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On the boundary values of functions of several
complex variables, I.

By
A. Zygmund (Chicago, U.S.A.).

1. Introduection. Let f({) be a function regular for |Z|<1.
Fatouw's classical result asserts that if f({) is bounded there, then

for almost every point ¢¥ on [¢|=1 the limit of f(Z) exists as

approaches ¢® along any non-tangential path. A more general
vesult of Nevanlinna and Ostrowski asserts that the conclusion
of Fatou’s theorem holds if the houndedness of the function f is
replaced by the condition

27

1) f log™* |f(0c®)| @0 =0(1).
0

In a sense, this is the best possible result since, if w(u) is any
positive and increasing function tending to +oco with « but less
rapidly than log u, then there is a function f(¢) regular for |¢|<1,

satisfying the condition /nw(|f(ge"9)])(w=0(1), and deprived even

0
.of radial limit for almost every 61).

The main problem of this paper is that of boundary values
of regular functions of several complex variables. Let us begin by
the simplest case of two variables, and let f(2,£) be regular in the
bieylinder |z[<<1, [¢[-<1. Thus

fz,0) =3 e in
0,0

The first question that naturally occurs is whether an analogue
of Fatow's theorem holds here. The answer is affirmative: if f{s,7)
is bounded for |of<1, {¢{<1, then . :
lim  #(z,0)
2pel¥, Ll

1) $ee Paley and Zygmund [1].
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exists for almost every point (%, 6) of the square 0<Caw <27, 0 0 22,
provided that # tends to ¢ alorg any non-tar gential path and ¢
tends to ¢ alorg any non-tar gertial path. (In what follows we
shall say for brevity that the point (z,{) tends to (¢,¢®) along

any non-targential path. Similarly for any number of complex.

variables) 2). More difficult is the problem of an extension to the

case of two variables of the Nevanlinna-Ostrowski theorem. We

shall show that the conclusion of the precedirg result holds if the

boundedness of f(z,¢) for |2{<1, |¢I<<1 is replaced by the condition
r 2m

(2) / f log™*|f(re®, pe)] log+ log™+ |f(re, p¢)| div A< M <<+ co.

00
More generally, we shall prove the following theorem.
Theorem 1. Let f(2,2y,...,4:) be rcgular in the k-cylinder

(I%) [a]<1,
and let the intcgral

iz2l<15 tees Izkl<1 (k>2)

2% 27 *
(3)f...f log+|f(ry e, .., raeiee)] {log+logT|f(ry e, ..., rpein) Yo -1 day ... ity
Q 0
be boundcd for all v;<<1. Them, for almost every point (@&, ...,az) of
the k-dimensional interval
Qn 0<2, <27, 0w 2m,

the limit fle, e, .. €%) of f(=), 2y, .. ,2) emists as (zl;zz, %R
approaches (<™, sB2, ... %) alorg any non-tarxg:mtial path®).

%) See Zygmund [2], where the result is stated explicitly for the radial

approach only (as a result abuut Abel summability of double Fourier series),
though the proof is essentially the same for non-tangential paths. More precigely,.

o0
among other results, it is shown there that if 3 |omn[? converges and if we set
P

+oo
w(@, 057, ) =2’ Gl e!nl lmx-f-n)
-y

then at almost every point ,9 the expression u tends to a finite limit as r, o—1.

oo
It f(-%l‘):%’ mn#™ ™ is bounded for |2|< 1, || < 1, then clearly S lemnf<cen

*) By a limit we always mean a finite limit.

icm

Functions of complex variables 209

At the first sight, the condition of boundedness of the integral
(3) may appear rather strange. To grasp-its significance, one has
to vecall a result from the theory of Lebesgue integration, namely
that if g(xy,®,,...,a3) is measurable and lgl (log+|gh®— is integrabl(:,
then the integral of g is strongly differentiable at almost every
point*). The resemblance between these two theorems is by no
means coincidental since their common source is the Hardy-Lvittle»
wood Max Theorem 3). .

. One may ask about the behaviour of 1 if the iterated logarithm
in (3) is omitted. To a fuller discussion of this problem we return
in the second part of this paper. Here we limit ourselves to a result
which will be needed in the procf of Theorem 1. Here and here-
after, unless otherwise stated, by a limit we shall always mean
a limit alor g every non-targential path. For the sake of clearness
we begin by staticg the result for k=2.

Theorem 2'. Let f(2,0), regular for J2|<1, |¢]|<1, satisfy the
condition

27 27
(4) [ [ tog+ lf(re, 6| dur a6 < M <co.
0o 0
Then, for almost every 6 in (0,2z) the limit
(5) fo(z)=Hm f(z,)
e>el?

ewists uniformly in every cirdle |z|<<r<<1, and so is a regular function.
in |z|<1. Moreover, for almost every 0 the function fo(z) satisfies the
condition

27
(6) f logt|fo(re®™)| dm <M<+ oo.
0

Hence, in particular, for every such 6 the Timit
fox=1im fo(2)
z—}zb‘
ewists almost everywhere in .
The point of Theorem 2* is that under eondition (4) the function
f(2,£) has an dterotcd limit almost everywhere. The extension of
Theorem 2’ to general k=2 is as follows.

1) See Jessen, Marcinkiewicz and Zygmund [1], or Saks [1], p. 147
5) See Hardy and Littlewood [1], or Zygmund [1], p. 241 sqq. The
latter book will henceforth be quoted T'S. R

14
Fandamenta Mathematicae, T. XXXVI.
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Theorem 2. Let f(21,%,...,%), vegular in Iy, satisfy the con-
dition
27

(@ [ [ logtlfrens, )| dny.drp <M <00 (7yyenryTe<<1).
0 [}

Then for almost every @, the function
T (Fayeees @)= Hm f(2,%,--s%n)
et
exists uniformly in every (k—1)-cylind:r |&|<<re<<l,...,|o] <rall,
and $0 i a reqular function of Zy,...,% Jor |2|<1,...,lex|<1. Moreover,
for almost every ay,

25 2%

{7a) /f logt|fs, (rae, ..., 1495%8) | @2, ... 5y < My <+ c0.
) 0

1t follows from Theorem 2 that
Fomy (23 eny ) = 1M F (2, ..., 2)
2yet¥e
exists almost everywhere in =, 2, and is a regular function of
Zyy...,2;. This argument can be repeated and, in parbicular, we see
that the function fy,«,..x, exists almost everywhere in Q.
) Let ¢ be any positive nunber. A fanetion f(2,...,2:) regular
in I, will be said to belong to the class He, if
2rn 27

(8) jf (e, o, TR | Ay o Ay <M< 00 (Pyyueey ).
] (]

Obvious}y, if f satisfies (8), then the integral (3) is bounded
so that the limit f(e™,...,ex) exists almost everywhere.

Theorem 3. If f(z,..,2) is of the class H=, then
2x 2@
(1) lim [ l_][ |Flryets, ..y raetse) —f(e™y, ..., 05)|® dary ... dg=0.

Iy ¥l

'_l?his theorem is a corollary of another one which we shall
state in a moment. '

It .AI,AZ,...,AF are sets of points situated respectively in the
phla;llles of tl;]i var;abfles 2122, then by 4; X4, X..XA4; we
8 mean the set of the systems Py iy ?,

AN (%1 #y+.y2) such that 2, € 4,

icm
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Let 0<n<R, 0O 2x In what follows, by 4(8,n,R) we
shall mean the open domain limited by the tangents from the point
R to the cirele |]=7, and by the longer arc of that circle between
the points of contact. Instead of A(6,7,1) we shall often write A4(6,7).

Theorem 4. Suppose that f(a,...,2) is regular in Iy ond
satisfies condition (8). Let

Faegy ey 1) = Sup [f(215 .0y 28)]
jor (2.2 € Al@yyn) X oo XN @0, 7)-
Then
2T im

{11) / oo [ {F @3y @0)}” A Birn < (A )
0 0 -

with Ay finite and depending on u, a only.

That this theorem implies Theorem 3 is immediate smce, om
-account of (11), and of Theorem 1, the integrand in (10) tends to O
for almost every (@y,...,2s) and is majorized by an integrable
function.

Before we pass to the proofs of the above (and some other)
-theorems, a few remarks may be useful.

(i) In the case of regular functions f{Z) of a single variable,
both the theorem of Fatou and its Nevanlinna-Ostrowsk generali-
zation (the latter in a suitable form) can be immediately extended
o, say, simply connected domains. It is enough to map conformally
the domain considered onto the unib circle, and to ,transplant”
the function from the former into the latter. By considering sub-
.domains of the given domain we can also considerably relax the
.condition of simple connectedness. For obvious reasons such an
argument is applieable to functions of more than one complex
variable in the case of some special domains only. For more general
domains in the complex space of % dimensions, it we wanted to
obtain extensions of the theorems stated above, we should have
o0 give special proofs, imitating to certain degree the proofs of
-these theorems ®). This we shall not do here and we concentrate

6) For the behavior of analytic functions in such domains see various
papers of Bergman, in particular Bergman [1]. See also Bergman and Mar-
cinkiewiez [1], and Bers [1]. The latter paper contains an extensive list of
Bergman’s papers in this field.

14*
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on the domains I, which are the most important ones for the
study of power series and of trigonometric series of several
variables.

(ii) In the proof of Theorem 1 we shall use the fact that
log* |f(#1...,2:)] is & subharmonic function of each z;, the other 2%
beirg fixed. Considerable part of the argument can be immediately
extended to multiply subbarmonic functions, that is funections of
geveral complex variables, subharmonic in each of these variables.
However, here again we shall not go beyond what is strictly needed
for the proofs of the theorems enounced, leaving generalizations
agide.

(iii) The case of regular functions f(Z), [¢]<1, of a single complex.
variable is exceptional insofar as we have here at our disposal a de-
composition of f into a non-vanishing regular function and the
Blaschke product formed with the zeros of f. If we had a.similar
result for functions of several complex variables, the proofs in that
case would merely be repetitions of proofs for one variable. However,.
no such decomposition exists for functions of several complex va-
riables, and it is this fact which makes the proof more difficult there
(see also Bergman [2], and the remarks in Bochner [1]). Roughly
speaking, the proof of Theorem 1 will proceed as follows. First of
all, using the fact that log* |f| is multiply subharmonic we prove
Theorem 1 in a weaker form, where the convergence of f along non-
tangential paths is replaced by the boundedness of f along such
paths. At this stage, the usefulness of the mere subharmonie cha-
racter of log+ |f| will have been exhausted because for subharmonic
functions the most we could hope for would be the existence of
limits along radii or slightly more general curves, but not inside
angles. (A good illustration here is provided by a result of Little-
wood [1]. He proved that if w(f) is subharmonic in l¢l<1, and

2
if f wt(ge®) @0=0(1) for o<1, then the radial limit of w(Z) exists
H ;

almost everywhere. Since w(f) can be equal t0 —oo in a et dense
in |¢{<1, his result ohviously cannot be extended to non-tangential
paths. As one easily sees, the situation is not improved even if one-
considers bounded subharmonic functions w(f)). The passage from
the boundedness of f to the existence of a limit will already take
into account some specific properties of regular functions.
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(iv) Theorems 3 and 4 are known for a>1, and in this case
‘the result is valid for multiply harmonic functions, that is continuous
functions of several complex variables, harmonic in each variable
separately. (See e.g. Sokéi-Sokolowski [1], Bergman and
Marcinkiewicz [1], Bochner [1]). For a=1, Bochner {1] proved
‘that f(#y,...,2:) converges to a limit in the L-metric (he did not prove
“the pomntwise convergence). The remaining parts of Theorems 3
and 4 seem to be new.

(v) The plan of the paper is as follows. In Section 2 we give
certain lemmas needed for the proofs of our theorems. The proofs
of the theorems are completed in Section 3, which also contains
some additional remarks about the theorems. Finally, Section 4
contains applications of Theorems 3 and 4 to conjugate functions
in the case of several variables. For details we refer the reader
to that section. :

2. Auxiliary lemmas. Lemma 1. Let ¢(), pfL), ... be
Junctions regular and uwniformly bound.d for |l|<<1. Suppose that
the sequence of boundary values @,(¢©),q(c®),... converges for every 6
belonging to a set B of positive measure 7). Then for almost every 6, ¢ E
{oa(2)} converges umiformly in A(8g,7m), no matter what is n<18).

Let us first consider an arbitrary function ¢({) regular and
satisfying |p(£)] <1 for |Z[<1. Let us suppose that |gp(¢®)] <e for
fecE. The function w(f)=log|e(l)] is a negative subharmonie
function in |¢|< 1. Let P{g,0) be the Poisson kernel,

1 1—¢?
Plo, )= 2 1—2p cos 6+ ¢*

7) Each g, obviously has boundary values yn(ef") almost everywhere. We
recall that boundary values are defined as limits along nontangential paths.

8) As I learnt recently, Lemma 1 is not entirely new. Cotlar and Vignaux
‘{1] had shown that if the assumptions of Lemma 1 are satistied, and if in addition
the functions ¢ are ali continuous on an arc of the umit circle contai‘ning E,
then the sequence {p,({)} converges uniformly over almost every radlu.s ter-
minating in B; more precisely, over every radius terminating at a point of
density of E.

Tn Lemma 1, the uniform boundedness of the functions ¢, () can be repla-
-ced by the condition that the subharmonic funetions log+|q;n(g‘)| have a common
harmonic majorant h{g,8) which is the Poisson integral of an L-integrable fun-
ction (or, what is the same thing, that the integrals [ h(p,6)ds are uniformly
absolutely continuous). The proof undergoes but little change.
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One easily sees that for g<1 one has 9)

Woe) <3 [ vle®) Ple,0—w)du
0

(12)
» < f p{6) Pe, 6 —)du<—(log 1/e)- = / P, 6—u) de.
E E

The last integral here is the Poisson integral of the characteristic
function k(6) of the set E. In virtue of the classical result of Fatou,
at every point 0, ab which the integral H(6) of k(6) has a derivative,
the Poisson integral of h tends to H'(6,) as g¢® approaches ¢f
within any A(8,,7). In particular, if 8, is a point of density of E,
then H'(6,)=1, and the Poisson integral tends to limit 1 there.
Since this integral represents a positive function inside the unib
circle, one immediately sees that there is a positive constant
K=EK{(6,,8,n) such that

j‘;fP(g,@-—u)du;K for £=0e® ¢ A(Bg,m)-
E

This and (12) imply that
log |p(@)|<—K log (1fs) for (e A(bg,7).

The point of this inequality is that if |p(¢)|<1 for |{|<1, and
if |p(c®)] is uniformly small on E, then |@(()| is small in A(8,,%)-

It is now easy to complete the proof of Lemma 1. We may
suppose that |pa(Z)]<} for |¢|<1 and for all n. Hence the functions
Donn (L) = P (L) —¢all) are absolutely less than 1 in [¢|<<1. Without
loss of generality, usirg Egoroff’s theorem, we may assume that
{pa(¢®)} converges uniformly on E. Then |@Ppa(e¥)] is uniformly
small on E for m and n sufficiently large and so, by what has just
been proved, |Pm(t)| is uniformly small in A(f,,%) for such m, &,
it 6, is a point cf density of F. This completes the proof of Lemma 1.

%) The first inequality that follows iz obtained from the inequ@lity

2
. 1 . . Reemp?
0y« T iur [4 .
e ’<2nof¢(Re ) B T e<B<D

which is obvious if ¢ has no zeros on |{|=R. It is enough to make here RL1,
and to use the very well known Fatou lemma,
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The fact that urder the corditiors of Lemma 1 the sequence
{¢2(2)} converges urifornly in every circle [{|<n<<1 is, of course,
well known. For our purpose however, it is irportant to have uniform
convergence in the remainirg part of A(8;,%).

Remark. As the above proof shows, the Lemma holds if the
subscript # terds to a limit, ixfinite or finite, in a continuos way.
In our applieatiors, # will be a cowplex variable, or even a seb of
corplex variables, terdirg to a firite limit.

Let D be a domain in the z-place limited by a simple closed
curve €. A subdomwain D’ of D limited by a sircple closed curve ¢”
will be called of type 4, if

a) ' has exactly one point 2, in common with C, and other-
wise is situated totally in the interior of C;

b) the curve € has a tacgent i at &;

¢) the curve €’ 13 non-targential to C at 2.

Condition ¢) means that in the neighborhood of 2, the eurve ¢*
is contained in an argle with vertex ab z,, situated on one side of ¢,
with neither side of the angle on t.

Lemma 2. Let fi(2),fs(2),... be o sequence of funciions regular
and uniformly bounded in a domain D limitd by a simple closed and
rectifiable curve C. Suppose that the boundary values of the fa(2) exists
at every point of a set B.situatcd on € and of positive lincar measure,
and that these boundary values converge 1o a limit, as n—oo, at every
point of B. Then almost every point z, of E has the following property:
the sequence {fn(2)} converges uniformly inside every suldomain of D
having z, on its boundary and of type A.

This lemma can be easily deduced from Lemma 1. For let
2= p(Z) be a function regular in tke cirele |{|<<1 and mappirg that
circle conformally orto D. The functiors ¢,()= falp(8)] are regular
and uniformly bounded in |Z]< 1. Sinee the wappir g can be extended
in a continuous ard ore-one way to the closed circle |(]<1, and
is conformal with respect to non-tar gertial paths at almost every
point of |¢|=1, and sitce tke sets of licear weasure zero on either
boundary are mapped into sets of measure zero, ore sees immediately
that there is a set B’ of positive measure situated on t]l=1 and
such that at almost every point of it the boundary values of the
functions ¢n(¢) exist and converge to a liwit as n-—-oo. The set B
is merely the image of E through the mappirg 2= p(f). If we omis
from E’ a subset of measure zero, the ¢, will possess the required


GUEST


216 A. Zygmund:

properties at every point of E'. Hence, by Lemma 1, for almost
every point ¢ ¢ E' the sequence {p,({)} converges uniformly in
every A(fg,%). If the mapping is conformal at {,=e%%, this implies
the uniform convergence of {f,(#)} in every subdomain D’ of D of
type 4 and having z,=p(¢®%) on its boundary. Obviously almost
every point 2, ¢ B has the required property, and the lemma follows.

Also this lemma holds if # is a continuous variable (or a sebt
of variables) tending to a limit.

Lemma 3. Let Uy(L) be a family of subharmonic functions in

1l<1 dependirg on a real-valued parameter A and non-decreasing-

in A for every fized £, tl<1. If

2

{13) f Uy o)< M< -+ oo

0

(0<<e<<1)

with M independent of 2 and o, then there is a harmonic function H(C)
W |¢|<1 majorizing all the Uz(C) there.

This is a classical result for harmonic functions. The passage
to subharmonic funections is immediate.

Lemma 4. Under the assumptions of Theorem 1, for almost
every point (23,a3,...,2%), the function f(21,%,,...,22) is bound.d in

(14) A, n) X A(a8,7) X ... xA(mg,n),‘ whatever n<<11).

Let % and 4 denote two positive numbers less than 1. If u(2)
is a non-negative harmonic function in |z|< 1, and continuous for
2] <2 we set

Unat () =Max u(2) for z e A(w,An,2).

‘We shall need two inequalities for Uw*(g)10). The first is

(15) {jn[U”“ (@)1 a2}’ < By j”u(wx) dw,
o

0

10) Both inequalities easily follow from, the principal results of Hardy
and Littlewood [1], though neither is stated there explicitly. A proof of (15}
will be found in TS, p. 248.

1) This lemma, whose refinement to Theorem 1 represents the main
result of the present paper, was presented at the meeting of the Mathematical
Club of the University of Michigan March, 1942,
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~where § i3 any positive number less than 1. The second inequality is

2 1
(16) [ tas{UP@)} da< A [ gafu(ien)} do+4ge,
o [

‘where a>1 and
Za(t)=1log® (i+1),

Here and in what follows by letters A,B,... with various sub-
seripts we shall denote constants, not necessarily always the same,
depending only on the parameters exhibited in the subseripts.

Tt is seen immediately that the inequalities (15) and (16) remain
valid if w(e) is a function non-negative, continuous and subharmonic
in |¢|<1. The condition of continuity can be dropped here, but
the point is without importance for us, and the passage from sub-
harmonic functions to their harmonic majorants is particularly
gimple if the former are continuous. For it is enough to apply the
inequalities (15) and (16) to the function harmonic in [¢|<2, con-
tinuous in [¢|< 1 and coinciding with the given subharmonie function «
on [¢]=4, and then to use the fact that this harmonic function
majorizes % in |z|<A.

Let us write
@amn log+ [f(2yy.es 28| = U221y v 5 %)

Taking, as before, 0<n<1, 0<<2A<1, we set

(t=0).

for 2, € A(@y, 14, 4)y
for 2, e A{@wy,nh,A),

U1 (25, ...y ) = MAX (21, 00y 22)
UL (25, vy 2n)=Max U (29, -0y 28)
L7 =Maz ULZy (%) for 2z e Al@xy 13, A).
Each of the expressions on the left is a continuous and sub-
‘harmonic function of each of the variables z in parenthesis. If no
confusion arises, we shall omit the superseripts 54,4 in notation.

By (15),

2z

27
(18) {[ (Ugoxgdasf’* <Bus [ Uy sVt
[}

If we integrate both sides with respect 0 &y,...,0%—1 and apply
‘Holder’s inequality to the left side, we get '
2n 2%

. 2 2n
(182) {f [ (U,l__,xk)"dxl...dmk}llng,,,.s [ oo Um0 8. A
. [

(]
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Similarly, by (16),

2 . 2w
[ Uy (269) s < Ans [ (U p (685ty 2698 dps - A |
9 0

and integration with respect to ay,...,%s—s2,® gives

YT 2%
S [ Uspy 650 @y G <
)] 0

2

27
<Ay ff . { le'--"k—z (Aen—1, Aer) daty ... Ay -+ A gy,
0 0

Proceeding in the same way and constantly using (16) we get

Az

[ tra{ U (A, .. R}y <

0

2
SApps [ gaafulienn, .. 2w} dey+ A,
[}

and so

(19)

27 2w
ff sp—o{ Ux, (62, ..., Actr)} diy ... dosp <
L0

2n 2xm

<A’7’k—1/"'f xk..j{’llr(;uéixl, ...,;uéixk)} dml...dmk+A,7,k_1 .
0 0

Using this chain of inequalities from (18 a) through (19) we find

([ otppan.anffi<

o om

< On,ﬁ,kfn-f L1 LW 2670, ...y A6PR)} Ay ... divg ++ Oo e
] [}

(20)

Let us now observe that the boundedness of the integral (3)
i8 equivalent to an inequality

2 2w
(21) ff A {u(r €%, o rp R} Aty L A <M< L 00 (PyyeneyPe< 1)

0 0

Hence the left side of (20) never exceeds ' - Coge
The integrand on the left is & non-decreasing function of i.  Hence,.
making A tend to 1 and setting

1 —T1i A4
le“‘xk_.];’ll-g} le...xk

icm
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o [ (U2t o™ < Oy M+ G
0 [0

Hence, in particular,

(22)] Uy <t 00
for almost every point ay,...,4;. Taking for 5 a sequence of values
tending to 1, we obtain Lemma 4 since, as immediately seen, U,r,,,k is
the upper bound of u=Ilog*|f] in the domain (14).

Incidentally, we also proved that under the assumptions of
Theorem 1 the function Us,..x, belongs to L? for every é<1.

3. Proofs of Theorems 1, 2 and 4. We begin with the
proof of Theorem 2. Let u(2) be subharmonic, non-negative and,
say, continuous for |z[<1. Let 0<7,<r<1. Then

27

r—+rq Y .
\r—ro‘/‘u(% )

]

(23)

for Je{<r,.

For « harmonie, this is a classical inequality. The extension
to subharmonic functions is immediate.

For fixed values of #,...,%, each absolutely less than 1, the
fanetion log+ |f(2y,...,2x)| is subharmonie in 2. Hence

27 2x

Ir(z) f f log™* |f(ay,rel 2, ..., 7ek)| dBy... Aty

is a funetion of 2, subharmonic and continuous in |au| <1, for every

value of the parameter r, 0<{r<<1. It is a non-decreasing function

of 7. To prove the latter, it is enongh to show that 1f we replace in the

integral the numbers reffe,...,rel% by 75¢%s,...,72¢%% the resulting

expression is a non-decreasing function of 75,...,7z. This is seen, for
27

example in the case 7,, from the fact that / Tlogt|f(2, To6™2, ov., T€5E) [y
0

is 2 non-decreasing function of r, for every system of 2,%g,..., %

and so remains a non-decreasing function of 7, after integration

with respect t0 y,...,; over the interval (0,2).

219 -
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The inequality (7) gives

k2

f I 6%) doy <M <<+ 00,
0

so that, by Lemma 3, there is a harmonic and non-negative func-
tion H(z,) majorizing all the I.(z) in |z|<1. The function H(z)
has a non-tangential limit almost everywhere. In particular, for
almost every @, there is a finite constant M(wy,7) such that
H(z )< M(y,7) for 2 e A(w,7), 7<<1. Hence

2n 27w

24) I (z)= ff logt|f{zy,ree, ..., re™r)| dwy ... Ap<< M{t0y, )
0 0 L.

for 2 e A(wy,7n).

Since; for #, fixed, log* [f(2,2y...,2:)| is a subharmonic funetion
of each of the variables z,,...,2, repeated application of (23) gives
the inequalities

1rtr,

log+ ]f(zl,zz, .,,7zk)<2_ﬂ,r— .
0

27
/‘log'i‘[f(zl,'r(—;"’f;x,za,...,z,,)|da:2

0

2r 27
LN frdr\ o
<) () [ [ vostitremron, ..o oz,
"0 0

T T

2% 2w
1 k1 fp e g Vo1 )
<(§7—t) (;—_—T:) f f TogrHf(ey, 7653, .., 76%)| dety... dg
[] o
1\t «r_l_ To k—1 .
=(%) (;_—T‘;) Ii(zy), 1t [op| gy ovnplad Koy O<rgsr< 1.

Let us fix a value %} of #, for which we have (24). Making r
dend to 1 we get

) 1 \E1/1 e\
ool < (5] (ER) M

for 2 e Alagyn)y |2, <7yrers |2y <o

Hence f(z,2y...,2) 48 bounded for [#alyeresl2n| mot exceeding r,

-and for 2, e A(a3,n), whatever ry<1 and 7<<1.It follows thab f(2,,2y,...,2)

is eq?wontinuous in the variables 2,...,2; satisfying [2a] 7oy oongl 2] <7,
provided the. parometer &, remains in A28, n).
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‘We shall now prove the existence of f (%,...,z) for almosb
every @ and uniformly in |z|<ry,...,|e|<r,. For this purpose,.
on account of the equicontinuity just established, it is enough to
show that there is a sequence of points (zf,...,2]), j=1,2,..., dense
in the (k—1)-cylinder
(25) [EA S ARG
and such that, for every j, and almost every «; the function
f(#},4],...,2]) fends to a limit as # tends to ¢ within A(z,%). The
set E; of the values #; for which this takes place and which is of
measure 2z, depends on §, but the set E= %, H,... is still of measure 2=,
and in F the limit of f(z,,2],...,2]) will exist for every j. .

It is of course enough to prove that for every fixed set of the
radii 7J,...,7} less than 1, almost every system of amplitudes (22, ...,43)
has the property that f(z,.72 r’i””g,...,wg %) tends a limit as 2 approa-
ches almost every point ¢%. For this purpose let us write (7) in
the form

2% 2w 2m
f...f{flog** |f(r, 6, rgewz,...,rge“k)]dml} diry...da, <M.
0 0 0
The inner integral here is a non-decreasing funetion of 7. It
follows that for almost every point aj,...,2% we have

2
/ log+ [f(rle-"”’x,vgei“g,...,'rgei”g)lda:1=0(1) as 1;—>1..
1]

Hence the funetion f(zi,rgeimg, ,72&"’2) satisfies the Nevanlinna-
Ostrowski condition (1), and so has a limit at almost every point.
of the unit circle. This completes the proof that fs (2...,2%:) exists
for almost every a;, and uniformly in |2,)|<rg, ..., |2 <7,

We have already used the faet that if in the integral in (24}
we replace 7¢¥z,..., 1k DY rote,..., 7% ¥k, the resulting integral is
a non-decreasing function of 7y,...,7;. Hence (24) implies

27 2%

[ [ YogH (o652 . 746R)| 4 .. Dt M@ ),
0

[}

for 2 e A(wy,7)

and for every set of numbers 7,...,7; less than 1. If #, also has the
property that f.(2y...,2:) exists in the sense just established, the
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last inequality gives
2% 27

[ [ Togt [fu(racts, .ractn)] Aty i < M@y, 7)
0 [}

(PageeeyTe<<1).

This completes the proof of Theorem 2. .

‘We now pass to the proof of Theorem 1. The proof will be by
induction from %k—1 to k. For k=1, Theorem 1 reduces to the Nevan-
linna-Ostrowski theorem.

Let %(t) be a non-negative, increasing and convex function
of 1220, and suppose that f(z,...,2x) i3 a function regular in the
k-cylinder I, and satisfying the condition
2 2w .

[ [ 2{logHi(ries, oy raetn)[} dmy .. din=0(1)
9 0
for 73,...,72<<1. Since y(t) >%t for large ¢, where k is a positive con-
stant, condition (26) implies an inequality (7). In particular, for
almost every @, the function
{27) Fxy (Rayeers2a) = M f(2y,..0,22)

et
exists and- is regular for |z,|<1,...,|ex]<<1. Moreover, for almost
-every #, we shall have not only the inequality (7a) but the stronger
inequality

{26)

2z 2w

[f g {logt fr (raeie, .. PReE)|} Ay ... dip<< M <oo.

0 0

{In particular, if F(2,...,2)eH?, 50.d0e8 fr, (#25eenp2s) for almost
every @,).

The proof of this is merely a repetition of the proof of Theorem 2
if we replace in it log* |f| by y(log+ [f]) (the proof is even slightly
shorter because the existence of (27) has already been established).
For the only property of log* |f| we used was the subharmonic
«character with respect to each of the variables #y,...,2, & property
which is obviously shared by x(log™|f])-.

Let us now take for x(¢) the function ¢ logt—*(¢4-1). Under the
assumptions of Theorem 1 condition (26) is then satisfied, and so
for almost every w; we have (28), which is equivalent to

{28)

2%

e
ff log+ify, (ree%, ..., rhetn)|
Y [0

{log+ logHf,, (rye™, ... SRR [Vt g, . sy < My << o0
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(with M, not necessarily the same as before). In particular, we have

2z 2m

ff logt |z, (75652, ..., T E8)]
@
{log™ log™ |f., (1o, ..., rpeBe) J22 dir, ... dp < M <<co

for almost every ;. Hence, if we assume the validity of Theorem 1
with % replaced by k—1, we get that for almost every =, the non-
tangential limit

(29) Fr (65%3,...,65) = Iim

N . A CYRY
2o etN2, . zp > elXy
exists almost everywhere in (@,...,25)-
Let us now consider any point (a,...,49) with the following
‘properties:
(i) For almost every a; the function f(2,...,2x) is bounded in

(30)
‘whatever 7<<1;

"—1(‘771777) XA(ﬁgﬂ)) K XA(“%J])

(ii) fxx(e"”‘g,...,e‘i‘”i) (see (29)) exists for almost every .

Almost every point (29,...,29) satisties condition (i), and almost
every such point satisfies condition (ii), and so also conditions (i)
and (ii) simultaneously. Let us fix such a point (23,...,2%).

Let us also fix an %, 0<<y<<1. On account of condition (i),

a) there is a perfect set P of measure arbitrarily close to 2z
and such that f(zy,...,2) is uniformly bounded in (30) for x; € P.

We may also assume that

b) the function fx,(2,,...,2) exists for every «.¢ P and is regular
for |2]<1,...,|2| <15

(9] f,,x(eixg,...,ei”g) exists for @, ¢ P.

Let us now set

D= 2 Awy,n)-
. x 6P

Thus D is an open domain of a (familiar) starlike shape limited
by a simple closed and rectifiable curve (. The latter has the points
e, 7P, and only such points, in common with the circumference
o) =1. The function f(z,...,%) I8 bounded for zeD and
(Ryeerr2y) € Ay m) X oo X Al n)- Let us consider here (2,...,2) a8
a parameter tending to (6°2,...,¢%). Thus we have a family of
functions regular and uniformly bounded for z e¢D. On account
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of property b), each function has a limit fy(2gy...1%) ab every point
¢ with @, P, and on account of ¢) these boundary values converge
on P for (zz,...,zk)—»(ei”g,...,e":“’?z). On account of Lemma 2, for
almost every @, P the function f(zy,&p...,2x) tends to a limit as

. 0 50 ' . prs

(2ay-:v,21) tends to (€%,...,¢"%) and & approaches ¢ from within
of a subdomain of D of type 4. For almost every @ eP the tangents
0 |#/=1 and to O coincide (they certainly coincide, though this
is not important for us, at every point of density of P). Thus for
almost every point of P, and no matter what is #'<1, the function
(2, .-.,2s) tends to a limit ag 2, tends to e within A(@y,n') and
(29, oy2s) tends to (€7%5,...,¢ %) within A(aQn) X ... X A(ad,mn). This
property holds for almost every @, since the measure of P is arbi-
trarily close to 2. Takirg now z arbitrarily close to 1 we conclude:
that for almost every (3,..,#%) we can find a set of measure 2
of values 2f such that no matter what is 7<1, the function f(ey,...,28)
tends to a limit as (z,...,2z) tends to (e‘i”g, ei‘”g,...,e”:‘”?«) remaining-
within A(a%7) X A7) X ... X d(@h,7).

Thus we proved the existence of the limit f(eiz(l),...,ﬁiw?r) for
almost every point (a9,...,4%), under the assumption that Theorem 1
is true with & replaced by k—1. Since the assamption is valid for
k=2, Theorem 1 is established completely.

‘We now pass to the proof of Theorem 4. We restrict ourselves
to the case k=2 which is entirely typical.

Let us consider any function %(z) subharmonic and, say, con-
tinuous in |¢|< 1. Usicg the same notation as in the proof of Lemma 4,
we have the inequality

2

fm{Unz,z(m)}pmgAﬂ(p ?;1)” [ P (Aei*) da ‘
[} 0

(p>1),

due to Hardy and Littlewood (a proof 'can also be found in TS,
Pp. 248).

Let now u(2,{) be non-negative, continuous and subharmonic
in z and ¢ separately, for |2/<1, |fj<1. Let 0<z<1, 0<<A<<1l. Let

(31) TUnA(m,0)=Max ulz,l) for zeAlw,n,d), £ ed(0,Mn,A).
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‘We shall prove that
2T 2T 97 9m ) :
(32 T, ] P \E T
{32) {UA (@, 0)}pdedt <j4, pTl, f uP{Ae™, 2e®)dr do (p>1).
0.0 : ) T e

For, given any ¢, [Z{(l, let us set
{33)

Vot (e,Oy=Max u(z,{) for zeA(w,ni,l).
Then
Untd(p, f)y=Max Vi*4x,) for (e A(8,n4,4).
Since, for 7, 2, # fixed, V%?(z,I) is subharmonie.and continuous
T in ¢, ’

p—1

97 “om :
i f {U%”-’z(ﬁ,ﬁ)}l’d(ig‘g( P ),, f (P2 (e, 49}P 26,
0 ) B 5

or, integratirg both sides with respect to » and inverting the order
of integration on the right,

27 2= 2t 2

(24) f f {UTI‘»‘(;L-,6)}Pd.rd(i§‘4,‘(pﬁ 1)” f s f T (a1 )P A
00 [ a0

For any fixed &, {¢]<1, the function u(z{) is subharmonic
in 2, and so )

2 2a

f {i'ﬁzﬁ(-n,zeiﬂ)?dmg:h;(?ﬁ‘;f f uP (A, 4e6) dr.
. p .

Substituting this inequality into the right side of (34) we
get (32). . : T :

For p>2 the expression {p/(p—1)}* does not exceed 4. Hence,
if we take for p in (32) the value 2k, multiply both sides of the
inequality by «2*/(2k)! and sum over k=1,2,3,... we obtain

2z 2w 272
f j cosh {a U™z, 6)} dwmdl < 16 43 f f cosh {an (2%, 2¢")} dxag,
0 0 0 0 .

Fundamenta Mathematicae. T. XXXVL 16
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assuming, as we may, that 16 45>1. Or, on account of the in-
equality %ei<cosht<e’ valid for >0,

2w 27 2 2w

f f exp {aU"™a, 0)}dzdf <324 f f exp{au (Ae™ 26'9)}11:1;110

It is now easy to complete the proof of Theorem 4. For let
f(z,¢) be a function regular for |2j<1, [[[<1, and satisfying
2 27

[ [ \tre, gom)|edwao <t

[

(36) (re<1, a>0).

+ Liet us now set

’M(Z,:): 10g+ If(zi ‘:)I
Fndd (g, 0)=Mak [f(z,{)] for

(#,8) € A(@,4n,2) X A(8,4n,3)
Fi(w, 0)=1lim F4(, 0). ‘
A>1

“Then (see (31)),
255 2n 2n 2m
f f {rn“(w, Nededo< f f exp {a U=, 6)}dd0
2n 2%

<324 f f exp {au(ie" zew}dma

27!:‘ 2

<8243 [ [ {Ifae=, 2e0)*+1} dwdo.
0o 0

Let us compare the extreme terms here. If we apply the resulting
inequality to the function Kf, where K is a positive constant, and
then make K tend to 4 oo, we get

© 2m 2m 2 2m

_[ f (P, 00" dmwdd < 324 f f [F(2e" Aewldmd()<32A M

and, making 1—1, |

2 27

f f {F”m 0)) drds < 3245 M°,

which completes the proof of Theorem 4.
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Theorem 5. Under the conditions of Theorem 1, at almost every
DOint (24,@s,...,0s) the non-tangential Wmit
fle™1, 6%, ..., ek) =

limﬂznzza'";zk)

48 equal to the dterated limit Fryage e

The proof is almost immediate and it is enough to consider
‘the case k¥=2. Since, by hypothesis, f(e,etn) exists almost every-
where, given any &>0 we can find a set F of points (#,,@,) situated
in the square Q0o <27, 0w, <2x) sueh that the measure of
Q—F is arbifrarily small and that

@7 [Frie™ rogts) —f(es, o) < e
for (wy,,) € H, 1—r<<8, 1—r,<d, d=04(s)

{we use here the existence of the radial limit only). We know that

Jx (2,) exists for almost every «,. Hence, making r, tend to 1 in (37),

we see that

[, (o) — (€™, 6) | e (1—r<d)

for almost every #, such that (#,4,) ¢ ¥ or, in other words, for almost
avery (z,#;) in E. Making now 7, tend to 1 we see that

[fxtl'z

for almost every point in E. Since £ and the measure of @ —% are
arbitrarily small, Theorem 5 is established.
It follows from Theorem 5 that wnder the assumplions of

—f(em, )| < e

"~ Theorem 5 (in particular for the functions of the class H®) the iterated

Uimil of the function f is almost always independent of the order in which
the variables 2;,2,..,2x tend successively to limdis. It is likely that
the result remains valid for the functions f satisfying the conditions
of Theorem 2,

Added in proof, 15, IX. 1949. It can be shown that under
the assumptions of Theorem 2 the function f tends to a limit as
.,%) approaches almost every point (e®,...,e%%) non-
tangentially and regularly. ,Regularly” means that all the ratios
{1—7)/(1—rg) remain bounded. A proof will be given in a paper

by A. P. Calder6n and myself.

16¥


GUEST


D9
s
%

A. Zygmund: .

4. Applications to conjugate series. of several va-
riables. First we recall a few familiar facts from the.theory of
trigonometric series %)

{38) La, + (a,, cos ns+ by sin ney)

of asingle variable (we restrict ourselves to series with real coefficients).
This series is the real part of the power series

. " .
(39) 'i‘a'o‘!‘ y(an_zbn)z" .
if we set here z=e¢. The imaginary pa]t of (39), under the same
assumption, is ;

(40) f (tn sin e —by, Cos nA)

and is called the conjugate series of (39). If we denote (39) by 8,
its eonjugate will be denoted by S If 818 the Fourier series: of
a (Lebesgue) integrable function f, then_a]_most everywhere S is
summable Abel (or even (C, 1)) to sum

' (£

{41) f(a =—= ff .r+t)—c0t t(lf——— Tim
. R

(&)

where f denotes the integral extended over the part of (—~n,:fc)

gt
situated outgide the interval (—e,&). The result includes the c\ﬂbeI‘ﬁOH
‘that 7(m) exists almost everywhere for every mtegmb]e .

If we write § in the form ;

. e :
{42) D epeinr, =

Yan—iby), 020, ¢ =8,
oo =0
then § can be written
o oo
{43) . 2 (—t sign n)epeirx.
n==—oo .

12) All the results needed here will be iound in TS, C‘h VII 11 or the in PQuah’(r'

{45), see T'S, p. 165. Ex. 7.
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The very well LnOWn result of M. Riesz asserts that if f belongs.

50 IP, p>1, so doesT. f. In what follows we shall also need the following'
two 1nequahheq

{44) (f ,'f;"da,)”dgAa [litar (0<d<1),
@5) - [[fltogt lie—tdr < Ao [l (logtifjedr+ 4. (1),

‘the latter especially in the case a=1.

Let ns now consider a double trigonometric series

e +m
(46) 2

m,n=—0c0

€mn ¢ 0 C—my—n= G n-

It can be written in the equivalent form

- i
Zo(nm,, CO8 ML CO8 NY + Pmp 8IN ME COS NY+
m,n=!

{47)
L Ymp COS M 8iD WY+ Oy BiD M B0 NY) Ay

where the multipliers 7, are introduced for the gake convenience
only and are defined by the eguations

imn=1, (m,n==0).

(S

my=fon=1%, Agg=

The coefficients a,f,y,6 are then easily expressible in terms
of the c¢mp. For example, ¢mn=—~Cmn~+ Cm—n—+ C—mnt C—m—ny ©€tcC.
It ¢mr=0 whenever mn=0, we shall say that (46), or (47), is of
resiricted type.

Let us now consider a power series

(43) > (dpn—1Bmn) 2"
m,n==0
of two variables. The real part of it for z=e%, {=¢¥ is
{49) Y A 08 (i ny) - By sin (ma -+ ny),
m,n=0

which shows that only special series (47) are real parts of power
zeries of two variables. Writitg (49) in the form (46), we see that
@ necessary and sufficient condition for (46) to be the real part of a power
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series is that cmn=0 for mn<<0. If (49) is the real a part of (48), the

imaginary part is
(50) 3" Apn sin (ma--ny) —Bun €08 (M0 ny).
m,n=0

Thus the notion of conjugate series does not appear naturally
in the case of series of two variables. We may however introduce
it formally. For using the deflnmon (43) we may consider alongside
{46) the three series

3 G (— sign m) elmxtng), 3 e, (—i sign n) efmsEnn,

1) > Con(—sign mn) c‘("'*'*'"y)

which will be the conjugates of § with respect to z, to 0 Y, and to 2, 19
If we denote (46) by 8, these series will be written Sx S and S
respectively. The series 8w =0 is always of restricted tvpe I S
is of restricted type and of the form (49), then (50) is both S* and S,
The series (50) will be called the conjugate of (49). If the constant.
term of the power series (48) is real, an assumption which we can
always make, the constant term of (50) is zero.

It is 1mporta,nt to observe that, for the most general series §
in (48), 8— S is always the real part of a power series. If, in addition,
8 148 of resiricted type then the conjugate of 8— Q= is Kx4 8b. For

8B =3 0nn(1 -+ sign mm) eitms+np)

and the coeﬂicienfs on the right are zero if mn<<0. The second part
of the italicized statement follows immediately from the formula

{1+ sign mn) sign m=gign m+ sign n (m,n=0).

The importance of this lies in the fact that though (unlike
in the case of series of one variable) the complex methods cannot
be applied to the general series 8, they are applicable to 8—58%,
If we can obtain some information about the behavior of the latter
series, and if we know the behavior of §, we get information
about S,

As an application of this idea we are going to prove the following
result, in which fis of period 2% with respect to  and y, and @ denotes
the square |z| <=, |y|<a.
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Theorem 6'. If f(x,y)logh|f(z,y)| € L, then

n w
> 1 1 11 1 )
f(%y)———;/ fi(w—i—u, y—}—v)g cot 3%5 cot Evdudz:
(52). R
(= ()=

- —

exists almost everywhere. Moreover
( f (17l amay)” < 4, f [l log+ il dw dy+4s.

The existence of j for felr, p>1, was proved by Sokél-
Sokolowski [1]. He even showed thatj exigts if f (logt|f])3 is in-
tegrable, and he conjectured that this result holds if the exponent 3
is replaced by 1.

In proving Theorem 6’ we shall be concise and we shall omit
certain details which can be found in the paper just quoted. Let
us denote the (C,1,1) means of the series (51) respectively by amn(a:,y),
u,.,.(m,y), in(2,y), and the Abel means by _P"(m,y) Ph(zy),
23 (5,y). Sokotowski proves (L c., Theorem 4) that, under the
assumptions of Theorem 6,

1 @n (=
(53) 'Em(m,y)——‘——f./ fx—l—u,J—L'v) eotOu eot vdudv—»()

-7 —3

erenmefo=f]

almost everywhere, and exaetly the same proof (for Fejér’s and
Poisson’s kernels satisfy similar inequalities) shows that

@z )z

(54) Py~ f fle+u, ]/+1=)%cot%u%cot%rdudc»(}

Pl
—7 —T

(e=1—r—>0, n=1— g—0).
Let us assume first that §, defined by (46), is of restrieted type.
Since f logt|f| is integrable, both S« and S are Fourier_series of

integrable functions ]" z,y) and 79(2,y), and so V= S+ 8 is the
Fourier series of h= f"—l— 7 & L. Moreover ¥V is the imaginary part,
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on the unit circle, of a (1estuoted) power series F(z,0) defined by
(48). Hence the real part U=8— S*F—Zza,n,,c'(mw"u’ of that
power series is of the class I, for every 0<d<1. More precisely,
it we set U (@,y)= Z'u,,,,,ﬂmlz_,lﬂl fmxtng)  then

([ [ lwelarplpdavay ) < s [ 11t day
Q Q

(55) Q
<Aﬁff|f| log™* |f| dwdy +4s.
Q

®

Tt follows that F(z,C).c H? for every: <1, and.s0, on account
of Theorem 1, has a non-tangential limit almost everywhere. In part-
icular, §—Sw is Abel summable at almost every point. Since the
same holds for § (see Jessen, Marcinkiewicz and Zygmund [1]),
F is Abel summable almost everywhere. On account of (54), this
completes the proof of the first part of Theorem 6’, under the assump-
fions that § is of restricted type.

To dispose of that assumptlon we.- consider the iuncuon

szf(w,y)dwdy{

(56) glay)= f g da+ f ey dy —=
- ., R —JT =TT

which hag the same ?marginal” coeﬁmlents Cmo y Con a8 f, the remaining
coefficients being all.equal to zero. Thus the Fourier series of f,=f—g¢
, is of restricted type, and since glogt|g|eL the function f,log*|f;| is
integrable, so that j¥(@,y) exists almost everywhere. On the other
hand, F.m,y) exists everywhere and vanishes identically. Hence
7% exists almost everywhere.

: The second part of Theorem 6’ follows immediately from (55),
and the extension to “non-restricted” series is again achieved by
considering the function (56).

The purpose of the foregoing argument was primarily to show
how complex methods can be applied to double trigonometric series,
and we are not interested in exploiting the field of conjugate series
here. We may however state without proof some additional result
which can easily be proved,

First of all, from Theorem 6’ and from (53) follows that S is
almost everywhere summable by the method (C,1, i) (or even
summable (C,a,p), a>0, >0, a8 can be shown smularly)
have already stated the fact that S is almost everywhere summable
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Abel. That %
can be proved similarly.

f f I?””l{lug(‘3+l!‘gﬁ}“‘”dl’d.}/siéa/'f [fidogH. [ededy+ 4o

(,9) has non-tangential limits almost everywhere
An application of (45) shows that

(a>1},

an inequality which for a=1 degenerates into the second part of
Theorem 6'. What is more, both inequalities hold if instead of j

we write there
(s):t () . .
ff(:r_'+w..z,'+r).}mté—u—.{.—cot rdudy] (e<m, p<m) -

— =

“(r u)*\up e

sap [0wale,y)], or P*(r Y= \111),.9§f,g(1

myn

or G, y) =1

We end by a few remarks coneerning trigonometric series 8

of & variables
4o
2 Cag..ng gy eyt

Ry yueeyBtp=-00

(57)

The notions of restricted series and of conjugate series are define:d
as before. A necessary and sufficient condition for S to be the real
part of a power series > [ T is that all the coefficients
Cnyny whose indices distinet hom 0 are not of the same sign vanish.

Theorem 6. Let j(@y,...,85) be of permd 27 with respect 10
cach variable and let § (log* |/t eL. Then

?(‘1?1. ‘..,wk)-:

epn e
_1\ 1
= f(['l—r‘lllv ,.a:k—ruk)wcotu
#yen ak—)() a

exists almost everywhere, and

(/ f’!l"'lx ) Auf - [liltog*]

If we use (44) and (45) the pmof of Theorem 6 follows the same
line as that of Theorem 6, provided we show that a proper linear
eombimation of § and of its conjugates is always the real part
of a power series. We confine our attention to this problem only.

.1 1
-5 Suotg wpluy ... dug

/ ,k-! dl’/’l .. (ll'[;-}—:l S,k
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Let S be an arbitrary series i57) Let ) 8% denote the sum of
the conjugates of S with respect to one variable, 2 8m% — the sum
of the conjugates with respect to two distinct variables, ete. We
shall show that

(58) S-—Z S-hx;-_l_z Sxivaxexe —

is always the real part of a power series of k variables, and that if 8
is of restricted type, the imaginary part of that power series will be

(59) D Rn 3 Summt

For let ny,ny,...,np be any set of indices all distinet from zero,
and let 7;==signn;. We have to show that if the n; are not of the
same sign then
(60) 1430+ 3 mnatgtat

is zero. For let us assume for the sake of definiteness that % is even
(the proof for k odd is similar) and let us denote the sum (60) by P,.
Let us denote a similar sum formed with #y,...,7x—2 by Pp—s and let
the sum

> mt 3 mmanst

be N;—s. Then one easily verifies the relation Pp=Pj_o(1+ 27p—17) +
+Nyo(na—1+ns), from which immediately follows that Pr=0
if for example 7x—17x<. 0.

If 8 is of restoicted type, so is (58), and one easily verifies that
the conjugate of (58) with respect, say, to 4, is (59).

The other remarks we made about double trigonometric series.

are immediately extensible to the series (57).

Buenos Aires, R. Argentina 1. VI. 1948.
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