Le théorème 2 se trouve ainsi démontré.

Théorème 3. Étant un ensemble borné situé dans un espace euclidien à \(m \geq 3 \) dimensions tel que \(m(E) > 0 \), il existe pour tout nombre réel \(\mu \) tel que \(0 < \mu < m(E) \) un ensemble \(H \) (de même espace) qui est équivalent par décomposition finie à \(E \) et tel que \(m(H) = \mu \).

Démonstration. Vu le théorème 1, il suffira de démontrer que l'ensemble \(E \) est équivalent par décomposition finie à un ensemble de mesure extérieure \(\leq \mu \). Soit \(Q \) un cube \(m \)-dimensionnel contenant \(E \). D'après Banach et Tarski\(^3\), comme \(m \geq 3 \), \(Q \) équivaut par décomposition finie à un cube \(m \)-dimensionnel quelconque, donc, en particulier, à un cube \(K \) de mesure \((m \)-dimensionnelle) \(\mu \). Comme \(E \subset Q \), \(E \) équivaut par décomposition finie à une partie \(H \) de \(K \) et on a évidemment \(m(H) \leq m(K) = \mu \).

Le théorème 3 est ainsi démontré.

Naturellement, dans un espace euclidien à \(m \) nombre fini quelconque de dimensions un ensemble équivalent par décomposition finie à un ensemble de mesure non nulle est de mesure non nulle.

\(^3\) Voir S. Banach et A. Tarski, Fund. Math. 8 (1924), p. 263, Théorème 34. Le théorème \(\gamma \) est énoncé pour \(m = 3 \), mais sa généralisation pour le cas \(m \geq 3 \) n'offre pas de difficulté.

On a Topological Problem Connected with the Cantor-Bernstein Theorem.

By

Casimir Kuratowski (Warszawa).

The purpose of this paper is to define two closed and bounded sets \(A \) and \(B \) (on the euclidean plane) which are not homeomorphic, although each of them is homeomorphic to a relatively open subset of the other\(^4\).

1. **Definition.** Let us consider the doubly infinite sequence

\[
p_m = 2^{m^2 - m};
\]

\[
\ldots - \frac{1}{2}, \quad \frac{1}{2}; \quad \frac{1}{3}, \quad - \frac{1}{3}; \quad \frac{1}{4}, \quad - \frac{1}{4}; \quad \frac{1}{5}, \quad - \frac{1}{5}; \quad \ldots
\]

Let \(M_n \) (where \(n = 1, 2, \ldots \)) denote the dendrite composed of the segment

\[
S_n = \bigcap_{x \in \mathbb{R}} \left(x = \frac{1}{n} \right) \quad (0 \leq y \leq 1)
\]

and of the sequence of small dendrites \(D_n^0, D_n^1, \ldots \) such that

(i) \(\lim_{k \to \infty} D_k^0 = \left(\frac{1}{n}, 1 \right) \),

(ii) \(D_k^0 \cdot D_k^m = 0 \) (if \(k \neq m \)),

(iii) \(D_k^0 \) is composed of \(k + 1 \) segments having the point \(\left(\frac{1}{n}, P_{k+1} \right) \) in common with \(S_n \) (this point being a point of \(M_n \) of order \(k + 3 \)),

(iv) \(M_n \cdot M_m = 0 \) if \(n \neq m \).

\(^4\) \(A \) and \(B \) are 1-dimensional sets. The problem raised by Sikorski (Coll. Math. 1 (1947-48), p. 243) of defining two 0-dimensional sets \(A \) and \(B \) of that kind, is still unsolved.
Consider the dendrite Q_* symmetric to M_* relatively to the Y-axis and add to it a small circumference having but the point $\left(-\frac{1}{n},0\right)$ in common with Q_*. Denote the set thus obtained as X_*. Assume further that X_* is $n - m = 0$ if $n + m$. Let P denote the segment of the Y-axis and put

$$A = \sum_{n=1}^{\infty} M_n + P + \sum_{n=1}^{\infty} X_n, \quad B = A - X_*, \quad C = B - M_*.$$

Obviously B is an open subset of A, and C is an open subset of B.

2. The sets A and C are homeomorphic.

The desired homeomorphism is defined as follows:

$$h\left(\frac{1}{n}, y\right) = \left(\frac{1}{n + 1}, y^2\right) \quad \text{for} \quad n = 1, 2, \ldots,$$

$$h(0, y) = (0, y^2), \quad h(1_1) = 1_2.$$

the definition on the left side of A being symmetric.

It is easy to see that

$$h(S_n) = S_{n+1}, \quad h(P) = P \quad \text{and} \quad h\left(\frac{1}{n}, y\right) = \left(\frac{1}{n + 1}, y_{n-1}\right).$$

It follows that $h(A) = C$.

3. The sets A and B are not homeomorphic.

Suppose they are. Let f be a homeomorphism of A onto B.

It is easy to see that

$$f(0,0) = (0,0), \quad f(0,1) = (0,1),$$

and that there exists a permutation j_n of the sequence of all positive integers such that $f(M_n) = M_{j_n}$.

Write $m = j_n - n$. Clearly

$$f\left(\frac{1}{n}, y\right) = \frac{1}{n+1} P_{k-n}$$

for $k > n$.

the points $\left(\frac{1}{n}, P_k\right)$ and $\left(\frac{1}{n}, P_{k-n}\right)$ having the same order.

We prove now that the sequence $\{m_n\}$ is convergent. Let $\{m_n\}$ be any subsequence of $\{m_n\}$. The continuity of f yields in view of (3) that

$$f\left(0, \frac{1}{2^n}\right) = \lim_{n \to \infty} f\left(\frac{1}{2^n}, \frac{1}{2}\right) = \lim_{n \to \infty} \left(\frac{1}{2^{n+1}}, y_{n}\right) = (0, \lim_{n \to \infty} y_{n})$$

provided the last limit exists.

Now, this limit exists in the following three cases:

$$\lim_{n \to \infty} y_{n} = \infty, \quad \lim_{n \to \infty} y_{n} = -\infty,$$

$$\lim_{n \to \infty} y_{n} = -\infty \quad \text{where} \quad -\infty < m < \infty.$$

In cases (5) and (6) we have by (4)

$$f(0, \frac{1}{2^n}) = (0,0) \quad \text{or} \quad f(0, \frac{1}{2^n}) = (0,1)$$

respectively. But this is impossible by (1) and (2), f being a one-one correspondence.

Thus the cases (5) and (6) can be eliminated. Hence the sequence $\{m_n\}$ is bounded. Moreover it cannot contain two convergent subsequences with different limits, since (7) and (4) give

$$f(0, \frac{1}{2^n}) = (0, P_{-n})$$

Thus the sequence $\{m_n\}$ is convergent. Put

$$m = \lim_{n \to \infty} m_n.$$
The sequence \(\{s_n\} \) being a permutation of the sequence of all positive integers, it follows at once that \(m = 0 \). In other words: we have, for \(n \) sufficiently great, \(m = 0 \), hence \(f(m) = n \). Therefore

\begin{equation}
(8)
f(0, \frac{1}{2}) = (0, \frac{1}{2}).
\end{equation}

Applying the same argument to the left side of the set \(A \), it can be shown that there exists a sequence of integers \(\{t_n\} \) such that \(f(X_n) = Y_n \), and that the sequence \(\{t_n - n\} \) is convergent. Let \(g \) be its limit. We have then (cf. (4)): \(f(0, \frac{1}{2}) = (0, p_{t_n}) \) and therefore \(g = 0 \) (by (8)). It readily follows that \(\{t_n\} \) is again a permutation of all positive integers. But this is impossible since \(t_n \geq 2 \) in view of the definition of \(B \).

Set Theoretical Approach to the Disconnection Theory of the Euclidean Space.

By

Karol Borsuk (Warszawa).

1. Introduction. In 1931 I gave \(^1\) an elementary proof of the qualitative part of the known theorem of L. E. J. Brouwer \(^2\) asserting that if a compactum \(A \) disconnects the \((n+1)\)-dimensional Euclidean space \(E_{n+1} \) then so does every subset of \(E_{n+1} \) homeomorphic to \(A \). That elementary proof consists in the characterization of the continua \(J \subseteq E_{n+1} \), which do not disconnect \(E_{n+1} \) by the connectivity of the functional space of continuous transformations of \(A \) in the \(n \)-dimensional Euclidean sphere \(S_n \).

In 1935 S. Eilenberg \(^3\) showed how the continuous transformations of \(A \subseteq E_2 \) allow to prove also the invariance of the number of the regions in which \(A \) decomposes the Euclidean plane \(E_2 \). In his reasoning S. Eilenberg uses the fact that the continuous transformations of \(A \) in \(S_2 \) can be multiplied and thus constitute an Abelian group. A similar multiplication for arbitrary continuous transformations of \(A \) in \(S_n \) is for \(n \geq 1 \) impossible. However it is possible to define an operation of multiplication (homotopic multiplication) for some pairs of homotopy classes (called henceforth multiplicable classes) and obtain in such a manner a group having as elements the homotopy classes of continuous transformations