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T?uj. se.quénce {in} being a permutation of the sequence of
all positive integers, it follows at once that m=0. In other words:
we have, for n sufficiently great, m,= 0, hence j,=n. Therefore

8) f0,$)=(0,4).

Applying the same argument to the left side of the set A, it
can be shown that there exists a sequence of integers {4,} such
thaF H(Na)=XN,, and that the sequence {2a—n} is convergent. Let q
be its limit. We have then (ef. (4)): £(0, )= (0, p_,) and therefore
g=0 (by (8)). It readily follows that {in} is againq a permutation
of all positive integers. But this is impossible since 7,2 in view
of the definition of B.

216 C. Kuratowski.

Set Theoretical Approach to the Disconnection Theory
of the Euclidean Space.

By

Karol Borsuk (Warszawa).

1. Introduetion. In 1931 I gave?) an elementary proof of
the gualitative part of the known theorem of L. E. J. Brouwer?)
asserting that if a compactum A disconnects the (n--1)-dimensional
Euclidean space FE,.; then so does every subset of E,;; homeo-
morphic to 4. That elementary proof consists in the characteri-
zation of the compacta ACE,,; which do not disconnect E,i4
by the connectivity of the functional space of continuous trans-
formations of A in the n-dimensional Euclidean sphere S,.

In 1935 S. Eilenberg?) showed how the continuous trans-
formations of 4 CE, allow to prove also the invariance of the number
of the regions in which 4 decomposes the Fuclidean plane E,. In
his reasonings S. Eilenberg uses the fact that the continuous
transformations of 4 in §; can be multiplied and thus constitute
an Abelian group. A similar multiplication for arbitrary continuous
transformations of 4 in &, is for #>1 impossible. However it is
possible to define an operation of multiplication (homotopic multi-
plication) for some pairs of homotopy classes (called henceforth
multiplicatible classes) and obtain in such a manner a group having
as elements the homotopy eclasses of continuous transformations

1) K. Borsuk, Uber Schnitte der n-dimensionalen Euklidischen Riume,
Math. Annalen 106 (1932), p. 239-248.

%) L. E. J. Brouwer, Beweis des Jordanschen Satzes fiir den n-dimensio-
nalen Rawm, Math. Annalen 71 (1912), p. 314.

%) 8. Eilenberg, O zastosowaniach lopologicanych odwzorowan na okrag
kola, Wiadomosci Matematyezne 41 (1935), p. 1-32. 8. Eilenberg, Transforma-
tions continues en circonférence et la topologie du plan, Fund. Math. 926 (1986),
p. 61-112. -
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of 4 in §,. This group, defined by myself in 1936 4), was in 1949
investigated from the point of view of algebraic topology by E.
Spaniers), who termed it the n® cohomotopy group. But the ope-
ration of the homotopic multiplication is quite elementary and does
not involve any notion of combinatorial topology. It suggests that
it can provide a useful tool in the elementary study of the topology
of the Euclidean space Hpyy similarly as the multiplication of con-
tinuous transformations in the circumference 8, does in the ele-
mentary study of the topology of the Euclidean plane E,.

In this paper it is shown that the structure of the a® coho-
motopy group of a compact subset A of E,y; depends only on the
number k of the components of the set E,i1—A and conversely,
that the a®™ cohomotopy group of A determines the number k.
Thus an elementary proof of the topological invariance of the num-
ber k is given. In order to emphasize the elementary character of
reasonings only some quite elementary theorems without proof will
be used; they are specified in the Preliminaries.

2. Preliminaries. Only metric spaces will be considered.
B, will denote the Euclidean n-dimensional space with the points
{4, Ty ..., ), and S, the n-dimensional sphere defined in the spa,oe
Epyy by the equation

2
i agt .l =

If m<{n then the space E, will be considered as a subset of
the space Ey; we shall namely identify every point (&1, Zgy ooy Tr) € By
with the point (2,%,...,2m,0,...,0) € E,. It follows that &,CS,
for m <{n. In particular the sphere Sn—1C 8, will be called the equator
of 8, The points b71=(0,0,...,0,1) and ,=(0,0,...,0,—1) of &,
will be called poles of S,.

By an =»- dzmensvmzal element we understand any set homeo- )

morphic with the #-dimensional (closed) simplex. In quite elemen-
tary manner®) we can distinguish between the inferior and the
boundary points of an n-dimensional element. The set of all boun-
dary points is homeomorphic to the (n—1)-dimensional sphere S,

!) K. Borsuk, Sur les groupes des classes de transformations continues,
C. R. de I'Ac. des Se. 202 (1936), p. 1400-1403.

5) E. Spanier, Borsuk’s cohomotopy groups, Annals of Math. 50 (1949),
p. 203-245.

¢) See for instance W. Hurewicz and H. Wallman Dzmensum Theory,
Princeton 1941, p. 96.
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Obviously the equator S,_; cuts S, in two regions: Ky con-
taining bY, and RZ”; containing bZ;. The closures of this regions
are n-dimensional elements having &,—; as their common boundary.
We shall denote them by @F and Q.

By the projection of S, of the centre b} on the space E, we
obtain a homeomorphic correspondence between the points of
S,—(bf) and the points of E,. Thus we can consider §, as the
Euclidean space B, completed by an “infinitely distant” point
corresponding to 7. Let us observe that by this correspondence
the geometrical spheres lying in E, correspond to the geometrical
spheres lying in S,—(b7).

It is easily seen that:

(1) For every finite sel of points lying in a region GCE, there erists
an n-dimensional element QCG containing all these points in

its interior 7).

By the Cartesian product of two spaces X and Y the space
XY is meant consisting of all ordered pairs (z,y) with z ¢ X,
9y e Y, and with the distance defined by the formula

e((e, ), (24" )= VQ(“'!‘Z'J)\%'{“ oly,y' )2

If X,, is a subset of X, and f a transformation with the range X,
then by /X, will be denoted the partial transformation of § defined
in X,, i.e. the transformation f, defined in X, by the formula
fol®)=f(z). We shall say that f constitutes an extension of f, on X.

By a mapping we always understand a continuous trans-
formation. )

By a retraction we understand a mapping r of X onto X,CX
satisfying the condition

riz)=a for every a«ed,.

If there exists a retraction of X onto X,, then X, is called
a retract of X. If there exists a continuous mapping r(z,?) (called
a deformation retraction of X onto X,) of the space X xX<0,1> (where
<0,1> denotes the interval 0<<i<(1) into X such that »(z,0)=x and
r(z,1) is a retraction of X onto X, then X, is said to be a defor-
mation refract of X.

7) See for instance C. Kuratowski, Topologie II, Warszawa-Wroclaw
1950, p. 343.
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Examples:
(2) 8, is a deformation retract of En,i3—(0).
(3)  [(0) % Sa]+[8ax (B1)] is a deformation vetract of

I8 X Sn]— by, U2) ).

A compactum 4 is an absolute retract (abbreviation AR) whene-
ver a topological image of 4 in any space X is necessarily a retract
of X. A compactum 4 is an absolute neighbourhood retract (abbre-

viation ANR) whenever a topological image 4* of 4 in any space X

is necessarily a retract of some neighbourhood of A4* in X. Tt is
known that:
(4) Every n-dimensional element is an AR ).
{5) Every n-dimensional sphere S, is an ANRW),
The following property of absolute retracts will be used in
this paper:
(6) If X, is a closed subset of a space X, and Y is an AR, then
every mapping of Xy in Y has a continuous extension on X
with the values belonging to ¥ 1).
A subset X, of X is said to be contraciible in X if there exists
a mapping f(x,t) of X,x{0,1> into X such that f(r,0)=z and
f(,1)=const.
Given a compactum X all mappings f with the range X and
the values belonging to another space Y constitute a metric space
¥ZX with the distance formula

e(f,y)=s_g§¢(f(~v), glx)) for every f,ge X%

(7)  If the space X is complete, then the space Y is also complete 12).

Let X be a compactum and ¥ an arbitrary space. The com-
ponent of the space I¥ containing a given mapping fe ¥¥ will
be denoted by (f) and called the homotopy class of f. Clearly (f,}=(f,)

8) K. Borsuk, Sur Paddition homologique des types de transformations
continues en surfaces sphériques, Annals of Math. 38 (1937), p. 734.

%) K. Borsuk, Sur les rétracts, Fund. Math. 17 (1931), p. 160.

) K. Borsuk, Uber eine Klasse von lokal usammenhdngenden Riwmen,
Fund. Math. 18 (1932), p. 227.

1) K. Borsuk, Sur les rétracts, Fund. Math. 17 (1931), p. 161.

%) See for instance C. Kuratowski, Topologie I, Warszawa-Wroctaw 1948,
p. 315,
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means that f; and f, belong to the same component of ¥%, i.e. are

homotopic in ¥X. The mapping fe ¥X is said to be essential if it

is not homotopic to a constant. For instance:

(8) The identical mapping of S, is essential ) (in S3n)

If to every 0<{i<{1 corresponds a mapping f; ¢ ¥X depending
continuously on the parameter {, then we say that the mappings f;
constitute a family {f;} joining in ¥¥ the mapping f, with the map-
ping f;.

(9) If Y is an ANR then the space YZX is locally connected 4).
Since every component of a complete locally connected space

is arcwise connected ¥5), we infer by (7) and (9):

(10) If Y is an ANR then two mappings f, ge XX are homotopic
in YX if and only if there exisis a family of mappings joining
f with g in ¥X.

The following statement is for us of importance 8):

(11) Let X, be closed subset of a compactum X, and ¥ an ANR.
If {fsi is a family CY%, and g, ¢ XX an ertension of f,, then
there exists a family [g\CYZX such that g; is an extension of f;
for every 0<Ci<1.

3. Some elementary lemmas.

Lemma 1. Let X be a compactum. If f,, jlsS;f and o(folr)fola))<2
for every x e X, then (fy)={(f,).

Proof. The inequality offy(x), frlx))<<2 implies that the seg-
ment L= fyx)f,(x) does not pass through the centre 0 of &§,. Let
us denote by a,(r), for every 0<i<1, the pomt of L, such that

o(fyl), apl)) olfel), [l
Putting
) ag{x)
#5000, are))

we obtain a family {f;} joining 7, with f, in S%.

13) See for instance W. Hurewicz and H. Wallman, L c. p. 37.

M) K. Borsuk, [ber eine Klasse von lokal zusammenhdngenden Riumen,
Fund. Math. 18 (1932). p. 224, ’ i

15) See for instance . Kuratowski, Topologie I1I, Warszawa-Wroclaw
1950, p. 184, )

15) K. Borsuk, Sur les prolongements des iransformations continues, Fund.
Math. 28 (1936), p. 103. Sce also W. Hurewiez and H. Wallmann, L c. p. 86.
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Lemuna 2. If a compact set ACE, and a mapping f < Ef are
given, then for every &>0 there exists a natural number k and a map-
ping g € E2 such that of,g)< e, and for every y e E, the inverse-image
¢~ Yy) contains ai most k points.

Proof. Consider two n-dimensional simplexes Ay, 4,CE, such
that 4CJ, and f(4)Cd;. By (6) there exists a mapping feélf",
bheing an extension of f. Let I" be a triangulation of 4, such that
for every simplex 4 of I' the diameter of f(4) is <ie. Let a;,ay,...,am
be all vertices of the triangunlation I". Obviously we can find m points

a3, @5,....ay in such a manner that

olapfla))<<de for i=1,2,..,m

and that any m<n+41 of these points are linearly independent.
For every point zed, there exists a simplex 4d=4A(a;y. ay, .. -2 @)
of [" containing . Then

L=y iyt ay-ay+ ... +apa; with >0 and oyt o+..+a=1.

Putting

gle)= ay-az+ay-a+ ...+ op-af;

we obtain a simplicial mapping g of 4 in E, such that

) olf(@), gle)< ao(fl@), lag)+ olf(as), af)+ olas, g(z))<e,
since

ol f(z), f(aln < te

(ai,,: al,,)

olf(ay), ) <te, ela,g9(@) <
olay, ﬂax‘,. )+oli (az,) flag,)+ o(f(ag,); a4) < 3.

Max g(ay, ay,),

Moreover let us observe that g maps each of the simplexes
of I' topologically. Consequently if % denotes the number of all
simplexes in the triangulation I', the set g—(z) contains at most
% points.

Lemma 3. Given a compactum ACE,y and a mapping f e S2.
There exists a finite subset N ‘of F,i.—A such that f has a conti-
nuous extension gy on Enp—N with the values belonging to S,.

Proof. Let 4, be an (n-1)-dimensional simplex in E,y; con-
taining A in its interior. Let B denote the boundary of 4,. We ex-
tend the mapping f on the set A+ B putting

flz)=bT for every zeB.
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Let ¥ be an AR such that & S8pCYCEpgq. By (6) there exists
a mapping fe¥% being an extensmn of f. Applying the lemma 2
we infer that there exists a mapping g of 4, into E,py such that

(12) olf(x),g(x)) <% for every xe A+B

and that all inverse-images g—(y) of single points e E,; are
finite.

Let us put N=g~1(0).
we infer from (12) that

Since f(#)e S, for every xe A+ B,

NCAy—A—B:

Putting
__ 9@ cery ze d—
gl(m)"g(g(ac),()) for every z e d;—N

we obtain a mapping g, of 4,—N into &,. By (12) it is

olgy(), f(z)

and consequently, by the lemma 1, the mappings f and ¢,/(4+ B)
are homotopic in SEFE, Applying (5) and (11) we infer that f has
a continuous extension j' on A,— XN with the values belonging to <.
It is sufficient to put

)<<} for every re A+ B,

golz)=F(x) for every e dy—N
and

go(z)="b7 for every 2 e Epn—4,

in order to obtain the required extension of f on E, ;—XN.

Lemma 4. Given two mappings f,,f, S5, where A is a compac-
tum. If (fo)=(f,) and for some aeA it is f{a)=/f,(a), then ihere exists
a continuous famdy {fUCSn, 01, such that fla)=7Fy(a) for every
0<i<<1.

Proof. By (10) there exists a family {/;} joining fo=7, with
fi=f in S5

If n=1, then the points of &, can be considered as complex

numbers 2z with |z|=1. Putting
fol@) 3
z) =" .fi(z) for every xed
f() 7i@) fi(=) ¥

we obtain the required family.
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If u>1, then there exists a finite system
=0l <ty < oo < gy =1

of real numbers such that the diameter of the subset M, of S,
consisting of all points of the form fi(a), with &, <<t<<tny is <?
for »=0,1,...,m. Let a* denote the point of &, antipodical to f(a}
(i. e. such that ofa*fy(a))=2). Obviously there exists a mapping
¢(t) of the interval t,<t<t.4 onto a simple arc I, joining fi (a)
with ﬁu«H(ﬂ) in the set S,—(a*) and having the diameter <i.
Hence

(13) elfrla), gu(t)) <1 for

Consider now three mappings ¢, v and y defined in the closed
subset

every L, <{i<lpyy.

M="[4 X (0)]+[(2) X0, D1+ [4 X (1)]
of the set P=4:<0,1> by the formulae:

¢(#,0)=fo{r) for xed,

glayt) =g, (t) for t,<I<lip, »=0,1,...,m,
glr,1)=f{z) for zeAd,

p(e,0)=f4(w) for wed,

ple,0)=fila) for 0<i<,

ple,1)=f(x) for xed,

z(@,0)=folx) for zed,

z(a,8) =fola) for 0<ig1,

z{x,1)=f(x) for zeA.

Evidently ¢,y,7¢8%, and by (13) elgp)<1. Moreover,
¢, 0)= z(x,0) and p(x,1)=y(2,1) for every ze 4, and ¢(a,t)« S—(a*)
and g(a,t)=f,(a) for every 0<{t<{1. Consequently og,y)<2. By the
lemma 1 the mappings ¢ and ¢ are homotopic in §¥; so are the
mappings ¢ and x. It follows that y and y are homotopic in SZ.
Putting

(14) P a,t)=fi(r)
we obtain a continuous extension of y onto P with the values be-
1nging to S,. By (11) there exists a continuous extension xlr,t)
of y on P with the values belonging to S,. Putting

flx)=7te,2) for

for every (z,f)ed x<0,1>

every x4 and 0<i<1
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we obtain a family {j;}C.S;‘ joining f, with f, and satisfying the
condition

fl@)y=yla,y=f(a) for every 0<CI<1.

Lemma 5. If X, is a deformation retract of a compactum X
and Y an ANR, then the homotopy classes of the mappings fe ¥¥
are in a one-one correspondence with the homotopy classes of the partial
mappings fiX,.

Proof. It will be sufficient to show that for any two map-
pings f,f ¢ ¥¥ the homotopy of the partial mappings f,=7/X,
and fo=§'/X, in Y™ implies the homotopy of 7 and § in ¥~

If r(z,t) denotes the retraction by deformation of X to X,
then putting

ge(#)=1fr(x,t) for every reX, 0<i<1

we see at once that f is homotopic to fyr(x,1). Similarly we show
that f* is homotopic to fyr(x,1). But the homotopy of fo and 7 in
T% implies the homotopy of fgr(x,1) and fir(x,1) in ¥ Conse-
quently the mappings f and /' are homotopic in I%.

4. A theorem on addition.

Theorent. Let A, and A, be compacta and let A, A, contains exactly
one point a. If we assign to every homotopy class (f)CSiT the pair
of the homoiopy classes (fiAd,)CS% and (f]4,)C 8%, then we obtain
a one-one correspondence between the sei of all homotopy classes
CSaF2 and the set of all pairs of homotopy classes (f,), (f.) with
(F)CS# and (f,)C8%.

Proof. Obviously the homotopy class of f=F/4;, i=1,2, is
uniquely determined by the homotopy class of f. On the other hand
it is evident that to every pair f, ¢ S and f» € 83 there exists a pair
fie(f) and fi e (fy) such that fi(a)=fi(a). Putting j/(z)=7i(z) for
every wed;, i=1,2, we obtain a mapping J’ e SZH* such that
to its homotopy elass (f)C 85T correspond the homotopy classes
(A)=(/1) e S3* and (fo)={(f3) ¢ S#=. It remains to prove that the
homotopy class () is uniquely determined by the homotopy classes
(i) and (f,), i. e. that it J/ e (f), i=1,2, and fi(a)=74(a), then the
mapping 7'’ given by the formula

Frx)=Ji(x) for wed; i=1,2

is homotopic to 7.

Fundamenta Mathsmaticae, T. XXXVII 15
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It is easily seen that there exists a mapping f* ¢ (/') such that
f*(a)={'(a). Hence the partial mappings f*/Ai—— t, 1=1,2, are homo-

topic to f{, and consequently also to f; in Sl Moreover f¥{a)=jya)
for i=1,2. Applying the lemma 4 we infer that there exists a family
{g”}CS,,, 0<i<<1 and 4=1,2, such that gir-]‘, 9,4=I7, and
9r4a) =f,(a) for 0<{¥<1 and i=1,2. Putting

g (=g, (2) for =zed,; 0IKL, i=1,2

we obtain a family {g,} joining in S$aT4 the mappings f and 7*.
Hence (f')=(f*) and consequently also (/)= (f"')-
Let us apply the last theorem to the following

Example, Let a,,a,,...,a, be a system of m different points
of a segment LCE,y, and a,a,,...,an 2 system of positive num-
bers so small that the (n--1)-dimensional elements

Q1=E [Q’J eEu—H’ g(w,ai)ga,-], i= 1,2,...1’”!,

x
are digjoint. The boundary S§,; of @; is a set homeomorphic to S,.
‘Obviously the set

T=L—_2 QH—Z S

is a continuum. Let us show that if we assign to every homotopv
class (f)CST the system of m homotopy classes  (f/Sn:)C Sy ’”
1=1,2,..,m, then we obtain a one-one correspondence between
the set of all homotopy classes of the mappings feS2 and the set
of all systems of m homotopy classes (f;)C Sf"»i, i=1,2,...,m.

If m=1, then evidently S,; is a deformation retract of T’
and the statement follows by the lemma 5. Assume it now for m<k,
and suppose that m=%k+1. Choosing a point

a e L—‘Z 47
=1

lying between two neighbouring segments Z-Q; and L-Q,, we can
decompose T' into two continua T; and T, having only the point a
in common and being of the form similar to 7|, but containing each
<k spheres. By the inductive hypothesis the homotopy classes of
f{Ty and f/T, are in a one-one correspondence with the systems
of partial mappings f/S,;. Applying the last theorem we infer that
the homotopy class of fis in a one-one correspondence with the

systems of the homotopy classes of the partial mappings fiSa-
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5. Mappings of a closed subset of S, into S,.

Let A be a proper closed subset of the (n-+1)-dimensional
sphere Spyi. Let us order all components of S,y1—A4 in a finite
or infinite sequence {I3} with the index ¢ running through all in-
tegers satisfying the inequality 0<{i<a, where o« denotes a po-
sitive integer or oo.

Let us choose in every component I a point a;e I'—(b7)— (o™}
and a spherical (n- 1)-dimensional element K;CI; with centre a,
boundary §,;, and interior W,. Putting

P=Spp—2 Wi
i<a
we obtain a compactum containing 4.

Theorem. If f e Sﬁ, then:

1% There exist extensions g e SE of f.

20 Ifge SE is an extension of f. then except for a finite number
of i, f{Sn: is unessential.

30 If g e 5L is an extension of f, then the homotopy class (f)C S5
is uniquely determined by the homotopy classes (§/8n)C Son, . O<i<<a.

40 Given g e S5t for O<<i<<a such that almost all g: are unessen-~
tial, there exists a mapping ¢ < SE such that (9,)=19/8r1) for 0<i<a.

5% The homotopy class (g)C S5, where g is an extension of feSa,
is uniquely determined by the homotopy class (f)CSE.

Proof. 1° By lemma 3 there exists a finite set NC S, —4
and an extension feS3H™F of . Let 41 denote the finite set of

indices 4 such that I';-N==0.

By (1) for every ie.l there exists an (n-+1)-dimensional ele-
ment @,CI; containing in its interior the finite set N -I't--{(ay).
Obviously there exists a mapping #; retracting ¢,—(a;) to the boun-
dary B; of §;. It will be sufficient to put

*z)=7(=)
*(@)=fri(z)

in order to obtain a continuous extension f* of f onto Sppq—{a;) DP.
ied

for every @ e Sup—2 Qs
ied

for every @ e@Q;—(ay), el

The partial mapping ¢g=/*/P is the required extension of f on P.

15%
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20 Applying the above reasoning to a mapping g e Sn instead
to f, we infer that

(18) For every g «S% there exists a finite set .1 of indices such that q
has a continuous extension § onto the set S,y 3—3 (ay).
e 1/

Hence for almost all indices ¢ the mapping ¢ is defined on A,
and consequently the partial mapping 7/8,;=¢/8,; is unessential
on Sn,i-

3% It will ‘be convenient to consider S§,;; as an Euclidean

- space E,.y for which the point a,¢ Iy plays the role of the point
in infinity. As we have already seen (in the Preliminaries) the sets
Sy are geometrical spheres also in E,yy. The sphere {,, bounds
in E,4y a region Ty=E,;—K, containing A—l»/ ); Wi. In E,y; we
choose an orthogonal system of coordinates ﬁ?lv\iclgg as its initial
point the point «f antipodal on &,.y to a,. In every regien W;,
1<, let us choose a point a; in such & manner that for every
two different indices 7, and i, the first coordinate 27 of aj is allways
different from the first coordinate j, of aj,.

Let g e 5% be an extension of feSh By (15) there exists a fi-
nite set A’ of natural indices and a continuous extension g of g onto
the set T, ~‘I(a) We can assume that .1' consists of the indices

1,2,..,k and that for I1<i<j<<k it is
(16) &< &g,
Consider a positive number o so small that

g

(17) e<¥aj—ap for every 1<<i<i<k

and that the sphere S;; (in E,y) with centre a; and radius ¢ is eon-~
tained in W;. It is easily seen that each of the spheres §,; and &) ;
is a deformation retract of K,—W}, where W; is the interior region
bounded by S;,. By the lemma 5 we conclude that the homotopy
class of §/8;; is determined by the homotopy class of §/S,;=g/Spur
for i=1,2,...,k. Hence to prove 3° it is sufficient to show that
the homotopy class of f is determined hy the homotopy - classes
of §fSp, 1=1,2,..,k.

Let us denote the point of S,; (for i=0,1,..,k) with the
minimal first coordinate z; by ¢, and that with the maximal first
coordinate Z; — hy d;. By (16) and (17)

£ Ly < Ty <&y By o < L g <Tye
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Consider the segments
Ly=¢y0;; Iflzd—ﬂ’jﬁ LFE; cord Lpa=dracr Ly (?k—do'

Let us observe that the set

T0_2L1+2 kni

i=0 i=1

is a deformation retract of the set

To prove this let us denote by H{zx), for every xe M, the
n-dimensional hyperplane passing through & and perpendicular to
x,-axis. Obviously H(z) has with T, either one point (Iying on one
of the segments I;) or an (n—1)-dimensional sphere (Iying on one of
the spheres &,;) in common. In both cases there exists exactly
one point of H(x)-T, nearest to #. Denoting it by ¢(x) we obtain
evidently a retraction of M, to T,. It is sufficient to put

rle,t)=t-¢(r)+(1—1t)- ¢ for O0<IKL1

in order to obtain a required rectracting deformation of M, to T.

By the lemma 3 we infer that the homotopy class of g/af,
is determined by the homotopy class of §/T,. Since PCHM,, the
homotopy class of g/P=7/P is also determined by the homotopy
class of §/7,. But the set T, is obviously homeomorphic to the set T
investigated as example in section 4. As it is shown there, the homo-
topy class of §/T, is determined by the homotopy classes of the
mappings §/Sn:, i=1,2,..,k. Thus the proof of 3° is completed.

Remark 1. In the case 4=P we infer by 3° that the homo-
topy classes of ¢/S.:, 0<i<a, determine the homotopy class of
g/8no- If we observe that the role of the sphere 8, is the same
as the role of each of the spheres §,;, 0<<i<g, then we infer

(18) For E’l‘ery ge:Sﬁ the homotopy class of g/Sn; is determined by
the homotopy classes of g/Sy; for 0<j<a, j==1.

4% Let g, be unessential for ¢ >%. Keeping the same notations
as used in the proof of 3° consider a continuous extension g7 of
the mapping g, on the set k—W;. Let g; denote the mapping ¢;/S,
By the example considered in section 4 we infer that there exists
a mapping fe S5 sueh that (f/é;.i)-——(g;*js;’i) for i=1,2,..,k.
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Putting
g x)=Ffq(x) for every xe M,
we obtain an extension ¢*eS¥ of 7. Let us put g=g*/P. For
0 <k the mappings ¢*/(K—W;) and g7 constitute two extensions
of g,. If we observe that S,; and 8y, are retracts by deformation
of the set K;—W;, we infer (by the lemma 5) that for i=1,2,...,k
the mappings ¢*/8p;=¢/S; and gi!Sn’X.—— g, are of the same ho-
motopy class. For i>k the mapping g¢*/K; constitutes an exten-
sion of g/8,; onto K;. Henece g/S,; is unessential, i. e. (g/8,)=(g)

3% Applying 3° to the mapping g which is an extension of f
onto the set P we infer that the homotopy class (g) is determined
by the homotopy classes (g/8,:), 0<i<a. Consequently, it suf-
fices to show that every homotopy class (g/S,;) is determined by
the homotopy class (f).

Let 7, and f, be two homotopic mappings of 4 into §,, and ¢,
and g, their respective continuous extensions on P. It is to be shown
that

(gllk n‘z) (gzlsn ) for 0 <i<a.
By (11) there exists an extension g} e 82 of f, homotopic to g,.
Consequently it is sufficient to show that
(61/8n)=(g:/8ns) for O<i<a.
Choosing an index % put
g (@) =g,(») for every =meP 17,
gj@)=gy(x) for every zeP.I}.

Clearly ¢/ is also a mapping of P into §,. But by (18) the
homotopy class (g”/Sj1 r)-—(g /8, is determined by the homotopy
classes (g;/ 8,.)=1(9,/S, ), for j==i, and consequently it is identical
with (gli'sn.i)

Remark 2. Putting

Ay=A--T; for O<i<a
we see at once that if ¢/S,; is unessential; then f has an extension
fie A Conversely, if there exists an extension f; e S7%, then putting

g¥@)=g(x) for xeP-—TIy,
={fi{z) for zeP-I}
we obtain an extension g* e ST of f such that ¢*/8,;=7f;/S.; s un-
essential. By 5° the mapping g/8,; is also unessential. Hence f has
a continuous extension on A4, if and only if ¢/S8,; is unessential.

icm

Disconnection Theory 231

Let us call the component I of the set Spp—4 unessential
for a mapping f ¢ 87 if there exists an extension f;e Sif of f and
essenttal if such extension does not exist. By 2° there exists only
a finite number of essential components for every fe Si. Choosing
an arbitrary point in each of them we see by a rea,nomng used in
the proof of 19 that f has a continuous extension on the set obtained
from Spqy by the remowval of this points. Hence we can formulate
the following

Corollary. For every f e Sh there exisis only a finite number
of essential components. If N is a subset of S,yy containing aif least
one- point of each of essential components, then there exists a conti-
nuous ertension of f on the set Sppa—N.

6. Power transformations. Let o, 7 denote the polar co-
ordinates in the plane E, related to the Cartesian coordinates z;, @,
by the formulae

2, =0-00879; Xy=yp-sind.

The first of the polar coordinates p is >0, the second # is in
general defined merely modulo 2z and in the ease ¢=0 it is quite
arbitrary.

TUsing the polar coordinates, we shall denote the point

{0y, Ty Ly ey Tppt) € By 2180 Dy ([0,8]; @5, -, &nt1). Evidently the sphere

S, consists of all points ([0,5); L5, ..., Tapa) With g® 22+ ... +22 =1
Let m be an integer. By a power tiansformatzon of S, Tuth
the exponent m we understand the mapping a%c §3n defined by
the formula
an (L0, 015 @, ooy @ntr) = (Lo, M5 &yy ey Bnpr)-

Remark 3. By the homological theory of degree it is evident
that the power transformations with different exponents are not
homotopic. An elementary proof (without using the homology
theory) is easy only in the case n=177).

- Theorem. Ervery mapping 785 is homotopic to a power trans-
formation 18).

7) 8. Eilenbery, Sur les espaces mullicohérents I, Fund. Math. 27 (1936},
p. 156.

i8, This statement is commonly known in the general theory of degree.
But the proof given here is entirely elementary. See also K. Borsuk, Drei Sdtze
iiber die n-dimensionale Euklidische Sphire, Fund. Math. 20 (1933), p. 184.
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Proof. If n=1, then we can suppose that 8, is identical with
the set of all complex numbers z= ¢2%i¢ with 0<<u<<l. Let fe S
We can assume that f(1)=1. Obviously there exists a branch of
logarithm such that the real function

1 N
#lt)= 5 log f(e=),  0<u<1

is continuous and tends to an integer m when u— 1. Let us put
¢(1)=m and
wlu)=m-f-u+(1—t)-¢(u) for every

We get

0<t<l, 0<u<l.

volu)=g(u), p(w)=mu for 0<u<li,
and

yp{l)=mi{-(1—t)-m=m for 0<t <1.
It follows that putting
Jle¥ ) = gnivde) - for Q) Lu 1, oIkt

we obtain a family {f}C&5 joining the mapping f,=f with the
mapping f;, being a power transformation.

Suppose now that #>1 and that the statement is true for
spheres of dimension <n.

Applying (11) to the subset (B¥)+(b%;) of S, we infer that
for every feS3® there exists a homotopic mapping g e S5k such

that
g(by) =1,

Putting A=g~(8,) let us consider the mapping p=g/A ¢ S% ;.
By the lemma 3 there exists a finite set N C8,—A such that ¢
has a continuous extension ¢’ on 8,—N with the values belonging
to S,3. Let us put

No=B)+N-g YRy for »e=L1.

By (1) there exists an n-dimensional element Q,C8—N_,
containing in his interior the set N, and an n-dimensional element
Q-1C8,—@, containing in his interior N_y. Evidently there exists
4 mapping r,(x) retracting the set @,—(b2) to the boundary B,
of Q.. Putting

and  glb_q)=>b_4.

'P(m):‘?’(x) for ze Sn_Ql—Q—l:
p(@)=¢'r.(x) for ze Qo—(b3), v=11

Wwe obtain a mapping of S,—(b)~—(4",) into Spi.
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Let 17, denote the region on &, composed of all points x € S,
satisfying the inequality o(x,ls)< 1. Putting
Gv=(@,—B,)- g R,) Vs,
Ap=8—G—G 4 (1)
let us consider the mapping f, defined in the set 4, as follows:
f»(-lf):y)(x) for méSn~G1_G—15
fb)=13.
By (6) the mapping f, has a continuous extension j* on the
set 4,4 @, with values belonging to ¢7=R~. Putting
He)=13x) for wed,+G, v=41
we obtain a mapping f* ¢ S3r. Let us show that
(19) o(f*(@), glx))<2
If zed, then gle)=f*x)=vy(r). If e 4,—4, then g{r) € Sp—Sp_t
and fXz)=uy(x) € Sp—y. Hence g(f%z), g(w))<2. If z ¢ S’,,—A_I—A_i,
then it is xe@, for an »=4 1. Hence g(w) € £}, f*(x)e Ry, and
consequently o(f*(x), g(x))<<2. Thus (19) is proved. We infer by
the lemma 1 that f* is homotopic to g; hence also to 1-
By the construction of f* the compactum
ST —T_;
containing in its interior the sphere §,_;, is mapped by f* in &,_;.
By applying the hypothesis of induetion to the (n—1)-dimensional
sphere 5,1 we infer that there exists a family {g3C Sfﬁ;l joining the
mapping g,=f*/8—; with a power transformation Gi=rin_1. We
extend g, to the boundary B, of the set S,—T,—V_; putting
g{x)=f*x) and 0<t<<1.

Applying (11) to the family {g,} defined in the closed subset
Spa+By of 8,—V,—V_; we conclude that there exists a family
{97} C 81 joining g = f*{(Sy—Vy—T 1) with g/(Su—Ty—T—s).
Moreover, if we put

for every &z eS,.

for every zeB,

gi(m)y=7*x) for every zeT,+V_4 and 0 <i<1

we obtain a family {y*!C S5 joining f* with the mapping ¢7. By
the construction ¢}/§,_ =g ="
zeRy, v=-41

=a7/S . Moreover, for every

gi@) e B, and ﬂ:(ﬂ) L
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Hence o(g7{(z), nf(.fv))<2 for every «eS,. By the lemma 2
the mapping =™ is homotopic to g7 and consequently also to f* and

to f; thus the proof is complete.

7. Homotopic multiplication of two homotopy classes.
Let ¢ be a mapping of a compactum X in an arbitrary space Y.
An open subset @ of X will be called a fundamental set for ¢ if ¢
is constant on X —@. If in the homotopy class (p)CYX there exists
2 mapping ¢’ such that G is fundamental for ¢’, then G will be
called a fundamental set for the homotopy class (p).

Evidently, if G is a fundamental set for the homotopy class
(¢) then the mapping ¢/(X —@) is unessential. In the case where ¥
is an ANR the inverse is also true, sinice if ¢/(X —@) is unessential,
then by (11) ¢ is homotopic in ¥X to a mapping ¢’ constant on
X—G. Tt follows that if X —@ is contractible in X, then @ is a fun-
damental set for every homotopy class (p)CY¥YZ%, In particular

{20) If Y is an ANR, then every open set G==0 of S, is fundamental
for every homotopy class (p)C¥5n.

We shall say that.two homotopy classes (g,), (p,)CYX are
multiplicable if there exist two disjoint open sets & and G, such
that @, is fundamental for {¢,), and @, is fundamental for (g,).

Examples.

1. I Y is an ANR, then by (20) every two homotopy clas-
se8 {gy), (g)C Y5 are multiplicable.

2. If we set for every two mappings ¢,@, e S5

plz)={(g:(2), polx)) for =X,

then we obtain a mapping » of X into the 2n-dimensional manifold
T==8,%X 8. If we suppose that the dimension of the compactum
X is <2, then it is seen at once that » is homotopic in 7% to a map-
ping v, such that ¢ (X)CT—(b2, 0 4). By (3) there exists a map-
ping 7(z,t) retracting by deformation the set 7—(b%,,b%,) to the set

Z=[(b1) X Sa]-+[8ax (b3)].
Puatting
ylx)=r(y(z),t) for every 2eX and 0<i<1

we obtain a continuous family {p}CT* joining y, with y, e ZX.
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Thus we have shown that every mapping ye 7% is homotopie
(in T%) to a mapping p, e Z*X. This means that for every two map-
pings ¢u,p, € SY there exist two homotopic mappings §,.9, ¢ SE
such that for every ¢ X either g (z)=>bi or p,/z)=0f. It follows
that the open subsets of X

Gy=F7H(8,— (1), Gy=gy S, — (b))

are disjoint, and @, is fundamental for p, and G, for @
Thus we have shown that

(21) If X is a compacium of dimension < 2n, then every two homo-
“topy classes (g,), (g5)CSE are multiplicable.

Let X be a compactum and ¥ a continuum being an ANR.
If the homotopy classes (¢y), (¢,)CY¥ are multiplicable, then there
exist two mappings ¢f e (¢,) and ¢J ¢ (¢,), and two disjoint sets G
and G, open in X such that ¢ is constant on X—@G, and ¢0 con-
stant on X —@,. Let us observe that we can assume that these
constant values are equal to an arbitrarily given point ae Y. In
fact, if a; denctes the value of ¢? in XY —@4, then there exists a con-
tinuous function e;(t) of the parameter 0 <t <1 with values belon-
ging to Y such that ¢(0)=a; and o(1)=a. Putting f(w)= a;(t)
for every 0<¢{<{1 and xe<X—@; we obtain a family {fCYE-6
joining ¢%/(X-—@,) with the mapping f,(X—@G)=/(a). We conclude
by (11) that ¢? is homotopic in ¥% with a mapping transforming
X—@; into a.

Hence we can assume that

gix)=a  for every zeX—G;, i=1,2
Putting

p(e)=¢dz) for zely, i=1,2,

pz)=a for z e X—G,—G,

we obtain a mapping v e ¥YX. The homotopy class (w)CY¥ will be

called a homotopic product of the homotopy classes-(p;) and (g,)-
It is obvious by this definition that

(23) If X, is a closed subset of a compactum X, and (w)CYX is a homo-
topic product of (), (g2)CYZ, then (p/X,)CY% is a homotopic
product of (¢:1/Xy), (ga/X)CE%. .
‘We do not assert that a homotopic product exists for every

two homotopy classes (gy), (7.)CY%, or that it is uniquely deter-
mined.

(22)
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Lemma 6. Let X be a compactum, and ¥ an ANR. If ¢,¢ye ¥X
and there exist two disjoini open subsets G,y of X such that

g(X)=gqo() for every xeX—G,—G,,

and a closed subset Xy of Y contractible in Y and such that

X — )+ (X —6,) C X,
then putting .
ple)=¢(x) for zeX—G,
ple)=gs(2) for reX—6
we oblain a mapping ¢ e YX; dts homotopy class (¢) is « homotopic
product of the homotopic classes (¢;) and (g,).

Proof. Let f(y,t) be a2 mapping contracting ¥, in X to a point a,
i. e. a mapping of ¥;x<0,1>into ¥ such that f(y,0)=y and f(y,1)=a.
By (11) the mapping f(y,t) has a continuous extension f(y,t) on
the set ¥x<0,1> with the values lying in ¥ satisfying the con-
dition

fly,0)=y for every wye Y.
Putting

Pu@)=flg:(2),1]; Pulw)=]lgy@),1] for every zeX

we have 9, e{g;) and @,e(g,). Since p(x)=a for every x¢X—@,,
and gu(x)=a for every ¢ X—@,, it follows that the homotopic
classes (¢;) and (¢,) are multiplicable. If we put

g(z)=gp,(x) for every =eX—@,,

pla)=gy{x) for every zeX—G,

then we obtain 2 mapping p ¢ ¥¥ such that (g) is a homotopic pro-
duct of (p;)={g,) and (p,)=(¢,). It remains to show that ‘gi=(y).
Putting

g‘;(.n):_?[q.(.l‘),t] for every e X and 0<i<1
we obtain a family {¢}CT¥ joining ¢;=¢ with ¢;=7.
8. Mappings in S,. If X is a compactum of dimension < 2n,

then by (21) every two homotopy classes (gy), (¢,)CS; are multi-
plicable. If dim X< 2n—1, then holds the following more exact
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Lemma 7)., If dim X<2n—1, then for every two homotopy
classes (), (¢2)CS;f there exists ecactly one homotopic product.

Proof. By (21) it is sufficient to show that any two homo-
topic produets (y) and (p’) of (¢;) and (¢,) are identical. Let y be
given by the formula (22) where @,,@G, are two disjoint open sub-
sets of X and ¢? is homotopic with ¢, and ¢¥(x)=a for every x e X — G,
i=1,2. Similarly let 61,62 be two disjoint open subsets of X, and ¢;
a mapping homotopic to ¢, and such that ¢(x)=a’ for every re X — Gy,
1=1,2. Let ¢’ be given by the formula

for re@ i=1,2
reX—G1—Gs.

¥(@)=g(x)

(24) p(r)=a’ for

Since the mappings ¢? and ¢; are homotopice, there exists
by (10) a family {g, }CS] joining ¢, =¢? with ¢, =g7. Let us de-
note by T the 2n-dimemnsional manifold §,> S,. Putting

zle )= (g, (), go(2))  for every reX and 0<Li1

we obtain a mapping ye T3, By (22) and (24) the values of

7(%,0) and z{x,1) lie in the set

Z=[(b7) X Sal+[Sax (BD]-
Putting

#(L5,¥) ==y, b)=y for every yeS,

we obtain a mapping x ¢ SZ such that

(25)  aylx,0)=yp(r) and xyx(x,1)=yp'(x) for every relX.

As dim (X x{0,1>) <<2a, it follows that for every >0 there
exists a mapping y’ « T7“Y such that p(y,3')<e and
(X x0,15)CT— (b2, 0%,).
By (3) there exists a retraction r of the set T'—(b2;,b2,) to Z.
13) More exactly, the homotopy classes C Sf constitute an Abelian group
with homotopie multiplication greup operation. See K. Borsuk, Sur les groupes
des classes de transformations continues, . R. de PAe. des Se. 202 (1936), p. 1402

and E. Spanier, 1. c. p. 211. For our purposes the more elementary partial
statement given here is sufficient.
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Putting o
(@)= r[y'(x,5)] for every # ¢ X and 0<<i<1

we obtain a family {7} joining in Z¥ the mapping Zo(@)=11x"(2,0)]
with the mapping yi(z)=1{y'(x,1)].

But for ¢ sufficiently small the distance between the mappings
x'(2,0)] and 7[x(z,0))= x(2,0), and the distance between the map-
pings y'(z,1)] and z(»,1)]= y(x,1) is arbitrarily small. By (9)
we conclude that the mappings y(#,0) and z(z,1) are homotopic
in ZX. It follows by (25) that also the mappings w and y' are homo-
topic in SZ.

Lemma 8, For every two integers m, and my the homotopy class
of the power transformation amctm: s homotopic product of the ho-
motopy classes of the power transformations azs gnd am.

Proof. Let us define in the set <0,1>%<0,2=> three real con-
tinuous functions in the following manner:
If 0T and 0<9Kw, then:
ay () =my-0+m,-9- i,
co(B)=my-F—m,-9 -1,
- aga(F)==(myFmy)- P (L—1)L2m, -9 - 1.
IT 0<I<T and a<<I< 27, then: )
a1 () =m, - §-+ - (2n—9) -1,
o, 4(B) =My F—ay - (2m—1) -1,
g, (8) = (my+ 1) - # - (1—1)+ 2(my - 1y - & —my- 1) - .

Putting for every z={[g,0], ws,...,7as) € &,, where >0 and
0 <H< 2z, and -for 0L ; i

7 d2)= (00, (525 .ox ) for v=1,2,3
we obt-ain. three jfami.lies o {09l {qg’t}C,Sf". It is easy to see
that the first familly joins the power transformation ¢, o= with
the mapping ¢y, satisfying the condition '
71’1([9529]9 ‘rgy‘--:‘rn_‘;_])“:([?: 03; ‘Z';g:'"axn_,_l) i a<d2a.
The second family joins the power transformation Gy o=

with the mapping 7y, satisfying the condition

72,1([9719]; 1‘3,‘..,.1.‘&1)2([9, 0]; 3731-“7':",,.;1) it 0o
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The third family joins the power transformation @y ==
with the mapping @45 Such that

973‘1([9779]5 msi‘“?‘l'.n_}.i):‘pj,l([e:ﬁ]; Tg;--')‘l’,,.;_i) it 0<I<a,

@y, ([0,9]; w3,...,;vn+1)=¢2’1([g,19];.m'a,...,.z‘n+1) if {2

By the lemma 6 (where the role of the contractible set ¥,
plays the subset of §, composed of all points of the form
([e,0]; 3, ..., 2nt1) We conclude that (gsy) is a hemotopic product of
{p;y) and (g,,). Hence (zglx+mz)=(¢3)l) is & homotopic product of
()= (p,,), and (am)=(g,,).

Theorem., The homotopy classes (q:)C,Sf" constitute a cyclic

group if by the product we mean the homotopic product. This group
contains at least two elements.

Proof. If n= 1, the statement follows from the theorem of
section 6 lemma 8 and the remark 3. It follows also from this last
remark that the group of homotopy classes CS§! is infinite.

If n>1 then we infer by the lemma 7 that the operation of
homotopic produet is univalent. Applying the theorem of section 6
we infer that if we assign to every integer m the homotopy class
(:z,'f)CSf", then we obtain a transformation of the group of inte-

~ gers onto the set of all homotopy classes CS5~. By the lemma 8

this transformation is additive relatively to the homotopic product.
‘We conclude that the homotopy classes CS5 form s eyelic group
having as the unit element the class (a2), i.e: the class of all un-

essential mappings. By (8) the class (al) is different from =).

The cyclic group of homotopy classes (@)C S5z defined in such
manner will be denoted by (85R).

9. Structure of the group (S3) in the case ACE, .

Now wé shall apply the mappings in S, and in particular
the notion of homotopic product to the theory of the disconnection
of the Euclidean space E,;;. We shall confine ourselves to the
case of n>1, i.e. to the case of the Euclidean space of dimen-
sion >>3. The case of E, is trivial, the case of E,, though also acces-
sible for the method used here (slightly modified), can be treated
by still more elementary means, as shown by S. Eilenberg20).

20) 8. Eilenberg, Transformations continues en circonjérence et la topologie
du plan, Fund. Math. 26 (1936), p. 61-112.
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We begin with the following elementary algebraic remark.
Let {J;} 1<{i<a be a finite or infinite sequence of ahelian
groups J; (a denotes a natural number or oo). )
We denote by P J; the so called 2') weak product of Jy,
1<
i. e. the Abelian gr0u§ constituted by all sequences {¢;} with e; e dJ;,
where ¢;=0 for almost all indices ¢ and where the multiplication
is defined by the formula

{e}- {ei} ={er- &3}.

Let us observe that if all J;, are free cyclic groups, then the
rank of the group P J;is a—1. If all J; are cyclic groups of the
1

<ila
same finite order k=1, then the rank modulo % of the group P‘Jf
is a—1. <t
Thus we have the following

Lemma 9. If in two weak products P J; and P J; all
I Kila'
groups J; and J; are eyclie, and either all are free or all of the same

finite order k<=0, then P J; is isomorphic to P J; if and only
1i<a 1<i<al

if a=da'.

Now we proceed to the

Theorem. Let A be a subcompactum of Eyy1 and let a denote
the number (natural or o) of components of Epi1—A. Then the set
of all homotopy classes (f)CS2 with the homotopic multiplication as
operation is an abelian group isomorphic to the weak product <P J¢

B W<
where all groups J; are isomorphic to the group (83n). ‘

Proof. By the theorem of section 5 there exists a finite or
infinite sequence of n-dimensional spheres {Sni}y I1<<i<u, such
that if we assign to every ()CS2 the sequence of homotopy elasses
{(f} where f=F/8,;eS50 then we obtain 2 one-one corres-
pondence between the set (S7) of all homotopy classes (f)CS2 and
the set {Sfﬂr‘} of all sequences {(f)}, where (f;)CS3n¢ and where
almost all f; are unessential. But by the theorem of section 8 the
homotopy classes (f)CS3ni constitute a cyclie group (Sf”"} iso-
morphie to the group (»S'fﬂ), and the class of all unessential map-

) See for instance 8. Lefschetsz, Algebraic Topology, Princeton 1942,
p. 47,

icm

Disconnection Theory 241

pings is its unit element. In this group the homotopic multiplica-
tion plays the role of the operation. It follows that the set {S5ni}
is identical with the weak product KII{ (§3n1),
e

Now to prove our theorem it suffices to observe that with
regard to (23) the just defined one-one correspondence between
the homotopy classes (f)CSa and the sequences {(f/Sy)} €1<P> (85n)

1<

is such that to the homotopic product of two homotopy classes
(79CSA and (f") e 82 corresponds necessarily the product of the
corresponding elements of the group 1<P (S3miy,
e
Remark. The group of all homotopy classes (f)CS2 with
group operation defined as homotopic multiplication will be de-
noted by (§2). Obviously, its definition is purely topological. Hence

(26) If A and A’ are homeomorphic, then the groups (S&) and (§%)
are isomorphic.

By the last theorem the structure of the group (S87) is de-
termined by the number « of the components of E,.; —.4. On the
other hand by the lemma 9 the number « is determined by the
structure of the group (S7). Applying (26) we obtain the following

Corollary ?). Ij A and A’ are two homeomorphic subcompacta
0f Enyi, then the number of components of Epiy—A is the same as
the mumber of componenis of Rypq—A'.

Remark. It is commonly known on the base of the theory
of degree, that Sh* contains an infinite number of components.
It follows that (S3r) is a free cyelic group. Consequently, if A4 is
& subeompactum of E,q and « denotes the number of components
of Eny;—A, then the group (87 is isomorphic to the weak pro-
duet of a—1 cyelic free groups. In particular, if « is a positive inte-
ger then (S7) is a free Abelian group with a—1 generators.
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