <ty B.6 (<) A(0,< 3) < (42 < 05), BT ay Alay<ay) <y,
B.8 Ol Aap) <Oy, €10 OO o =Oay

There are four rules of inference: R. 2.1, R.2.2, R. 2.3 and the rule of
substitution for sentential variables. For information regarding the system 8.4
the reader is referred to Lewis and Langford [1}.
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. The numbers in brackets refer to the numbers (see Lewis
and Langford [1]) of the formulae of S.4, from which the formulae
T*.1-T*.21 are obtained by substitution. T*.22 is a substitution
of a provable formula the formal proof of which is given by
McKinsey [8], p. 126. T*.23 is a substitution of the axiom L. 12
in McKinsey and Tarski [3], p. 2.

The following formulae are also provable 2?) in L.

T*. 24 b~ (~ay~f)y~(~aVf)=a
Proof. 24.1 Fa=r~v(~ay ~pB)V ~(~a\ ~~B).
[T*. 14, T*. 10, R. 2.3}
242 b ~(~ay ~f)V ~(~ayf)=a
[R. 2.3, 24.1, T*. 3]
T*, 25 ayOa=Ca ‘
Proof. 25.1 Oa<Oa [T*. 1, V, B*. 2]
252 RayOa<Oa [T* 11, 251, R. 2.2, T*. 16]
2.3 FavQOa=Ca [25.2, T* 6, R. 2.2, V]
T*.26 8V (ay ~a)=aVy ~a
Proof. 26.1 f<ay~a . [T*. 17, T*. 13]
26.2 pRay~a<a\y~a [T*. 1, V, B*. 2]
26.3 FAV(aV ~a)<aV ~a [26.1,26.2, R.2.2, T*. 16}
264 pV(aV~a)=aVy~a [26.3, T*. 6, R. 2.2, V]
Proof. 27.1 Fla<p) A(f<a)=~~(adB) A~ ~(BDa)
[T*. 1, T*. 12, R. 2.3]
27.2 F(a<B) A(f<a)=~ ~((aDB) A(fDa))
: [27.1, T*. 18, R. 2.3]
273 Fa=p)=~O~(a=g) [27.2, II1, 27.3, V]
T*. 28 F(a<f) <(~Om~va<~O ~f) [T, 23, T*. 4, R. 2.3]
T*, 29 |—a=(.wk)a provided that there is no free occurrence
of x in « [D.1, T*.1, V, B* 2, R. 2.5, R. 2.2, V]

T*.30 ba=(Hx)a provided that there is no free oceurrence -

of o in a [D.2, T*.1, V, B*. 2, R. 2.6, R. 2.2, V]

°

) In T*. 24-T*. 30 we do not mention applications of the rule R. 2.1.
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Lemma 2,1%), If \-a, then |~ ~a (for arbitrary aeL).

This lemma can be established by a simple induction on the
length of the formal proof of «, making use of T*. 12, T*. 27, T*, 21,
T*. 28 and T*.18.

Lemma 2.2. Given any positive integers k, i, if neither of (M)
and (@), nor z; iself ocours in a(wy) e L, then (%) a(zy)= (2;)a(z,)
and - (Hog) a(zy) = (o) a(z,), where a(®) arises from a(z) by the
substitution the variable x; for the variable x;.

The proof of Lemma 2.2 is obvious.

§ 3. Extensions of closure algebras and of Brouwerian
algebras.

The purpose of this zection is to prove that, for every Brou-
werian algebra B, there exists a complete Brouwerian algebra B.
such that: 1° B, is an extension of B, 20 B, preserves all (finife
and infinite) sums and products of B. This result follows from an
analogous statement on extensions of closure algebras which is
a consequence of some theorems given by Tarski and McKinsey
and by MacNeille.

Definition 8.1. By an abstract algebra we mean an ordered
class WU=IK,0q,...,0,>, Where K is an arbitrary non-empty set
and oy,...,0, are arbitrary operations on (finitely many) elements
of K. We assume that K is closed under these operations.

Definition 3.2. By a subalgebra of an abstract algebra
H=(K,0,...,0ny we mean an algebra W,=(HK,,0y,...,0,>, Where
K, is a subset of K.

Definition 3.3. An algebra U, is called an extension of an
algebra 2, if A is a subalgebra of U.

Definition 3.4. An algebra A=K, +, > is called a lattice®y
if for every ,y,2<K the following axioms are satisfied: (1) #-w=u2,
(2) sto=g, (3) vy=y®, (4) sty=y+a, (5) z-(y-2)=(2y)2
() e+ +a)=@+y)+z (1) 2 (@+y) =r, 8) staoy=e If
x+y=y, we write #<{y. The zero element and the unit element
of U, whenever they exist, will be denoted by ,0” and ,,1” res-
pectively; by definition: 0<# and 2<{1 for every = e K.

28) The similar theovem for formulae of the system S.4 of the gentential

caleulus of Lewis is proved by McKinsey and Tarski [3], p. 5. This theorem
was taken by Godel as a primitive rule of inference in the formalization of the

system S. 4. See Godel [2].
29) See Birkhoff [1], p. 18.
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Definition 3.5. Let W=(K,+,-> be a lattice and let & e K
for every i e I. The element x e K is said to be the product (sum)
of all z; in ¥, in symbols w= Hw, (x= 2001 ), provided that 10 x<<a,

el

(w; <) for every m;, where ¢ sI 20 1f y<w, (2:<<y) for every «;,
where eI, then y<& (#<y). Let %, be an extension of A. By saying
that A, preserves all sums and products of %, we shall understand
that, if a,b,2;¢ K and a—q[]wi, b= Z‘wi in U, then also a,-—nm,
and b= Z’ x; in A,

Definition 3.6. By a Boolean algebra we shall mean every
algebra Y=<X, +, -,—>, where K consists of at least two different
elements and for all z,y,2¢ K the following axioms are sabistied 30):
(1) wty=y+a, (2) (@+y)Fe=t+(y+2), (3) —(—a+—y)+—(—2+y)=2,
{4) w-y=—(—2-+—y). It is known that, if & is a Boolean algebra,
then (K, 4+, -> is a lattice.

Definition 3.7, An algebra C=d{(X, +, -,—, 0> is said to
be a closure algebra ®t), it (K+, -, —> is a Boolean algebra and,
for every z,y ¢ K, the following axioms are satisfied: (1) #<Ow,
(2) COm=C=, (3) O(w+1y)=Czx+ Cy, (4) C0=0.

Definition 3.8. An element o of a closure algebra is said
to be closed, if o= Cx.

Definition 3.9. An algebra B=IK,+, -, —, |> is called
a Browwerian algebra, if 1° (K, 4+, -> is a lattice with 1, 2¢ for all
z,y,2e K, the formulae z-y<z and z<y-+z are equlvalent,,
3% Tlo=1-uo for each x ¢ K.

Definition 3.10. A lattice (Boolean, closure, Brouwerian
algebra) is said to be complete, if, for every subset of elements of A,
there exist the sum and the product.

Definition 3.11. Let €=(XK, 4, ,—, C> be a closure
algebra. Let K* be the set of all closed elements of K. Then,
by -the algebra of closed elements of €32), we mean the algebra

={E&* +, -, = 1>, where s~y=0(z-—y) and "= O(—a).
It is known?®%) that C* is a Brouwerian algebra.

30) See Huntington [1].

) See MoKinsey and Tarski [2], p. 146.
32) See MceKinsey and Tarski-[2], p. 130.
33) See ibidem, p. 130.
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Lemma 3.12. Let A=< XK, +, +,—> be a complete Boolean
algebra, let O be a wunary operation defined over a subalgebra
We=<Hs, +,,—> of W in such o way, that Wee=<&X;, +,-,—, 0>
is o closure algebra. For every e K, let C.x be the product (in UA)
of all closed elements y e K¢ such that 2 <<y and Cy=vy. (Since U is

- complete, this product always exists). Then W=< XK, +, -, — C>

is a closure algebra and Ws, is the subalgebra of W,.

This lemma follows immediately from a more general lemma
given by McKinsey and Tarski 34).

Theorem 3.13. Let C€=(K, +,-,—, 0> be a closure algebra.
Then there ewists a complete closure algebra €, such that 1° €, is an
extension of €, 20 €, preserves 3) all sums and products of €.

Proof. Let A=K, +, -,—> be the minimal extension 3)
{in the sense determined by MaecNeille) of the Boolean algebra
N=<CK,+,,—>. It is known %) that U, preserves all sums and
products of A. Let O, (be the operation defined over the algebra A,
in the same way as in Lemma 3.12. It follows, from Lemma 3.12,
that ©,=<K,, +,,—, 0> is a closnre algebra and € is a sub-
algebra of G, q.e.d.

The closure algebra &, obtained in this way from €, will
be called a minimal closure extension 38) of €.

Theorem 3.14. For every Brouwerion algebra B there ewists
a closure algebra € such that B=@* (where €* is the algebra of
closed elements of €).

This theorem is proved by McKinsey and Tarski®).

Lemma 3.15. Let G* be the algebra of closed elements of a clo-
sure algebra C=(K, 4, ,—,0>. Let beK and z;=0x K for
ieI. Then the conditions b=[]x; in € and b= Haz, in C* are
equivalent. el

Proof. Suppose b= []'o in @, i.e., b is the largest element

ot K such that b<o= Omi f01 i ¢ I. Consequently, Cb< ;. Therefore
= (b and b is the largest closed element such that b<Ca; for i e I.

Hence‘, bsnwi in @*
B 31) See Melunsey and Tarski [1], p. 148.

35) See Definition 3.5.

36) See MacNeille [1], p. 437.

37) This was prooved by MacNeille [1].

28) See Sikorski [1], p. 174.

) See MeKinsey and Tarski {2], p. 180,
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touversely, if b= Cb= ]].p, in C* and a ¢ I satisfies b<Ca<<a,

for i eI, then b<la<ay fol z e I. Hence, by the definition of the
product in €% Ca<Ch. Therefore b= o and b=a. Hence, b is the
largest element of @ such that b<Cay for every iel, le. b= nw,
in € q.e.d.

Lemma 8.16. Let © be o complete closure algebra. Then, the
algebra ©* of closed elements of € 4s also complete. Moreover, if
u:iz,; »; in ©, where w;=Cwx; for i eI, then O(b::lsz;wi in ©*,

€ .

Proof. Let us start with the second part of 3.16. 1f b=Cbzw,

for every ¢ eI, then b>2 By=d.

Hence, b>=Ca=m, for iel which proves that Ca= Zwi in E*.

The first part of 3.16 follows from the second one zmd 1r0m 3.15.

Lemma 3.17. Let §=<{K,+, ,— 0> be a closure algebra,
and et Co=<K,, +, *,—, Cc) be the minimal closure extension of €.
Let C*=<K* +, -, ~, |> and Q= K% +,, =, |.> be the algebras

of closed elements of (.T, and €, respectively. Then, €F is an extension
of ©* and CF preserves all sums and products of the algebra E*.
Proof. The first statement is obvious. Suppose a= Z'aq in €%,

where a,2;¢ K. Let 0— S’a, in @ As a result of 3.16, c-0 d, where:
d= Z’w, in €,. Since a= 290, in €* we obtain by the definition of the
ic

operamon (¢, (Lemma 312) O.d=a. Hence, a=¢. Now, suppose
b= nwt in @* where b,x;e K*. It follows, from 3.15, b= Hwi in €.

Smce €, is the minimal closure extension of €4°), we ha.ve b= [] x;
in €. Hence, by 3.15, b=[]®; in €%, q. e. d.
lel

Theorem 3.18. Let B be a Browwerian algebra. Then, there
ewists a complete Brouwwerian algebra B, such that 1° B, is an extension
of B amd 2° BE preserves all sums and products of B.

Proof. It follows, from Lemma 3.14, that there is a closure
algebra © such that B =CE* where C* is the algebra of closed
elements of €. Let §, be the minimal closure extension of € and
let €F be the algebra of closed elements of €,. Then, by Lemmag 3.16
and 3.17, @©F is complete and preserves all sums and products of
C*=%B, q.e.d. 9).

40) See Lemma 3.13,
41) Bee Lemma 3.13.
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§ 4. Completeness of the functional caleulus ot Heyting.

The purpose of this section is to establish the completeness
of the system &, in the sense mentioned in the introduction 4),

In this section, let «, B, y, 6 always be arbitrary formulae
of & and let I, be the set of all positive integers.

Defimition 4.1. Let F*(I,%) be the set of all k-argument
(k=1,2,...) functions the arguments of which run over a non-
empty abstract set I and the values belong to an abstract al-
gebra . A function O=&(wy,...,0,, a;, ..\, Fal, ... Fi) is an
(L, A)-functional 4*), if its values belong to U, and if 11: has

1° n arguments #,...,;, running over I,

2% m arguments ay.... a;, running over the set of all elements
of U, .
3% » arguments Fy! ..., Fi running over F¥ (I, U),...,F (I, %)
respectively.

Let B be a complete Brouwerian algebra and let I be a non-
empty abstract set. Then, each formula

) In
=By, .y @iy ajl,...,a,m,l’pl, »E'5l)

of & with » individual variables, m sentential variables, and 7
functional variables may hbe interpreted as an (I, %)-functional

_ &
Po=Pu(B1y; oy Biy, ajl,‘,.,ajm,lf’pl, Fpr)

by considering

(1) the individual variables-of a to be variables running over I,

(29 the sentential variables of « to be variables running over
the set of all elements of the algebra 9B,

(3% the functional variables with % arguments to be variables
running over FX(I, B),

(4%) the logical operations v, A, ~, (2z), (Ha;) to be the
operations -, 4-, 7|, 2 H of the ml«rebra B, respectively. The

XkG xkE
logical operations D will be interpreted as the operation = (of the
algebra B) with the converse order of arguments ).

42) See p. 101.
1) See Mostowski [2], p. 204.
4) That is Dayp==D08— De.
Fundamenta Mathematicae, T. XXXVIII. -4
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.-+ The following.theorem Was proved-by. Mostowski %):
T () If o, then the (I,B)-functional @, is identically equal
o the zero element of B %) for every compléte” Broywerian algebra B
and for every non-void set I. o

We prove now the fundamental theorem of this section:

Theorem 4.2. There exists a complete Brouwerian algebra B,
such that, for every a, if a is not provable then (I, B)-functional P, is
not identically equal to 0. .

The proof of 4.2 is based onvthe following lemmas. First of
all, we introduce the binary relation = defined by

a=f if and only if Fa=p.

Lemma 4.3. The relation = is a congruence relation, i. e. the
following nine conditions are satisfied:

(1) a=a, -

(2) if a=p, then f=a,

3) if a=f and fz=y, then a=y,

) if azp, then ~a=~p,

) o azB, then (zRla=(xpp,

) if a=f, then (Hzy) az Hay) b,

) if a=p. and y=8, then e Ay=fASJ,

) if a=f and y=6, then ayvy=pvVS, .
) if a=f and y=d, then aDy=§I4. ..

Proof. (1) and (2) follow from T.1 and A.2,T (§1), respecti-
vely. (3) follows from 2.2, 2.22, 2.26, A. 4, R. 1.1 (§1). The proof
ok (4) is based on 2.2, 2.22, 4.2, 2.26 and R. 1.2 (§ 1). (5) and (6) are
proved by using 2.2, 2.22, Lemma. 1.4, T. 13 (in the case of (5)),
T. 14 (in the case of (6)), 2.26, and R. 1.2 (§1). (7) and (8) follow
from 2.2, 2.26, 2.23 (in the case of (7)), 3.3 (in the case of (8)). The
proof of (9) is based on 2.2, 2.22, 2.29, 2.291, 2.26, A, 4 and R. 1.1 (§1).

o For every. i< H ), let-[a] be the set of all g e H such that
aZp. Obviously [a]=[§] if and only if a=£8. Tn view of Lemma 4.3
the following defimition may be introduced:"

(

(4
(5
(6
(7
(8
(9

45) See Mostowski >[2‘]'; Pp. 205.
) By saying that (I, B)-functional @u is identically equal to the zero
element of B, we mean that this functional assumes the value 0 for every “choice
of arguments. Ed ’ -
47) See § 1, p. 101.

an
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Definition 4.4. By a Lindenbaum algebra ) for the system
H we mean the algebra B,={(Kx, +, -, = |> defined as follows;

1) Ky is the set of all classes [o] such that ae H, 2) For
every [al, [f] € Kp, we put

[al+[Bl=[aABl, [a]-[F]l=l[aVE]
[a]=[f1=[8Dd], |la]=[~al.
Lemma 4.5. (i) By is a Browwerian algebra, (ii) [~(aDa)]=1,
(iii) [eDa]=0. '
Proof. It is easy to see that B, is a lattice. In fact, thisfollows
from Definition 3.4 and the following equations: ’

[a][a]=[a] {by T. 5], - [al+[a]=Ld] [by T.4];
[a)-[fl=[B]-[a]  [by T:3], [a]+[fl=[p1+[«] [by T.2],
[l ([A1 [yD) =([a]-[6]) - [¥] by T. 7],

[a]+ ([A1+DyD) = ([l +[AD+[y]  [by T. 6],
[a]-([a]+[B)]=[e] by T.10],
(al+ ([a]- [A]) =[a] [by T.91

Then, we prove that
[a]=[fl<y if and only if [a]<<[AI-+[¥]-

Suppose [a]=[f]<y. Then, by Definition 3.4, ([e]=[B]) +Iyl=Iy1s
or [(Da) Ayl=[y]. Hence, by Lemma 1.2, FaA(BAY)=B Ay, so
that: [a A(BAy)]=[8Ay]. Consequently [al+([A]+[¥])=[]+[¥]
or [a]<[A1+Dv]

The proof of the converse implication can be carried through .
in a similar way, by using Lemma 1.1.

Remark (ii) follows from T.11 and Definition 3.4. In view
of (ii) and Definition 3.9, we put for every [fle Ky ‘

“1pl=1=[fl
L Hence, by T. 12, we obtain ~|[f]=[~g]. In this way we have
stablished (i). :

To prove (iii), we notice that 0=""|1. Therefore 0="{~(pDB)]=
=[~~(8Df)]. But, on account of 2.21 and: 4.3 (§1), the formula
~m~(BDPB) is provable. Hence, by Lemma 1.3 and 2.21 (§1), we
obtain -~~~ (Df)=(aDa), or [eDa]=0, g. e. d. :

48) To construct this algebra we use the unpublished method of Linden-
baum. This method was applied by MeKinsey [1], Rieger [1], [2], Henkin [1].
2%
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Lemma 4.6, The class of all provable formulae is the zero element

of By
Proof. In fact, if p, then +f=aDa (by Lemma 1.3 and
2.21 (§1)). Consequently, [f]l=[aDa]=0. Suppose f is not pro-
vable. Then, f=aDa is not provable, so that [fl4=[¢Da]=0, q.e.d.

Lemma 4.7, aDf if and only if [f1<[a].
Proof. This follows from Lemma 4.6 and from the fact that
the conditions [f]=[a]=0 and [f]<[a] are equivalent.

Definition 4.8. Let o be a formula with the property that
neither of (Hx;) and (2;), nor #; itself occurs in a. We say that the
operation 4/l is performed on « if in o 19 all quantifiers (»;) and (Hz;)
are replaced by the quantifiers (x;) and (Hz,), respectively, and 29
each bound occurrence of z; is replaced by z;.

Let o! be the formula which is obtained from « by applying
the operatlon ifl.

The following lemma. follows easily from Lemmas 1.5 and 4.3
{(4)-(9)).

Lemma 4.9. \axadl, i.e., [a]=[cl].

Definition 4.10. By a( oL, Pn mk,,+1:'":“hm> we shall mean

(Ek" :
the formula obtained from u(wkl, y%x,) in the following way:

1° we perform on a(s,, .. -+ %n,,) the operations p /I, (7'—1 2,y.04m),
where 1;,...,1, is a fixed sequence with l:i:p for j=1,2,...,n, ==,
for je=1, lj=f=k for j=1,2,...,m and r-1 g eeey T 49),

2% by using the rule R.1.2, we substitute the variables
@pyy-yilp, fOr the variables wy,...,zx,, respectively.

Formula a(w:,... o GLLNTe ,wkm) defxngd in this way is not
. . : & @ :
uniquely determined, but the element [a(m:i,..., By g5 7“’%)]

of B is uniquely determined, since it does not depend on the choice
of the integers 1,...,l,, by Lemma 4.9.

49) Bince no bound occurrence of @p; appears in a, the order, in which the
operations pi/li are performed, makes no difference.
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Proof. We shall prove this lemma for the case n=1. The proof
in the general case is analogous to this one. For brevity, we shall
mention only those variables which are essential to our proof.

In order to prove

W I |o(77)]-teaao aiean

pely
it is sufficient to show that

Lemma 4.11.

(1*) ” (J'Pl Tpy - Lpn Ty
.Tkl 'L"kz lk

piely

£
, I-"rxY ‘Z‘kn—)‘l' ""‘ﬁ‘m)]’
Try

@ et
wkl l’kz

piely

(2) (& (@] <[a(‘;‘;)] for every p ey,
(b) it [ﬁ]g[a(z”)] for every p el then [BI<[(Haoy)a(@n)]-
k&, .

(a) follows from A.13 and Lemmas 4.7, 4:9. To prove (E) suppose
x,
[,3]<[ ( ”)] for every p eI, Hence, by Lemma 4.7 }—a( Z)Dﬁ
for pel, Tet pel, be a positive integer such that neither (zp}
nor (®x,) occurs in a(x,) and that x, itself occurs neither in # nor

in a(®g).
Therefore

(&) o )Dﬂ [R.14]

and l_(ﬁwp) o (z:) = (H"Bk) (l(ﬂ}k) [Lemma 1.5].

Hence, by Lemma 4.7 we obtain [/3]<[ Hap)a (.w,,)] [(Hzp a(@)]-

In order to prove

2‘ [a (5;1:)] =[(2s) a(xr)],

pely
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it is sufficient to show that

© [¢(2)] <tt@natonn tor every <1,

(d) if [a(z‘:)] < B for every pel,, then [(@x)a(@e)]<[B].

Trom A.12 and Lemmas 4.9 and 4.7 follows (¢). To prove (d) suppose
[a(iﬁ)]g[ﬁ] for p e I,. Hence, by Lemma 4.7, }—/33(1(2") for p eI,
3

Let pel, be such that neither (@, nor (Hz,) occurs in a(wg),
and that @, itself occurs neither in § nor in af@s). Consequently,

}—ﬁD(wp)a(:Z) [R.1.3)]

and p(mp)a(iﬁs(wk) a(z) [Lemma 1.5].
Hence, by Lemma 4.7

[(wa)a(z)]<[B], 4q.e.d.

As a result of Theorem 3.18, it follows that there exists a com-
plete Brouwerian algebra B,=<XK,, +, *, =, |> which is an extension
of By, and preserves all sums and products ) of By.

Let <p§s FHIy, B, (k,p=1,2,...) be the k-argument function
defined by '

PE(igy ey i) = [ Fp (i .y )] € KaCE,
for every sequence (4y,...,%) of k positive integers.

Consider a formula

a=a(w,1,...,min, “]1,...,ajm,F:g,...,F:; B L
We shall conceive this formula as the (I, By)-functional
=D (Wyyy eny iy gy -y gy E,ﬁ},“..,pg;)
in i;he sense determined in the beginning of this section. Let
0 (U1
115“([611,...,%':" be the value of ®,, for the following values of its
arguments: ’

By =l oy@p, =1l (Where L,...,1, € Iy),
= - ky__ R
Oy =[Ol ooy g, =[5, ]y - F'p} =}, -'-’th::‘/;i’

5¢) See Definition 3.5.
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. Lemma 4.12. For every a=o(Byy . By % 304, 2L o B
awe have ) ) o i .
o (b Iy gt n )= &y 2
®m(w11’ ...,miq, 991q+1, ey o, ‘ a mil, .“7.77;:’ w,q_H,...,w,u .

This lemma may be established by induction on the length
of ¢, making use of Lemma 411 and the fact that B, preserves
all sums and products of B: The easy proof of this lemma is omitted.

To prove Theorem 4.2, let us suppose a formula
o= d<&;il7 ‘-.,mln, ajl, ...,ujm, in, ...,F;;)

to be not provable. Consequently, by Lemmas 4.12 and 4.6,

Lo (:;t{,;..,;';) = [a(yy -y )] =[]0 ‘v
Hence, the (I,, By)-functional Do is not identically equal to
zero. Thus Theorem 4.2 is proved. ) ’
{Theorems (B) and (B’)®) are immediate consequences of
Theorem 4.2 and Mostowski’s Theorem (*)52).
Theorems (B) and (B’) can be considered as generalizations
of the sim'lar theorems of McKinsey and Tarskis®®) for the sen-
tential calculus of Heyting. : : -

§ 5. Completeness of the functional calculus of Lewis.

The purpose of this section is to establish the completeness
of the system ., in the sense mentioned in the introduction ).

In this section let a; B, 7y, 6 always be arbitrary formulae
of L£;let I, and ‘I be the set of all positive integers and-a non-void
abstract set; respectively; and let € be a complete closure algebra.

Every formula a will be interpreted as an (I, €)-functional 55)
P, by considering 1° the individual variables of « t0 bé variables
running over I, 2° the sentential variables of a to be variables run-
ning over the seb of all elements of the algebra €, 3° the functional
variables with % arguments to be variables running over F*(I, @),
40 the logieal operations ~, Oy A, (#3), (Ezg) to be the operations
—, 0, o hle]I, xgz’ of‘ Fhei-;}vl_geftl);a €, respeetively. o

51) See pp. 100-101.

52) See p. 114. .

53) See McKinsey and Tarski [3].

51) See p. 101.

55) See § 4, p. 113.
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Theorem 5.1. If a is provable, then the (I, €)-functional D,
s identically equal to the unit element of €, for every complete closure
algebra © and every non-void set I. (We write then $p=1).

Proof. We prove this theorem by induction on the length
cf the formal proof of a.

If o arises by substitution from one of the axioms of the
system S. 4 of the sentential caleculus of Lewis, then, as shown by
McKinsey and Tarski®), @,=1.

If «¢ has the form (zp)f<p or ~C[(2r)fA~B], then

—~0[H Dy —Pgl=—0(0)=—0=1.

If a hms the form B<(Hw)p or ~O[BA~(HayB], then
¢“=—0[q55-—er@ﬁ]zwom):—o:l.
Xpe

Therefore Theorem 5.1 is true if « is an axiom of the system L.

Now, let p and y be formulae such that ®g=1 and &,=1.
We shall show that the use of each of the rules of inference gives
a formula « such that ¢,=1.

Rule R.2.1. In this case, y is of the form f<aq, @,=1 and
Pp=1. Then @,=-—([Ps-—P,]=1. Hence O[&z —,]=0. Con-
sequently @g-—@,=0 or 1-—@,=0. Thus we obtain @,=1.

Rule R. 2.2. In this case, « is of the form Ay, $z=1 and
@,=1. Then @,=P;- D

Rule R.23. In thls case, y 18 of the form B;=4,, Pg=1
and Dy=Pyp=1. Then —O[Pp —Py]-— 0[Py, — Dp]=1. Conse-
quently, @ —Pg=0 and @y —Pp=0, 50 that Pp=P,,. Therefore,
lé a 1; the formula Wh1c]1 arises from ﬂ by replacing B, by B,, then

a= (2—

Rule R.24. If a arises from f by substitution and @p=1,
then obviously @,=

Rule R. 2.5. In thls case, § is of the form 6,<6, and @p=1.
Then, O[@s-—Ps]=1, or Dy, —Ds,=0, s0 that D5, < Ds,. Suppose
no free occurrence of xy appears in-d;. Then, @5 < I1 s, so that

: xpel

By — HIQ%,:O. Consequently, —C[@s,*— [] $5)=1. Finally
e xpel .

D<), = D=

56) See MoKinsey and Tarski 3.
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Rule R. 2.6. In this case § is of the form 6;<d,, a is <f the
form . (M) 6,<d, (where no free occurrence of x, appears in d)
and Pg=1. The proof that @,=1 is similar to that used in the
case of rule R. 2.5.

‘In this way Theorem 5.1 is proved.

The following is the fundamental theorem of this section:

Theorem 5.2. There exists a complete closure algebra €, such
that, for every o, if a is not provable, then (I, €y)-functional @, is
not identically equal to the wunit element of G.

The proof of this theorem is similar to that ¢f Theorem 4.2.

By saying that ‘a=f, we shall mean that ra=§.

. Lemma 5.8. The relation = is a congruence relation in the
sense of modern algebra, i.e., the following conditions are satisfied:

(1)
(2) zf aczf, then f=a,

(3) if a=f and p=vy, then azy,

(4) if a=B, then ~a=~f,

(8) if a=p, then (zx)a=(oyp,

(6) if a=p, then (Ewz)a=(Hzy)p,

(1) if azmp, then Sazp,

(8) if ap and y=4, then a Ay=pANod.

Proof. The proofs of (1)-(4), (7), (8) are the same as in
McKinsey [1], p.123. To show (5) and (6) suppose azf.
Then pa=pf. By Fa=a [T*. 1], we obtain (@) a=(2x)e and
= (Hry) a=(Az)e. The use of rule R. 2.3 gives b (@) a=(%p) f and
- (Hay) o=(Tap) f or (pp)az(zx)f and (Haye=(Hwwf, g e d.

- For every a e L, let [a] be the set of all f e I-such that asf.
Obviously, [o]=[p] if and only if a=p.

In view of Lemma 5.3 the following definition may be intro-
duced.

Definition 5.4. By a Lindenbaum algebra for the system L
we shall mean the algebra €;=(X;, +,,—, C> defined as follows:
1) K, is the set of all classes [a] such that «e L. 2) For every

{a], [] € Ky, we pub

—fal=[~ad], Ola]=[{al,.
[e]-[8]1=[aAB], [a]+[fl=[aV £].
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Lemma 5.5. (i) G .48 a closure algebra, (i) [a A ~a]=0.

Proof. It is easily shown that, for any [a], [£], [¥] €'K,, the
following conditions are satisfied:

[a]+(p1=[f]+[a] [T*. 5],
([a]+[ﬁ])+[y]:[a]+([ﬂ]+[y]) [T*. 7],

—[a]+— [ﬁ]) —[al+-[£]) =[d] [T*. 24],
[a]-[B]=—{—[a]+— [ﬂ] [T*. 10],

[aA~a]+ [,av~a]

Hence, €;is a Boolean algebra.

To prove (i), we notice that aA~uaypf=p [T*.15].

Therefore, [a A ~a] -+ [8]1=[p]. Consequently, [a A ~a]<[f] for
every [B] e K, Hence, [a A~a]=0. The class K; is closed: under
the operation (. Moreover, it is easily seen that for every [a],
[B] ¢ K, the following conditions are satisfied:

ey [2] <0fa] ‘ [T*. 28],

(2) 0Cla] = Ofa] ] [C* 10.1].

(3) Ola]+ C[B1 = C([a]+[B]) - [T*. 19],

(4) o =0 y . [(i), T*. 22].

Since §; is a Boelean algebré;, we infér»ffrom (1)-(4) that € is
a closure algebra, g.e. d.

Lemma 5.6. (i) [aV ~a]=1, (2) The dass of all provable for-
mulae is the unit element of C;.

Proof. To prove (i), we notice that gy ( aVNa)—-—a\/Na
[T*. 26]. Hence, [f1<[aV ~a] for every [f]e Ky, so that [ay ~a]=1]
To show (2), suppose |-p. By T*. 8 and Lemma 2.1 we have O
and p-~~(ay~a). The use of R. 2.2 gives -~y A~O~(aV ~a).
On account of T*.20 we infer that +pf=aVy~a. Therefore, if -5,
then [f]=[aV ~a]. Conversely, if 8 is hot provable, then f=a\y ~a
is not provable so that [#]==[aV ~a], which proves (2).
. Lemma 5.7, \a<f if and only if [e}<<[F]

Proof. In fact, o< p if and only if aDg [T*.9, Lemma 2.1,

T#*. 12]. Since the condltlons FaDp and [~aV f]=1 are equivalent
{Lemma 5.6], we infer that a<f if and only if [«]<[f].

' Lemma 5.8, azal, i.e; [a]l=[d]], where al is the formula
obtained from a by applying the operation ifl described in Definition 4.8.

This lemma follows easily from Lemmas 2.2 and 5.3.

@
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o ‘

Let the meaning-of - a(wz 4;.,x’;::,,w;zn _H,...,m;,m) ¢ L remain the

same as in Definition 4.10 57). This formula is not uniquely deter-

mined, but the element [a(wii,'—...,m:n? $kn+1s';'9?0km)} of €;is uniquely
n -

determined on account of Lemma 5.8.

Lemma 5.9.
T, 2, AT
4 =
(1%) H[ ( o Tre | Ven g )l—
-1 'm
. el Tkl Tkz Pk o i
zp)al @, P2, ..., g L
[( h) ( k"él‘k;’ ’mk,,’ Rpgt) ot Ckm ||

E' XTp, & x
(2*) ( P1 P2 PR} 17,. T, ER - Tk =
% wkl mk2 Try, nt- m
me )
Ag,) o, 2oy %8 B
[( kl) kl ? 2, ) mk,: kn-H’ Yk

! Proof. We shall prove this lemma for the case n=1. The

proof in the general case is analogous to this one. For brevity, we

ghall mention only those variables, which are essential for our proof.
In order to prove

@ I [o(22)] =twn o

, pel
it is sufficient to show that:

«(a) ¢ . [(mk) a(mk)] é[a (';1’)] iol‘ every P e IO’, o
: . )€ Lo
) it tﬁK[a(ﬁ")] for every pel, then [£]<[(zalon))
' W - B L
(a) follows from D.1 (§ 9) and Lemmas 5.7, 5.8. To prove
{b) suppose [ﬁ]g[a(?’ﬂ for every p el,. Hence, by Lemma 5.7
& - ’ . L v .y -
}—ﬁ<a(w”) for every pely, Let pel, bhe a positive integer
Lx - - .
such that neitkter (@) nor (Hmp) oceurs in afwy) and a:p itgelf

occurs neither in § nor in rz('vk) Then: f<( @) a ( ) [R 2 :)] and

Sa‘a,,}a(wi):(mk) alzy) [Lemmq‘Q.),

sy See p. 116,
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Hence, by Lemma 5.7 [,3]g[(xp)a(ﬁmz[(mk)a(wk)].

To prove

D m .
(2) S |el7)] = ccammata,
el
it is sufficient to show
Z,
(e) [a(m‘;)] S[(Tup)a(ws)] for every pely,

(@ it [a(f;)]s[m for every pel, then [(Ea)a(n)]<[8).

Ird

(¢) follows from D. 2 and Lemmas 5.7 and 5.8. To prove (d}y
@ a;‘ 9 y
suppose [a (mZ)]g[ﬂj for each pel,. Hence, by Lemma 5.7

P
Fa<mk)<ﬁ for each pel, Let pel, be a positive integer such
that neither (w,) nor (Hm,) occurs in «(w), and zp itself occurs
neither in f nor in a(s;). Consequently, F—(C*[mp)a(w”)</3 [R. 2.6}
. - ‘ Zp, o
and }—(Ha:p)a(mi) = ("zs)a(@s) by Lemma 2.2. As a result of Lemma
5.7, we obtain .

[(SLa3) o] =[< H%)a(ﬁl’)] <f qed.
. \%g

1 It follows from» Theorem 3.13 that thére exists a complete
f,o;ure algebra €y=(X,, +, -, —, 0y> which is an extension of G,
and preserves all sums and products (finite and infinite) of ;.

Let g¢he F5(I, €, (k,p=1,2,...) be the k- i
defined as follows:, o) (%, 12,...) be the k-argument function

@iy oy in) = [ F (g, ..y 1)) € K, CE,
for every sequence (i, ...,43) of k positive integers. Consider a formula
8= 0By, ey By gy eony gy TR ),
We shall consider this formula to be the (Igy €p)-functional
D= (D“(m,l,m,min, s ‘..,a,m,lﬂﬁi, ...,Fﬁﬁ) in the sense determined

in the beginning of this section. Let n;bg(ll In
) L

be the value
f &y
n

of @, for the following values of its arguments x,=1,...,2; =1
(where 1,,...,1,, ¢ I), ap=[al,.. a; =[a ky By ;, ’ * n
1 il s =Lty ], Ppi_‘PPu“"Fp;:?’p:-
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W ik y
Lemma 5.10, For every a=a(Bi,..;Biy Gjyy - Gy Foby - Fppy

we have

1 Iy 4@ ) = @
0fl1 q lgtt n\ __ y 1 .
®“(mil’ "'ywiqv miq+1’ "'7win) - [a(mil’ "wmi:y .'L‘,q_H, "-ymin)]'
This lemma may be esbablished by induction on the length
of a, making use of Lemma 5.9 and of the fact that @, preserves
all sums and products of ;. ‘
To prove Theorem 5.2 let us suppose a formula

_ & k
a== @iy s Tayy Oy cony gy Fpty oy FpT)

to he not provable. Consequently, by Lemmas 5.10 and 5.6 (2)

cb‘,;(j;l, ,;"n) = [y, -y )] =[] F1-

Hence, the (I, €)-functional @, is not identically equal to
unit element cf &, Thus Theorem 5.2 is established.

Theorems (C) and () %) are immediate conséquences of Theo-
rems 5.1 and 5.2. ,

Theorems (C) and (C') can be considered as generalizations
of the similar theorems of McKinsey and Tarski®) for the sen-
tential ealculus of Lewis.
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A Characterization of L Spaces’).
By
R. E. Fullerton (Wisconsin, U.S.A).

1. Introduction. Kakutani [2] has characterized a space
of integrable functions as a Banach lattice satisfying the following
three conditions:

(1) there exists a unit element e>6 such that x>0 implies
eANz>0; ) .

(2) @6, y>6 imply oty = jzll+yl;

(3) wAy=0 implies |z—y|=lz+y| ‘

The set of points, 2, over Wwhich the I, space is defined can be
assumed to have measure 1. Kakutani [3] has also given a similar
type of characterization for Banach lattices of functions continuous
over a bicompact Hausdorff space. More recently, Clarkson [1]
Ras characterized a Banach space of continuous functions in terms
of the shape of the unit sphere. In this characterization an order
relation is introduced by means of & certain type of cone used in
the construction of the unit sphere, and under this ordering the
space in shown to be an M space and hence equivalent to a space
5% continuous functions. In this paper spaces of integrable functions
will be characterized by the shape cf their unit spheres, making
use of methods similar to those of Clarkson. The Borel field of
measurable subsets of the space £ will be ghown' to correspond
to the family of maximal convex subsets of the unit -sphere- in
o fanner similar to the role played by this family in the case of
a space of continuous functions as investigated by Eilenberg [4].
The case in which the measure is completely atomie is of particular
interest and will be treated in more detail. e

1) Presented to the American Mathematical Society, September 9, 1948.
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