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Closure algebras.
By

Roman Sikorski (Warszawa).

This paper treats of s-complete Boolean algebras on which
there is defined a closure operation satisfying the well-known
axioms of Kuratowskil). A o-complete Boolean algebra with
a closure operation is called a clogure algebra.

Almost all topological theorems which can be expressed in
terms of the theory of Boolean algebras hold also for closure algebras.
The proof of these theorems on closure algebras is often the same as
‘the proof of analogous theorems on topological spaces. C. Kura-
towski has worked out a method for the proof of topological
theorems, the so-called topological calculus ). This method is
especially suitable for generalizing topological theorems to the cage
of closure algebras. In general, in order to obtain a proof of a theorem
on closure algebras it is sufficient to replace the term: »% subset
of a topological space” by the term ,.an element of a closure algebra”
in Kuratowski’s proof of an analogous theorem on topological
spaces. Therefore I shall omit proofs of many theorems on closure
algebras.

The specification of all topological theorems which hold for
closure algebras is not the purpose of this paper. I ghall show only
the method and the direction of generalizing and I shall cite many
examples of topological theovems (given in the work Kuratow-
ski [1]) which ean be generalized.

') Finitely additive Boolean algebras and lattices with a closure operation
were examined by many writers. S8ee e, g. Me Kingey and Tarski [1]; Monteiro
and Ribeirb [1]; Nobeling [1]; Terasaka 1.

*) Kuratowski [1] and Kuratowski [2]. See also S. Janiszewski,
Thése, Journ. Ee. Polytechn, (1911).
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As a generalization of the notion of a mapping between topo-
logical spaces, I shall congider the notion of a homomorphism of
a closure algebra 4 in a closure algebra B. ﬁ_}mmomorphism f
of 4 in B is said to be continuous provided f(4)CHA) for every
4 e A. Two closure algebras 4 and B are homeomorphie, if there
exists an isomorphism % of 4 on B such that both % and %' are
continuous. Besides the notion of a homeomorphism it is conve-
nient to intreduce the notion of weak homeomorphism. For instance,
if & is a non-enumerable metric separable space, the closure algebra
S(&) of all subsets of & and the closure algebra B(&F) of all Borel
subsets of & are not homeomorphic. GS(&) and B(&E) possess
however many common topological properties, and often the study
of the topology of &(%) can Dbe reduced to the study of properties
of B &). Therefore I shall introduce the followirg definition: two
closure algebras 4 and B are called weakly homeomorphic if the
closure algebras B(4) and BB) (of all Borel elements of 4 and B
respectively) are homeomorphic. In the case of topological spaces
the notions of a homeomorphism and of a weak homeomorphism
coincide.

The main problem which arises here is whether closure algebras
represent an essential generalization of the notion of a topological
space. The answer is affirmative. I shall give a general method
for the construction of closure algebras which are not weakly
homeomorphic to a topological space. The above-mentioned method
is the well-known method of the division by an ideal: if 4 is a closure
algebra and I i8 a o-ideal of 4, the closure operation in 4 induces,
in a very natural way, a closure operation in the quotient algebra 4/T.

In the first part of this paper I shall study general closure
algebras satisfying the four axioms of Kuratowski only. In the
second part I shall examine closure algebras satisfying in addition
a new hfth axiom. These closure algebras are called C-algebras.
C-algebras represent a generalization of metric separable spaces
and possess many properties of these spaces. If & iy a metric sepa-
rable space and I i3 a o-ideal of subsets of & , the field S(%) of all
subsets of &, the field B(F) of all Borel subsets of &, and the
quotient closure algebras G(&¥)/I and B(E )T are examples of
G-a]gebl.'as. In general, &(&)/T and B(X)/I are not isomorphic
t(? a o-field of sets; thus there exigt C-algebras which are essentially
(hﬁere%\t from met.iric spaces, i. e. which are not weakly homeo-
morphic to a metric space. On the other hand, one can prove that
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every C-algebra is weakly homeomorphic to a C-algebra &(%)/1
where & is a metric separable space. The representation problem
for (C-algebras constitutes the subject of the second pari of this
paper ¢). The final theorem is a generalization of Urysohn’s theorem
on the imbeddirg of topolegical spaces in the Hilbert cube.

The study of homomorphisms defired on a C-algebra consti-
tutes the subject of the third part. I shall give a definition of the
convergence of a sequence of homomorphisms. Thiy definition is
a generalization of the notion of convergence of mappings in metrie
spaces. The representation theorems for C-algebras given in the
second part and a general theorem on the induecirg of homomor-
phisms by mappirgs?) enable us to explain more exactly the
structure of homomorphisms and of the convergence of homomor-
phisms. Theorems given in the third part show that it is always
possible to reduce the study of properties of homomorphisms to
the study of properties of certain mappings between metric spaces.

Terminology and notation.

Boolean algebras. Boolean algebras will be denoted by letters 4, B, ...,
their elements by 4,B,...; 4+ B, AB, 4—B, and A’ will denote the Boolean
operations which are analegous to the well-known operations of addition, multi-
plication, subtraction, and complementation of sets in the general theory of sets.
If A+ B=DB, we write 4 C B and we say: 4 is eontained in B. | 4| and 0 will denote
respectively the greatest element and the least element cf a Boolcan algehra 4
i.e. 0CAClA| for every 4Ae.d.

Let 8§ be a seb of elements of a Boolean algebra 4. An element dge 4 (dped)
i called the sum (product) of all elements A e § if it is the least (greatest) element

containing (contained in) all elements 4 € § 5). We write then 4, :A{Z;A (4p —j I?;i)_
€. €

If for every set SC.d of potency <<m (or: of arbitrary potency) there exists the

sum of all Ae 8, 4 is called m-complete (or: complete) §). N,-complete Boolean

algebras will be called also o-complete Boolean algebras. The meaning of the
oo

©
symbols EAH. H_A,, in case of a g-complete Boolean algebra is clear.

=1 n==1

%) The main results of the second part were aunounced in my paper [3].

4) 8ikorski [2], p. 19, th. 5.1.

5 I.e. 10 4 C 4 for every de S, and 2°if 4 Cd, for every . e S, then
A4sC4d,. Analogously for Ap. -

8) By the well-known formulas of de Morgan, if 4 is m-complete,} the
product of all 4 e § exists also for every set SCA of potency <<m. m dehotes
always a eardina.
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Ideals. Quotient algebras. A class I of elements of a Boolean algebra 4
is said to be an ideal of 4 provided-

(i) if Ael, 4,64, 4,C4, then 4d;e I;

(i) if 4;eX and Aye X, then 4;,--4,¢ L.

An ideal I (of an m-complete Boolean algebia A) is m-additive if the sum,
of elements belonging to an arbitrary set SCI of potency <<m bhelongs to I also.
Ro-additive ideals will he called likewise o-ideals.

Let I be an ideal of a Boolean algebra 4. The symbol 4/I denotes the
Boolean algebra defined in the following way:

Elements of A/I are disjoint classes of clewents of 4 such. that two
elements 4,, 4, belong to the same class if and ouly if 4{d,44,4f¢ I. The
class e A/T containing an element 4 € 4 will be denoted by [A]. We say then
that 4 is a representative of the class C=[4] or that A determines the class €.
The Boolean operations on elements of 4/ arve defined by the formulas:

(i) [+ [4]=[4;+ 4,8, [4,][4,1=[4,4,],
{ii) [4]—[4s]=[4,—4,], [4)=[4].

If 4 is m-complete and I is m-additive, 4/T is m-complete. The formulas (i)
hold then also for the infinite sum and product, e.i. if A (Ap) is the sum. (produect)
of all elements 4 ¢ § (where the set §CA is of potency <m), then [4;] ([4,])
is the sum (product) of all elements [4]e 4/T where A ¢ §.

Subalgebras and algebras Bd. If § is a set of elements of a Boolean
algebra 4 and Ee 4, the symhol BS denotes the set of all elements B4 where
AeS.

In particular, E4 is the set of all elements ACE (4 € 4). BA is a Boolean
algebra?): the definition of addition, wmultiplication, and subtraction in JA is
the same as in 4; the complement of an element 4 e BA in the Boolean algebra
E4 is the element EA’. If 4 is m-complete, B4 is m-complete also.

A set § of elements of a o-complete Boolean algebra 4 is said to be a g-sub-
algebra of A4 provided

(i) if AeS, then 4’¢ §;
00
(i) if dned (n=1,2,..), then Y dneS.
n=t

4 o-subalgebra of a ¢-complete Boolsan algebra is also a o-complete
Boolean algebra.

If X'is an ideal of a Boolean algebra 4 and § is a set of elements of A,
then [§] denotes the set of all alements [A}e A/T where 4 e 8, If 4 is g-complete,
I is a g-ideal, and S is a g-subalgebra of 4, then [8] it a o-subalgebra of AL

Fields of sets. For every abstract set & the symhbol &(&) will denote
the class of all subsets of &. &(&) is a complete Boolean algebra,

o-subalgebras of G(&) will be called o-fields (of subsets of &).

If X is a o-field of subsets of & and T is g-ideal of X, the Boolean algebra
X]I i8 called a o-quotient algebra (of &). )

7} See Sikorski [5], p. 141,

icm

Closure algebras 169

Homomorphisms and isomorphisms. Let 4 and B be two g-comyplete
Boolean algebras.

A one-one mapping % of .4 on B is said to be an isomorphism provided
that 4,C4, if and only if h(4,;) Ch(d,). If there exists an isomorphism of .4 on B,

~we say that 4 and B are isomorphic.

A mapping f of 4 in B is called a o-homomerphism 8) it

HA)=7(1) and f(%z;i,,) =§‘j(31,,).

Evcl’yVi.‘\‘(.)lll.()l‘phisnl of 4 on B is a ¢-homomorphism.

Let f be a o-homomorphism of 4 in B and let A e.d and Be B.

The symbol Bj will denote the g-homomorphism, g of 4 in BB defined
Dby the formula

gld)y=DB.f(d) for de A.

If SC.d, the symbol f|§ will denote the mapping f restricted to elements
of §9). In particular, fl4.4 is 2 o-homomorphism, of 4.4 in f(d)-B. If § is a ¢-sub-
algebra of 4, then f|§ is a o-homomorphism of § in f(S)CB.

Exawmples of homowmorphism and isomorphisms. Let 4 he a
g-complete Boolean algebra and let I be a g-ideal of 4.
1) The mapping
f(A)=[d]e 4/ for de 4

is a g-homomorphism of 4 on /L Tt is called the natural homomorphism of .4
on AlI

2) Let Hed and let us consider the two following Boolean algebras B4/ET
and [B]d/I. Let 4 elld be arepresentative of an element Ce EA/ET and let h(C)
denote the element of 4/7 which is determined by A. h(C) does not dspend on

. the choice of the representative 4 and h(0)e [E14/1. Tt is easy to see that I is

an isomorphism of BA/EX on [E]4/I. h will be called the natural isomorphism
of BAJET on [B14/I.

3) Let 8 be a o-subalgebra of 4. [S8]is a o-subalgebra of 4/7. Consider
‘the Boolean algebra §/I8. Let e S/IS, let 4 e § be a representative of ¢ and
let 2(C) denote the element of A/7 which is determined by 4. h(C) does 1ot
depend on the choice of the representative 4 and h(C) e [§]. It is easy to see that
h is an isomorpbism.of S/IS on [§]. b will be called the natural isomorphism
of S/IS on [8].

8) A homomorphism of . in B is a mapping f such that j(4')=/(d)" and
f(dy A gy =f(4y) -+ (4. All homomorphisms considered in tiis paper are o-homo-
morplisins.

9) More generally, if @ is an arbitrary mapping of a set & in a set Y and
X(C&, ¢|& will denote the mapping ¢ restricted to = e X. The letters f,g,h,...
ill denote always homomorphisms and isomorphisms. Mappings between abstract
sets or topological spaces will be denoted by ¢, ...
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The inducing of homomorphism by mappings), Let X/I and

¥/J be o-quotient algebras of sets & and Y respectively. We say that a s-homo--

morphism § of ¥/ in X/I is induced by a mapping ¢ of & in Y if
i) e—1(¥)eX and [[T])=[g—UT)] for every Y eX™)

In particular, a o-homomorphism f of ¥ in X/Zis induced hy a mapping ¢
of &in ¥ if
{ii) o~ X)eX and f(¥)=[p—YT)] for every XelX.

A g-homomorphism f of ¥ in X is induced by a mapping ¢ of & m ¥ if
{iii) p1(¥)e X and f(¥)=p—1T¥) for every FeX.

I. General closure algebras.

1. Definittons. A closure algebra is by definition a o-complete
Boolean algebra A in which with every element .4 e.4 there is
associated an element 4 e.d4 in such a way that the following
axioms of Kuratowski?!?) are satisfied:

L A1+A2=Z1+Zz§

1. ACA;

V. (4)=4.

The element 4 is called the closure of A, the element
Int (4)=(4') is called the interior of A, the element Fr (4)=4 4’
is called the frontier of A. An element 4 e A is called respectively

closed, it A=4,

open, if A=Tnt (4),

nowhere dense, it ACEr (4),

of first category, if =34, where 4 ,is nowhere dense (n==1,2,...},

dense, if A=|4|, '

a Gy, it A=[] 4, where A, is open (n=1,2,...)

n

an Fo, if A=} 4, where 4, is closed (n=1,2,...)
n

“yaen)e

10} Sikorski [2], p. 7 and p. 13.

1) Obviously, [¥] denotes here an element of ¥ and [~ X)] denotes
an element of X/I.

1) Ruratowski [8], p. 181.
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The class of all open elements of 4 will be denoted by G(4),
the class of all closed elements of 4 will be denoted by F(4).
B(A) will denote the least o-subalgebra of 4 which containg F(.A)
Tt A e B(A), we say that 4 is a Borel clement of A.
If e A, then the formula

defines a clogure of an element 4 ¢ BA relative to E.A.

This closure satisfies also Kuratowski’s axioms I-IV. Ed is
also a clogure algebra and

11. HEA)=EF(4), G(EA)=EG(4), B(EA)=EB(4).

It is easy to show that all theorems given in Kuratowski [1T
Chapitre I, §4, §5, §6 I-III, §8 L-VI, §8 VIII-IX, §10 I-II,
§10Iv, §11 I-III, §11 V) are also true for arbitrary closure
algebras.

If & is a topological space ), then the field S(&) is a closure
algebra. Instead of B(S(&)), we shall write simply B(F). B(F) is
also a closure algebra.

An example of a closure algebra which is not isomorphic to a o-field of
sets is the following: let R denote the set of all real numbers and let I, be the-
ideal of all sets of Lebesgue measure zero. In the quotient algebra G(R)/ L, we-
define the clogure of an element [X] as the element [¥] where ¥ is a G such that
XY and the Lebesgue exterior measures of X and ¥ are equal.

A general method for the construction of non-trivial closure algebras which:
are not isomorphic to a o-field of sets w.ll be given in § 8.

2. Basis of a closure algebra. A class R of open elements.
of a closure algebra A4 ig called a basis of 4 if

(i) 4 is _-I;E-complete,

(ii) every open element G e .4 is the sum of elements belonging
to a subclass of R.

By this definition every complete closure algebra .4 possesses.
a basis. Namely, the class B(4) is a basis of 4. In particular, every
field ©(&), where & is a topological space, possesses & basis in the
above-mentioned sense. If & is a metric separable space, (&)
possesses an enumerable basis. Obviously

13) Or: Kuratowski [2], the same paragraphe and sections. o
1) A space & i¢ called topological if the closure operation in & satisfies:
axioms I-IV and if (@)= (z) for every ze&.
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2.1. If B is a basis 0] a closure algebra A and B < A, then ER
is « basis BA ond LR < R.

The following theorem gives a method for the construction
-of closure algebras:

2.2, Let R be a class of elements of a o-complete Boolean al-
gebra A such that .

(i) 4 s ﬁ-complm‘f,

(ii) 0 ¢ R,

(iii) the element | A| and each product B, - By, where Rye B (i=1,2),
are the sum of clements belonging to o subclass of R.

For every A e A 1t Int (4) denote the sum of all R e R which
are contained in A and let

(iv) A=(Int (4",

Then the closure 4 satisfies the amioms I-IV and R is a Dasis
of the dosure algebra which we obtain from A by definition (iv) 15),

We say in this case that the closure operation (iv) s induced
by the basis R.

In order to prove theorem 2.2 it is sufficient to remark that
{i) and (ii) imply that Int (4) and A are defined for every 4 e R.
By definition Int(4)C4 and Int (Int (4))=1Int (4). By (i)
Int (|A))=|4| and Int (4d.4,)=Tnt (4;) Int (4,). These properties
imply immediately the axioms I-IV. k

8. Properties of closure algebras with a basis. Some
theorems about topological spaces cannot be generalized to the
case of closure algebras becanse some infinite operations of addition
and multiplication on elements of a closure algebra 4 are not
always feasible. For instance, the well-known theorem on the sum
{product) of open (closed) sets can be expressed only in the form:

3.1 If there ewists the sum (product) of a set SCA of open
{closed) elements, it is open (closed) also.

The above-mentioned difficulties disappear often in the case
of closure algebras with a basis. For ingtance:

3.2. If a dosure algebra 4 bossesses a basis, then the sum (pro-

duct) of an arbitrary set of open (closed) elemenis ewists and is open
{closed }. .

5) Obviously, the above-defined operation

HInt* coinei s operati
Int* defined in par. 1. coineides with the operation
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Let G be a seb of open elements of 4 and let R,y denote the
set of all elements K of the hasis of 4 such that there exists a G e &
which contains E. It is easy to show that the sum &, of all Re¢ R,
is also the sum of all @ ¢ G. By 3.1, G, is open.

The second part of 3.2 follows from the first.

3.3. If a closure algebra A possesses @ basis R, then every
deoreasing 16) tramsfinite sequence {Ag} (0<E<<a) of closed (open}
elements is of potency <R (i.e. a<<R).

The proof is the same as the proof of an analogous theorem
on topological spaces with an enumerable basis.

By theorem 3.3 we obtain easily that all theorems on develop-
able sets in Kuratowski [1] Chapitre I § 12 I-VIIL?) can be gene-
ralized to the case of closure algebras with a basis8). Obviously
an element A e 4 is called developable if there exists a transfinite.
decreasing sequence {4} of closed elements such that

4 =§ (Aos—Aseta).

In particular we obtain: .
3.4. If the equation A=AA,-AA, implies 4=0, there exisls
a developable element B such that BA,=0 and A,CE.

4. Closure subalgebras and extensions, Let A, be a
g-subalgebra of a closure algebra 4. We say that 4, is a closure
subalgebra of A if A e A, implies 4 e A,

4.1. A closure subalgebra A, of & closure algebra A is also a closure:
algebra (with the same operation of closure) and

G(Ag) =, 6(A), Fldy)=dy Fld), Bldy)=4, BlA).
1.2, B(A4) s a closure subalgebra of 4 and

G(B(4))=6(4), F(BA)=F(d), BBA)=B(A)
8) T.e. dyCdg and dyAs for £> 9.
1) Or: Kuratowski [2], the same sections.
18) Tlus follows from the fact that the following lemma Lolds for any
m-complete Boolean algebra B:
If {Bg) (0<E<a, a<m) i8 a decreasing sequence of elements of B such that:
[l B:=B; for every limit number A<a, then

(L)
By= 3 (Be—Bet1)+Be.
0<E<a
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4.3, Ij a closure algebra A possesses an enumerable basis R,
then each closure subalgebra A,C . A possesses also an enumeradle
Dasis By19).

. Let Re R and let {6 (0<é<Ca) be a transfinite sequence
of all open elements of 4, which contains R. Let H,=@, and by
dnduction Hy=Int (llHn)‘Gg (by theorem 3.3, the sequence {H,}

{0 <) containg ndﬁly an enumerable number of different sets,
since {H,} is non-increasing; the multiplication is thus feasible).
The element R°=H, possesses the following properties:

(i) R e B(4,),

(iiy RCRe,

(iii) if 6'e G(d,) and RCE, then ROCE.

An immediate consequence of (i), (ii), and (iii) is that tue
<lass R, of all elements R° (where R ¢ R) is an enumerable basis
of A,

Let 4 be an arbitrary closure algebra. Congider the minimal
-extension 2) A of 4. A being complete, the class G(A) fulfils the
assumptions of theorem 2.2 and induces a closure operation in 4.
The closure algebra, which we obtain from A in this way will be
called a minimal closure emtension of A and will be denoted by the

same symbol 4. By theorem 3.1 A4 is a closure subalgebra of A
and by theorem £.1 '

G(A)=6(A) 4, FA)=FAd) 4, B(4)=Bd) 4.
By theorem 3.2 we have
44 If & closure algebra A possesses & basis, then

G(4)=6(d), Fd)=Fd), B4)=5(d).

In §1 we assumed that a closure algebra is o-complete only.
Tn § 3 we pointed out that thig asgumption can cause some diffi-
-culties since some infinite operations of addition and multiplication
are not feasible. These difficulties can be avoided since instead
of a clogure a,lgebrrva A we may consider a totally additive minimal
closure algebra 4. On the other hand, the study of topological

%) Theorem 4.3 ¢an he generalized to the case where .4 and
plete and 4 possesses a hasis of potency <m.

) MacNeille [1], p. 437
is a o-subalgebra of J.

Ay are m-com-

We assume always that 4 C 4, i e. A‘
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properties of a closure algebra A reduces often to the study of
properties of B(A4). If 4 possesses a basis, then B(A4)=B(4) by 4.4,
and the introduction of the minimal closure algebra Aisin practice
unnecessary.

5. Continuous homomorphisms, Homeomorphisms,
A mapping ¢ of a topological space & in a topological space ¥ is
continuous if and only if the homomorphism j induced by the
mapping ¢ (i e. {(¥)==¢~¥) for YCY) possesses the property:

AX)CHT) for every Y e&(Y).

This fact permits to introduce the following general definition:

A ¢-homomorphism f of a closure algebra 4 in a closure
algebra B i called continuous ™) it f(A)Cf(A) for every A e A.

This definition implies immediately:

5.1, Let & and Y be two topological spaces and let f be a o-homo-
morphism of S(¥Y) in S(E) induced by & mapping ¢ of & in Y=).
f is continuous if and only if ¢ is continuous.

An analogous theorem holds for homomorplisms of B(Y)
in §(&) (or: in B(X)).

The following theorems are obvious®):

5.2. In ovder that a c-homomorphism f of A in B be continuous,
it is necessary and sufficient that f(A) be open (closed) in B for every
open (closed) element A e A.

5.3. A o-homomorphism f of A in B is continuous if and only
if the homomorphism f|B(4) (of B.4) in B) 15 contrnuous.

5.4. If f is a continuous homomorphism of A in B and A e{l,
B ¢ B, then the homomorphisms Bf (of A in BB) and jl4A4 (of AA in
f(A)B) are continuous also. )

Two closure algebras 4 and B ave homeomorphic if there exists
an isomorphism f of 4 on B such that both b and 1! are continuous.
The isomorphism % is then called a Tomeomorphism (of A on B).

21) Instead of ,,a continuous o-homomorphism* we shall say simply ,a con-
‘tinnous hémomorphism®.

) If f is less than the first inaccessible (in the strict se.use) aleph, SL\:!I
a mapping ¢ exists always for any o-homomorphism f of &(¥) in &(&). See Si-
korski [2], p. 12. .

3) In this section .1 and B denote always two closure algebras.
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5.5. An isomorphism h of. 4 on B is a 7107)/colmorphz'sm if and
only if MA)=h(A) for every A < A2,

5.6. An isomorphism h of A on B is a homeomorphisn of L on I3
if and only if R|B.A) is o homeomorphism of B(A) on B(B).

The followirg theorem says that the notion of the minimal
closure extension of a closure algebra has a topological character.

5.7. If closure algebras A and B are homeomorphic, then A ona B
are homeomorphic too.

Let  be a homebmorphism of 4 on B. The isomorphism 7
can be extended to an isomorphism %, of Adon B 25), Since Iy and kg’
are totally additive?2¢), we infer easily that %, and By fulfil the
sufficient condition of theorem 5.2 (for open sets). Therefore 7,
is a homeomorphism of A on B, q. e. d.

5.8. Let h be an isomorphism of a closwre algcbra 4 in a o-com~
plete Boolean algebra B and let

(i) B=n#"YB)) for every BeB.

The closure operation (i) fulfils the axioms 1-IV. I is a homeo-
morphism of A on the closure algebra B with the closure operation (i).

In fact, the isomorphism % and L™ fulfil the sufficient con-
dition of theorem 5.5. We shall say that the closure operation (i)
iy induced in B by the isomorphism. h.

‘We shall say that two closure algebras 4 and B are weakly
homeomorphic if the closure algebras B(4) and B(B) are homeo-
morphic. By theorem 5.6, 1f 4 and B are homeomorphic, they are
also weakly homeomorphie.

5.9. The following three conditions are equivalent for arbitrary

topological spaces & and Y:
(i) the spaces & amd Y are homeomorphic;
(11) the closure algebras G(X) and S(Y) arc homconmorphic;

(iid) the closure algebras S(E) and E(Y) are weally homeomorphic
(i. e. B(X) and B(Y) are homeomorphic).

*) See Kuratowski [1], p. 71 or Kuratowski [2], p. 78.

25) This follows immediately from the definition of minimal extensions given
by Mac Neille in paper [1]. Another proof can be obtained with the lielp of a theo-
Tem on extension of homomorphisms. See Sikorski [6], p. 385 (th. (i) and (ii))..

6 1. e. hu‘gs_,ysA)=AZ;ha(A) for every set SC.d. This property of isomor-

. - . £
phisms (in the case of fields of sets) was observed by E. Marczewskiin paper [1],.
p. 135.
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The implication (i)—(ii) follows from 5.1, The implication

+{ii)—(iii) holds for arbitrary closure algebras. Tf his a Lomreomorphism

of B(Y) on BLEK), there exists a one-ore mapping ¢ of & on Y
sueh that @ ir duces 2 ard ¢! induces "%, By 5.1 @ is a homeo-
morphism of & on Y, thus the inplication (iii)-(i) is also true.

Theorem 5.9 makes it clear that the above-defined notions
of a homeomorphism ard of a weak Lomeomorphism are generali-
zatiors of the notion of a homeomorphism between two topological
spaces.

6. Non-continuous homomorphisms. In this section we
consider a closwe algebia 4 with an evun.eiable hasis (B,,R,,...)
and a o-hom omorphism f of 4 in a closure algebra B. The symbol
D(f) will denote the elerent

D)= 3 () —Tnt (f(Rny).

n=1

6.0. Foy every open element G e d
H@)-—Ivt ((¢))CD().
Let ¢=2'R,, . We have

~ n=1
#(6)—Tot(f( G))-——ﬁ1 {f(Rum,,) —Int (f(G)))C,.g(j(R”‘") ~Int (f(Bm,)))C DI,

Y. e. d.

By 6.1 we obtain immediately

6.2. D(f) does not dcpend on the choice of a basis of 4. D(f) is
the sum of all elements J(G)—Int ({(@)) where G e G(4). D(f) is also
the sum of all elements juur)—f(F) where F e FA).

The final remark follows from the fact that

JR) —1(Ir) = f(F")—Tnt ().

6.3, f is continuvous if end only if D(f)=0.

Tt is easy to see that if A=6(Y) and B=G(&) (where &
and ¥ are topological spaces) ard if 7 is induced by a mapping ¢,
then D(f) is the set of all points of the discontinuity of ¢ ). The
element D(f) is thus a generalization of the set of all points of the
discontinuity of a mappirg. '

27) See Marczewski [1], p. 138. :
) See Kuratowsgi [1], p. 67 or Kuratowski [2], p. 73.

Pundamenta Mathematicne T. XXXVIL 12
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7. The localization of topological properties. In this
section A denotes always a closure algebra with a basis R. I is an

jdeal of 4. N
Let 4 be an arbitrary element of A By theorem 3.2 there

exists an open element &, which is the sum of all open elements
@ such that G4  I. The closed element G¢ will be denoted by 4*.
In symbols: ‘

1r=(F6)=

Tt is easy to show that in the case 4= S(&) where & is a topo-
logical space, the set A* is the seb of all points @ e & at which the
set ACH does not possess the property (I) in the sense defined by
Kuratowski®), By an easy modification of the proofs given in
Kuratowski[1]%) we obtain the following formulas (for an arbitrary
closure algehra 4 with a basis): ‘

7.1, (i) 4*C4; (ify A**C4¥;

(i) (d;+A)*=AF+4%  (v) 4,C4, dmplies AFCAY;
(v) G4*= * for every G < G(A).

All theorems given in Kuratowski [1] Chapter I, § 8 VII,
§9 III, §10V-VI, §111V*) hold also for an ‘u‘blt't‘amy closure
algebm with a basis.

2. If an m-complete dlosure algebra A possesses « basis R
of pm‘mwy <m and if I is an m-additive ideal of A, then

(SRY, where Ge®(d), GAdeT, Re R, RA eI

A—A4*eX for cvery Aed.

The conditions: 4*=0 and A e I are thus equivalent.

Let R, be the class of all R e R such that R4 ¢« I. We have
(A= R.
ReR,
I heing nt-a(l@iﬁve, we obtain
A—A*=YRAeT, g e d.

ReR,

*) See Kuratowski [1], p. 29 or Kuratowski [2], p. 34.
) P. 30 (see also Kuratowski [2], p. 35).
3 Or: Kuratowski [2], the same pma«raphs and se dmux.
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8. Boundary ideals. An ideal T of a closure algebra A is
called a boundary ideal if Int (4)=0 for every A4 e Iieif 0cd ]8
4hé sole open element which belongs to T,

‘We suppose in this section that 4 and T sati

Of theorem. 7.9, sty the assumptions

8.1. The following conditions are equivalent:
(1) I is o boundary ideal;
{ii) GCaE* for every open element @
{iil) G*=@ for every element G;
(iv) [4]=]4].
Proof. (i)—(ii). By 7.2 the open elemeut G—
sequently G¢—@G*=0, i, e. GCG*,

(ii)—(iii). By (11) and theorem 71(), we have GCG*C@Q.
Hence GCG*CG since G* is closed. Thus G— G*.

(iii)—(iv). Since [d[ is both open and closed, |4[*=]4] on
account of (iii), = L

(iv)—(i). If & is open and G e I, then G- |[4[*=0 by the defi-
nition of |4[*. Since [A[*=|4|, =0, g.e. d.

- Let B=|A[*~I where IeX.. The ideal ET is o boundar "y
ddeal of ﬂze closure algebra BA. For every H « G(A )

G*e I Con-

EH*=FEH.
Since B’ e I on account of 7.2,
{i) A eI if and only if EA<EL

Suppose that an element B e BT is open in EAd, i.e. B=E@&
where G e®(4). By (i) @el, hence GC| (l4]*)'CE". Consequently
B=0. The first part of theorem 8.2 is proved.

It follows from (i) that
EH*=E(5 6G)=E(} EG), where G ¢®(d) and GH ¢ T
=B(J GY, where ¢ ¢ G(EA) and GEH < BL:

Thus the element BH* ¢ A is the result of the 6peration w2

2

o the element BH ¢ Ed in tHe closure algebra FA with respect

to the 1deal BI. Since EH is open in B4 and E-EH is the closure
1 (iil) that EH*=EEH, q. e. d.
12¢
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9, The division of closure algebras by ideals., In this
section we suppose also that the corsidered closure algebra 4 and
the ideal T fulfil the assumptions of theorem 7.2, i, e. that 4 ix
m-complete, 4 possesses a basis B of potency <ni, and T is m-ad-
ditive.

- The following simple theorem gives a method for the construc-

tion of closure algebras:

9.1.- The class [R]C AJT fulfils the assumption of theorem 2.2
and induces in ihe Boolean algebra A[I a closure operation awhich
satisfies axioms I-IV.

This follows from the fact that the operations .2”
are commutative with the operation ,[ ]".

The closure algebra which we obtain from 4T in the above-
mentioned way will be denoted also by 4/T3%2).

9.2. (i) [R] is a basis of A/T of potency <m;

(i) G(4/I)=[G 4}]; (iil) F(A/1)=[F(4)];

(iv) BA/T)=[B(4)];

t. e. an element of A T is rvespectively an open, closcd, or Borel element
of AT if and only if it possesses a representative which is respectively
an open, closed, or Borel element of A.

In order to prove 9.2 it is sufficient to remark that the ope-
rations ., 2”7, .[I”, and ,,” are comm.utative with the operation ,,[ J”.

It follows from 9.2 (ii) and (iii) that the closure operation

induced by [R]in A4/T does not depend on the choice of the bass r
of A.

9.3. For every A e A:
(i) [al=[4%; (i) [4]cr4y;
(iii) [Int (4)1CInt ([4]); (iv) Br ({4} C[Fr (4)].
The open element ([A1)" ¢ 4/T is the sum ) of all elements [ R}
‘where R e R and [RA]=[R]-[4]=0, i. e. R4 ¢ I. Hence
((A]) =3 [B]=[3 RI=[(4*)]=[4*}
where Re B and R4 e 1.

and -7

%) Let R denote the set of all real numbers and let L, be the ideal of all

sets of measure zero. The above-defined closure algebra G(R)/L, ix different
from the closure algebra defined in par. 1.
%) See theorem 2.2.
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This proves the property (i). The property (i) follows from
{i) and theorem 7.1 (i), The properties (iii) and (iv) are consequences
of (ii).
" 9.4, Let b be a komeomorphism of 4 on a dosure algebra B
and let J=hI). Then AT and BJT are homeomorphic too.
Namely the isomorphism Ty defined by the formula

({4 =[M4)] for 4ded
on account of 9.2 (ii)-(iii)

and 5.2.

Theorem 9.4 shows that the division of a closure

algebra by
-an ideal is a topological operation.

9.5. (i) The natural homomorphism of 4 on AT is continuous.

(ii) The natural isomorphism of EA/ET on [EYA[T) (where
L ed) is a homeomorphism.

(iii) Tke natural isomorphism of BA)(T-B(A)) on BAT)=
=[B(4)] is a homeomorphism.

Theorem 9.5 is an easy consequence of theorems 9.2 (i1)-(ii)
and 5.2,

9.6. If Iis a principal ideal of A, 1. e. if T=E'A where E ¢ A,

- then A[I is homcomorphic to EA.

In fact, the isomorphism % defined by the formula
M[A))=EA for every ded

25 a homeomorphism of A/T on HA on account of 9.2 (ii)-(iii)
and 5.2,

Theorem 9.6 shows that all closure algebras £ 4 are particular
cases of closure algebras of the form A/I.

0.7. Let I, be an m-additive ideal of AT and let T, be the m-ad-
ditive ideal of all A e A such that [A]eX,. Then the closure algebras
(A|T)|X, and A[T, are homeomorphic.

Let A be a representative of an element €, e A/T,, let C be the
clement of. A/T determined by A and let C; be the element of
(4/I[I, determined by C. It is easy to see that ¢, does not depend
on the choice of the representative A and that the mapping

0y =MNC,)
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is an isomorphism of A/T, on (4/I)/I;. If C,eF(A[/L), we may
suppose that 4 « F(A) (see theorem 9.2 (ii1)). Consequently C e F(A/T)
and h{0,)= 0, € F((4/I)/L). The isomorphism % is thus continuous
by 5.2. If C,eF(4/I)/1,), there exists an element ¢ e F(A/T)
whieh is a representative of C;. Element ¢ possesses a representative
A eFA). The element O, e 4/T, determined by 4 is thus closed
in A4/I, Since C’Z_—_h"l(Ol), the converse isomorphism A~ is also
continuous by 5.2, q. e. d.

Theorem 9.7 shows that the result of a double division of
a closure algebra can be obtained by a single division.

“~

II. C-algebras. Representation theorems.

10. The definition of C-algebras, A closure algebra 4
is called a C-algebra if it satisfies the following axiom

V. Theve exists an enumerable sequence {R,} of open elements
of A with the property:

(*) every open element G ¢ A is the sum of all elements Ry’ such
that R,CG. ‘

Every sequence R, e (5(A4) possessing the property (*) is called
a.C-basis of 4. Obviously C-basis of 4 is a basis of 4 in the sense
defined *) in § 2. ) o

C-algebras possess many properties of separable metric spaces
and constitute a natural generalization of these spaces. In fact

10.1 4 topological space & is separable and metrizable if and.
only if S(&) is a C-algebra.

Indeed, every enumerable basis of a separable metric space
possesses the property (*). Conversely, every topological space
possessing a C-basis is separable and regular and therefore it is.
metrizable. : !

On the other hand, there exist C-algebras which ave not.
weakly homeomorphic to a topological space. The construction
of the C-algebras is given by the following theorems: '

) 10.2. If A is a C-algebra and if I is a o-ideol of .A, then AT
is also & C-algebra. If R is a O-basis of A, then [R]4s a C-lasis of AT

3 A A TR e, o N
: )Y If a clPsure algebra A possesses a C-Dasi, every enumerable basis
of 4 is a C-basis,
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By thefn*em 9.2 (ii) every open element of A[X is of the form [G]
‘where @ ¢ B(4)..By (*) there exists a subsequence R, e R such
that

G:Zf{}mn and E,,,“CG (“’,:1.2”“)_
== E
Consequently .
(6= [Ra,]
and by theorem 9.3 (i) ~
' [Fm,] C [ Bm,) CL6]. q. e d.

~ 10.3. Let I be a a-ideal of subsets of a separable metric space &.
Then S(X)[I is o C-algebra. S(&)/T is homeomorphic to a topological
space if and only if T is principal. S(E)/T is weakly homeomorphic
to a topological space if and only if I-B(¥) is a semi-principal 35)
ideal of B(E). I

The first remark follows from 10.1 and 10.2. If Tis principal.
iLe I=ECS(&)=GC(E') (where ECH), then &(&)/I is homeo-
morphic to EG(¥)=G(E) by theorem 9.6. If I is not principal,
then S(&)/X is no isomorph of a o-field of sets ). Consequently
S(&)/I is, not homeomorphic to a topological space.

The final part of theorem 10.3 follows from theorem 10.3,
which we shall prove below” (see also theorem 9.5 (iii)).

10.4. A closure algebra A is a 'C-algebra if and only if B(d)
is a C-algebra. Bvery C-basis of 4 is a C-basis of B(A) and conversely.

This follows from the fact G(d)=G(B(A)) for any closure
algebra 4. :

10.5. Let I be a o-ideal of Borel subsets of a separable wmetric
space F. Then B(E)I is a C-algebra. B(X) I is homeomorphic to
o C-algebra cf all Borel subsets of a topological space if and only if T
18 @ semi-principal -5) ideal of B(X).

The first remark follows from theorems 10.1, 10.2, and 10.4.
I I is semi-prineipal, i. e. I is formed of all Borel subsets of o set
B'C¥, then B(&F)/T is homeomorphic to B(E). If I is not semi-
prineipal, then B(F) is not isomorphie to a o-field of sets =¢). There-
fore B(XE)/X is not homeomorphic to a field of all Borel subsets
of a topological space. ’

35) An ideal I of & tield X (of subsets of &) is semi-principal it I is formed
of all subsets of a set XC & (X may belong to X or not).

36) Sikorski [1], p. 253.
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10.6. If A is @ C-algebra and e A, then BA is also @ C-algebra.

If R is a C-basis of A, then ER is a C-basis of BA ).
Theorem 10.6 follows directly from the definition of C-algebras.
By 10.4 and 4.4 we obtain
10.7. The minimal closure emtension A of a
also a C-algebra.

C-algebra A s

11. Properties of C-algedras. A closure algebra 4 is
said to be normal provided that for any two closed elen’zents_lﬂl, ,,
F.F,=0, there exists an open element @ such that F,CG and GFy=10.

11.1. Every C-algebra is mormal %),

This theorem is a particular case of the following theorem:

11.27%). Let 4 and B be two elements of a C-algebra A such thay
AB4-AB=0. Then there exist two open elements G and H such that
ACG, BCH, and GH=0.

A4 being a C-algebra, we have

n=1

(B)y=2 U, and (d)=XV,
n=1
where U, and V, are open and
U.B=0 and V,4A=0 (n=1,2,...).
Let G,=U, and H,=V,—@, and by induction:

n—1

Gp=Un ZH,, H,=V, _ZG,,

The elements G= S'G and H= Z H, fulfil the condition of

theorem 11.1. In fack

ACZ[,,—Z'H C@

n=1

#) In contrast to theorem 4.3, a closure suba.gebra of a C-algebra is not,
in general, a C-algsbra. For example, the sets: &, R—(1), (1), and the empty
set constitute a closure subalgebra of GS(R). This subalgebra is not a C-algelra
(R=the set of all real numbers), ’

%) On the other hand, there exist normal closure algebras with an enu-
merable basis which are not a C-algebras. An example of such a closure algebra
is given in footunote?7).

#) The proof of this theorem is an easy modification of the proof of

5 theorem on regular spaces. See Kuratowski [1], p. 102 or Kuratowski [2],
. 133,
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sinee LCZ Un and H,ACV,A=0. Analogously BCH. For n<m
we have H,.,GnC(T’,,——G YGr=0 and for n>
Hm Gn C Hm( Ul
Therefore GH=10, q. e. d.
Consequently all theorems given in Kuratowski [1] Chapter IT
§ 16 1L, § 16 V %) hold for an arbitrary C-algebra too.
By axiom ¥ every open element of a C’-algebm A is an F,.
In fact, if G= E Ry, where B, CG, then G= Z R, too. Con-

=1

sequently ev elv dnqed element of 4 is Gs. Therefore all theorems
on Borel sefs given in Kuratowski {1], Chapter T § 26 I-IX 4),
are also trae for arbitrary C-algebras.

>m we have
T Emy= 0.

In particular we obtam

11.3. Each developable elemcent of a
and o Gg.

C-algebra is both an Fg

Sinee the operations ,, )j and ,:ﬁ“ are commutative with the
operation ,[ 17, it follows hom 9.2 Iiiil)-(iii):

11.4. Let I be o c-ideal of a C-algebra A. In order that en
clement B e AT be a Borel dlement of an additive (madiiplicative)
class a, it is necessary and sufficient that B possess a vepresentative
A e A which is a Borel element of an additive (multiplicative) class «in A.

12. C-bases. In this section we shall prove several simple
lemmas which will be useful later.

The following lemma is obvious:

12.1. If a closure algebra A possesses an enmerable basis Ry, R, ...
such that

(i) for every positive integer m there emists o finite or infinite
subsequenee {Ry} such thay Ry= ? Ry, and ByCRy;

then A s o C-algebra and Ry, R, ...

12.2. If theve exists o decomposition |A|=4,+4, of a dosure
algebra A such thal

(i) 4, and A, are both open and closed in A;

(i) 4,4 and Ay,A are C-algebras;

then A is also o C-algebra.

is o C-basis of A.

40) Or: Kuratowski [2], § 16 I aud § 16 V (theorewms 1-6).
1) See also Kuratowski [2], § 26 L-VIIX and IX (theorem 1).
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For if R;is a C-basis of 4,4 (2

of A.
12.3. Let a sequence Siy8,,..
algelra A possess the properties:
(i) the element 0 e 4 is a term of this sequence;

1,.4[.— Z,' 8as
(111) for every pair (i,]) of positive iniegers there ewists o set
Ny, of positive integers such that SpS;=2 Sx;

eVij
(iv) if NY denotes the set of all integers § such that §;8;=10 and
if Ny, denotes the set of all integers & such that

(E SJ) Cbk:

ieN

=1,2), then R,+ R, is a C-basis

. of elements of a o-complete Boolean

then
S = 2 Si.
ieNp

Then the class (Sy, Sy ...) fulfils the assumptions of theorem 2.2
and induces in A a closure operation which satisfies amioms I-V.
(84,8,,...) is @ C-basis of whe C-algebra which we obiain from A in
this way.

It is sufficient to prove that axiom V is sabisfied. By the defi-
nition of closure operation (see theorem 2.2)

2 8;=TInt (83).

jeny
Thus Ny is the set of all integers ¢ such that

8= (Int (89))' C 8.
By ({v)
Sk= Z )S' i
ieNp
The sequence Sy, Sy, ..
A is a C-algebra, q.e. d.
It is easy to see that every C-hasis of a C-algebra possesses
the properties (i)-(iv). Thus theorem 12.3 gives a necessary and
sufficient condition for a sequence 84,8;,... to be a C-basws of
a (-algebra. '

. fulfilling the assumption of theorem 12.1,
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18. C- jwlds If a C-algebra is a o-field of sets, it i ealled
g O-field. For ingtance, if ¥ is a metrie separable space, S(Y) and
B(Y) are O-fields on account of 10.1 and 10.4. Conversely
13.1. BEvery C-fild is weakly homeomorphic to a separable
metric space. .
More exactly:

For every C-field X (of subsets of a set & ) there exist a metrizable
separable space Y and a mapping ¢ of & on Y such that the equation
@) MX)=g¢(X) (for X e B(X)}y
defines a homeomorphism b of B(X) on B(Y). :

Let {R,} be a C-basis of X and for every z ¢ ¥ let C(z) denote
the common part of all sets R, which contain #. Let ¥ be-the class
of all sets O(x) and let p(x)=C(n) for every = ¢ &.

The closed sets O(z) are atoms of B(X) and for every X ¢ B(Xy
@(X) is the class of all atoms contained in X. Therefore the formula (i)
defines an isomorphism % of B(X) on .a o-field ¥ of subsets of Y ).
The field ¥ with the closure operation induced by the isomorphism
h#®) is a closure algebra homeomorphic to B(X). Since B(Xy
is a C-algebra by 10.4, X is also a C-algebra. Since (y) e ¥ for
every % e 3, G(¥) is the minimal closure extension 6f ¥*) and
B(S(Y))=B(XY)=X by theorem 4.4, Since every et O(x) i closedin X,
S(Y) satisties Kuratowski’s axiom: @):(y) for every y e 3. Thus
the set % with the above-defined closure operation is a topological

‘space. B(Y)=X being a C-algebra, Y is a metrizable separable

space on account of theorems 10.1 and 10.4. By 5.8 & is a homeo-
morphism of B(X) on B(Y)=X, q.e. d.

Theorem 13.1 explains the structure of C-fields. The general
method for the construction of (-fields is the following:

Let ¥ be a metric separable space and let g be an isomorphisny
of B(Y) on a o-field X, of subsets of a set &. Let X be now an
arbitrary o-field of subsets of & such that X, is a subalgebra of X.
TFor every X e X let X be the product of all sets g(X) such that
XCg(¥Y) and ¥ e }Y). X is a C-field.

Conversely, every C-field X can be obtained by the above:
construction on account of 13.1. po
T #) Seo Sikorski [1], p. 261, th 1.8,

) See theorem 5.8, .

44) The elosure ¥ of aset 1 CEE‘ Js{he product of all sets ga(_X)where YeFX)
and ¥ Cop(X). Y
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i14. A4 representation theorem on C-algebras, It is
well known that every o-con plete Doolean algebra A is isomorphie
to a quotient algebra X/I where X is a o-field and T is a o ideal
of X. The question arires whether every C-algebra is Loreomorphic
+to a closure algebra X/I where X is a C-field and T is a o-ideal
of X. The answer is affirmative (theorem 14.2).

14.1. If a C-algebra A is of the form
A==BT
where B3 is a o-complele Boolean algrbra and I is o o-ideal of B, then
it is possible to dcfine in B o closure operavion in such a way that
(i) B with this closure operation is a C-algebra;
(i1) the C-algebra A s identical with the closure algebra which

we obtain by the division of the C-algebra B by the ideal I (see theo-
rem 9.1).

Let {R,} be a C-basis of 4. We may assume that
(1) By=0, R,=|[A|, and R,%=0 for n>2.

Let N;; denote the set of all positive integers k¥ such that
RiCRiR;, Tet N} denote the set of all § such that

{2) ) B Ry=0,
and let N, denote the set of all integers ¢ snch that
(3) (D R)C Ry,
JoNY
this means:
{4) R.CR,.
Obviously
{5} R,R,:ke%,;’m (5,5=1,2,...);
(6) Ry= DK, (k=1,2,...).
16Ny,

Let {Ba} be a sequence of elements of B such that

(7} Ry=[By] (n=1,2,...),
and in particular
(8) ‘ B,=0 B,=|B|.
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Let
B= 3 ((B:Bj— 3 By)+ (3 By— B,B)) -
(9) i,{:l(( ! 1;51%; k)‘l‘*ngZu x B ’BJ))n
+ BY —E B,—3'B,
"é:"é%;(ggvg .l) k)‘l’g( & iE%;B,).
On account of (3), (8), (6), and (7) we have
[Br-Bl=[3 By;
kEN;;
(ZBYICIB  for i ey
Jen}
[Bi=[2 B].
1€N,
Consequently ‘
(10) Bel.
Let
(11) 8»=B'B, m=1,2,..).
By (7) and (10)
(12) Ry=[8,] (n=1,2,...)-
Consider the Boolean algebra B'B. By (3) we lave
(13) 8,=0,
(14) ,=B'=|B'B|.
On account of (%) and (11)
(15) 8,8=2) 8 (1,i=1,2,...)
HENy

If 8,8=0, then R,R=0 too by (12); therefore j e N{. Con-
versely, if § e N{, then R;R;/=0, 1. e. N;; contains only one number 1
{see (1)). On account of (15) 8:8;=F8;=0. Consequently

(16) NY is the set of all positive integers § such that 8:8;=0.
It ,
B(X 8) C8h,
jen? .
then by (10) and (12)

(3 R CRy.

1eN?
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Hence 7 e Np. Conversely, if ¢ e Nz, then by (9) and (11)
B(S8) —S=B((3 B)Y —B,) CBB=0
ieny ©eal?
i e. . )
B2 8) TSy
jeny
Consequently

{17) X 18 the set of all positive integers 1 such that
B(Y 8) CSy.
seny
By (16) and (11) ‘
8CB(38).
jen?

Hence if i e Ny, then §,CS by (17). Therefore

. .ESiCSLH
- 1EN,
By (9) and (11)
8—3 Si=B'(B,—> B)CB'B=0.
ienNy - (€N
Consequently
{18) Sp=2, 81
T
We infer from (11), (13), '(14), and (15) that the class
S=(B,8,8;,8;,..., fulfils the assumptions of theorem 2.2. Let us
consider B as a closure algebra with the closure operation induced
by the basis §.
By 2.1 the class B'S=(0,8,,8,, Sy, y= (85, 85y S5, .) 38 0 basiis
of a closure algebra B'B. Since B'(} Sj)' is the complement of the
jen? : '

element ZIEYDSJ in the Boolean algebra B'B, the sequence Sy oy Sgy000p
jend " o

the algebra 1?”]), and the sets Ny, 1\7?, N, fulfil the assumptions
of theorem 12.3 on account of (13); [14), (15), (16), (17), and (18).
Thus B'B iy a (-algebra. e

. The basis of BB is the clags (0, B), thus BB is also o C-algebra.
Since the elements B and B’ are’hoth open and closed in B by (14)

3., ' ’
B is a (-algebra on account of theorem 12.2.
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By (12) and theorem 10.2, {R,} is a basis of a (-algebra B/T
~which. obtain by the division of B by I. Thus the C-algebra A is
jdentical with the C-algebra B/I, q.e. d. )

14.2. Buery C-algebra A is homeomorphic to a C-algebra X|I
where X 18 o O-field and T is a o-ideal 45).

In fact, the Boolean algebra A is isomorphic to a c-quotient
algebra B=X/I. The isomorphism k of 4 on B induces in B a closure
operation in such a way that B is isomorphic to 4 (see theorem 3.8).
By 14.1 we can define on X a closure operation in such a way that
the closure algebra B is identical with the C-algebra XTI which
‘we obtain by the division of the C-field X by I. Consequently 4 is
homeomorphic to X/TI, ¢. e. d.

15. A generalization of Urysohn’s theorem. Compact
C-algebras. If we replace the term ,homeomorphic” by the term
,weakly homeomorphic”, we can formulate the representation
theorem for C-algebras in the following way:

153.1. For every OC-algebra A there exist a metric separable
space Y and o o-ideal F of S(IY) such that A is weakly homeomorphic
to the C-algebra S(Y)J (i. e. B(A) s homeomorphic to B(Y)[J,
where Jy=J - B(Y) is a o-ideal of B(Y) ). v

By 14.2 4 18 homeomorphic to X/T where X is 4 (-field and T
is a o-ideal of XA. By 13.1 X is weakly homeomorphic to a metric
separable space ¥. Let & be a homeomorphism of B(X) on B(Y)
and let J,=h(1-B(X)). By 9.4 the C-algebra B(X [I-B(X) is
homeomorphic to B(Y)/J, Hence by 9.5 (ili) B(X/I) is homeo-
morphic to B(S(Y)/J) where J denotes an ideal of S(Y) such
that Jy=JB(Y)*"). Consequently 4 is weakly homeomorphic to
S(YHJ, g e. d. o

15.2. For every C-wlgebra A there cxist a o-ideal I of subsels
of the Hilbert cube F{ such that A is weakly homeomorphic to S HH1
(4. 6. B(A) is homecomorphic to B{H)|IL, where I,=TI B(H) is
a o-ideal of B(TH())*®). ‘

Let % and J have the same meaning as in theorem 13.1.
We may assume that Y CFH. Let I denote the o-ideal of all subsets ¥

15) An analogous theorem holds for closure algebras with an enumerable
TDasis.

46) See theorem 9.5 (iii). '

47) T, g. o is the ideal of all subsets of sets Y e oJp.
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of H such that Y ¢ J. We have: YI=dJ. By 9.2 (ii) the C-algebra
S(Y) J=YS H)/YI is Fomeomorphic to [Y1S H)/ I=C H) F
since H— Y e 1,1. e. [Y]=[K]. Therefore 4 is weakly homeomorphic
to S(H)/I, q. e d. '

‘We have deduced here theorem 15.2 from Urysohn’s inetri-
zation theorem. Conversely, Trysohn's theorem can be deduced
from theorem 15.2.

In fact, let & be a regular topological space with an enuinerable
basis R. It is easy to see that R is a C-basis. Corsequently S(&)
is a C-algebra. By 15.2 B(X) is homeomorphic to B(H)/ T, where 1,
is & o-ideal of B(H) Siuce B(X) 15 a o-tield of sets, the ideal T, is
semi-principal, i.e. I, is forn.ed of all sefs ¥ e B(H) which are
contained in a set HCH. Thus B(&E) is homeomorphic to B(H—#),
i, e. & is homeomorphic to H—HCH on account of 5.9.

A C-algebra 4 is said to be compact, if [[F,%=0 for every
n=1 )

sequence I, e §{A) such that F,CF,+0 (n=1,2,3,...).

15.3. Bvery compact C-algebra A is weekly homeomorphic fo
& compact metric space. .

By 15.2, B(4) is homeomorphic to B(H)/I, where I, is
@ c-ideal of B(H) Let (zy) be a one-element set helonging to 7,, and
let I, be the set of all » e H such that o(z,z))<(1/n). We have:

[Enp]CIE ] € RB(F)/ T, and [[[K,]=[(w)]= 0.

n=1

B(H) I, being compact, we infer that [K,]=0 for un integer x,

ie. K,e I,

Thus the ideal I, is formed of all Borel subsets of an open
set H CEH. Consequently B(H)/I, is homeomorphic to B(H—H),
i. e, A is weakly homeomorplic to the compaet w.etric space H—H,.

III. Homomorphisms.

16. The convergence in metric spaces. Not all definitions
of topological notions can be generalized to the case of (-algebras
in such a simple way as the definitions considered in the preceding
paragraphs. For instance, in order to obtain a definition of a con-
vergent sequence of homomorphisms we must first formulate the
definitions of a convergent sequence of mappirgs in a special way
{see 16.2 and 16.4). This is the subject of this paragraph.

icm

Closure algebras 193
A sequence {(,} of open subsets of a metric space ¥ is said
to be strictly dec?'casz"ng if @,11CqH, for n=1,2,...
16.1. In order that a sequence {y,} of poinis of & metric space Y
converge 10 a. point y € Y 4t is necessary and sufficient that for every

strictly decreasing sequence {G,} of open sets the two following seniences
be equwalent:

i) v EQGM

(ii) for every positive integer n there exists o positive integer k
such that Yy € Gy

Necessity. Let y=lim y,. It y ¢ [] G,, then ye Gy &, being
==}

=
a neighbourhood of y, almost all points y, belong to @,. Therefore
there exists a & such that y,i,e G,.

If ynone Ij G, then there exists an integer m, such that
9 non € @,,,0. Col;l:sequently there exists an integer n,>m, such that
*Ynerr 10N € Gy, for k=1,2,...
Since @,C @n, we obtain

Ynpr 00D € Gy for k=1,2,..,
q. e. d.

Sufficiency. Suppose that (i) is equivalent to (i), We shall
prove firgt that
a) Bvery subsequence {Ym,} contains a convergent subsequence {¥u, }

N
Suppose that a subsequence {yn} does not possess the pro-

perty a). Let
o 1

an‘ I (ymn_,_kﬁ {k—f—?l) N 77)

k=

where X((a,r) denotes an open sphere with the center a and the
radius r. {G,} is a strictly decreasing sequence of open sets and

0
[1G,=0. (i) iz false and (ii) is true since for every » and
n=]
k=M —n>0 we have yupxe Gn.
The property a) is proved. Now we shall prove that

b) Ewery convergent subsequence {ijm,} converges to y.

Pandamenta Mathematicae. T. XXXVI. 13
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Lot yo=Llim ym, and Go=K(yg,1/n). Then (ii) is true; hence
n=00

by (i) ¥ € (Yo, 1. & Y=Y, Q- & 4. .
: Tt follows directly from a) and b) that y=1lim y,.

1n=00

Thus theorem 16.1 is established. As an immediate conse-
quence of 16.1 we obtain
16.2. Let ¢ and ¢, (n=1,2,...) be mappings of an abstract set E
in a metric space Y. In order that ¢=1im e, it is necessary and
n=0o0o
sufficient that

oo .00 o
[ =[] 3 oziu(Cn
n=1 n=1 k=1
Jor every stricily decreasing sequence {6} cf open scis %8).

In the case where % is compact the necessary and sufficient
conditions of 16.1 and 16.2 can be replaced by weaker conditions.

If {R;} is a basis of ¥, then R;, denotes the set of all ye Y
whose distance from R; is less than 1/n.

16.3. Let {R} be a basis of a compact metric space Y. In order
that o sequence {y,} converge to a point y € Y 4t is necessary and suf-
Jicient that for every positive integer ¢ the two following sentences are
equivalent:

(i) y e By; ,

(ii) for every positive inieger m there emisis a positive integer k
sueh that Ynir € Rin.

The necessity follows from 16.1 since the sequence R,
(n=1,2,...) is a strictly decreasing sequence of open sets and

R1=H Rz‘,n .
n=1

Suppose now that y is not the limit of {y,}. ¥ being compact,
there exists a convergent subsequence {yn } such that

Hm g, = yoFy-
n==c0
1 Let 4, be an integer such that
Ype B, and ymnonekR,.

Then (ii) is true (for the integer i;) and (i) is false. The suffi-
ciency is proved.

) See Kuratowski [1], p. 185, Kuratowski [2], p. 308 and Haus-
dorff [1], p. 267, -
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It follows from 16.3 that

16.4 Let ¢ a:nd @n (n=1,2,..) be mappings of an abstract set
in a compact metric space Y with a basis {R;}. Tn order that p=1m T
4t is necessary and sufficient that =00

— oo

(p-I(Ri) ZH Z(F;Ek (Ri,n)

n=1 k=

for every positive integer 7.

17. The definition of a convergent sequence of ho=
momorphisms. Let 4 be a C-algebra and let B be a o-complete
Boolean algebra. On account of theorem 16.2 we admit the following
definition:

A sequence {f,; of o-homomorphisms of B(A4) in B cbnve‘rges
+t0 a o-homomorphism f of B{4) in B (in symbols: f=lm}{,) if

n=0o

(*) nzjl f(G") =nl—?1 ]zg fn+k(Gn)

for every strictly decreasing sequence {G,} of open elements of 4.
The homomorphism f is then called the Ilimit of the sequence {f.}.

Obviously, a sequence G, € (.d) is said to be stricily decreasing
provided GpC@, (n=1,2,...).

17.1. A convergent sequence of c-homomorphisms possesses only
one limit 49).

" Tet F e F(4). On account of theorem 11.1 and axiom V it is

easy to define a strictly decreasing sequence G, < ®(4) such that
z:ﬂl( By (%)

/(F) —:;lljl hgfn»i—k(éln)'

The formula (*) defines the value of the Hmit f for every
F e F(d). On the other hand, if g, and g, are two o-homomorphisms
of Bld) in B and if g(F)=g(F) for every I ¢ F(4), then g,=¢,.
Thus theovem 16.1 is proved.

10) Tt may scem singular that we define the convergence of a sequence
of homomorphisms which are defined not on A bub only on B(4). We must
admit this form of the definition if we want theorem 16.1 to be true. In fact, the
formula (*) defines values of the limit / for de %(4) only and, in general, it is
possible that two different homomorphisms of A in B coincide on B(A).

13%
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" 17:2. Let h be a continuous homomorplkism of BiAy) (where
A, is a C-algcbra) in a C-alg bra A and let g be & o-homomorphism

of a o-complete Boolcan algebra B in a o-complete Boolcan algebra B,..

If a sequence {fn} of o-homomorphisms of B(A) in B converges io
a o-homomorphism f, then also

Lim gf, h=gfh.
For if {G,} is a strictly decreasirg sequence of open elemente

of A4,, then {h(G,)}is a strictly decreasing sequence of open elements
of 4. Therefore

[70E) =TT 3 fuial b6

n=1 k==
and consequently

[Tom@)=g{ [T76.)= o[ Sneatitte) =1=°1: St

¢. e d.

It follows from 17.2 that

17.3. Let b be a homeomorphisim of B(A,) on B(A) (where 4
and A, are C-algebras) and let g be an isomorphism of a a-complete
Boolcan algebra B on a o-complete Boolean algebra B, A sequence {f,}
of o-homomorphisms of B(A) in B converges lo o a-homomorphism §
if and only if

gfh=1im gf,h.

18. The relation between the convergence of sequences
of homomorphisms and the convergence of sequences of
mappings., Our definition of the convelgence of a sequence of
hon.omorphisms is a generalization of the notion of the conver-
gence of u sequence of mappirgs.

In fact, let & be an abstract set and let 4/ be a metrie separable
space. By theorem 16.2 a sequence ¢» of mappirgs of & in Y con-
verges to a mappirg ¢ of & in 4 if and only if the sequence f, = ¢t
of ¢-homomorphisms (of B(Z) in &(&)) induced by the mappings ¢
converges to the c-homomorphism f=g—t,

The question arises now what relation holds between the
convergence of a sequence of o-homemorphisms {fs} and the conver-
gence of mappings ¢, inducirg the o-homomorphisms f, in the
general case where the o-homomorphisms f, map a o-quotient.
algebra in a o-quotient algebra.
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The answer 15 given by the following theorem:
18.1. Premises:

(1) ¥ is a separable metrie space and oJ is a c-ideal of BY);

(i) X/T is a o-quotient algebra of a set &;

(iit) fosfusfar-- 18 & scquence of c-homomorphisms of B(Y) T
in X|TI induced respectively by mappings %0 P13 Py -e- Of & in Y.

Thesis: In order that fo=1lim{, it is necessary and sufficient

n=oco
ihat the sequence {rn} converge to g, almost everywhere (I), 4. e. that
Hm gn(@)=gq() for all points x ¢ & ewcept at most points belonging
H==CO

io a set X el

Necessity. Suppose that fo=1lim 7,. Let xbe a homeomorphism

n=oss
“which maps ¥ on a subset of the Hnibert cube F, Since the ¢-homo-

morphism f of B(H) in B(Y)/J defined by the formula
MH)=[="1(H)] e B(Y)/J for HeB(H)
is continuous (see theorem 9.5 (i)) we obtain by 17.2
{iv) foh =,}ix: Frlt.
Let po=xp, (n=0,1,2,...). Obviously
V) folH)=[y;}(H)] € X/T for every H ¢ B(FH) and n=0,1,2,...
Let {B;} (i=1,2,...) be a basis of F. Since the sequence 50)
{R;,} (n=1,2,...) is strictly decreasing and Rizn[z R;,, we obtain

by (@iv)

oY

fuil(Ri)= H an-i»kh(Rl,n)-

n=1 k==

Hence on account of (v)
{vi) L (BN =T 3 vebalRn)
n=1 k=
Let

i) X=3 (s B)— [T Swih B+ (T St B,) —vit(B)-
=1 .

i=1 n=1 k=1

n=1 k=

80) See the definition on p. 194,
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It follows from (vi) and (vii) that X ¢ I and

(viii) Fovy i(Rz>:l_'[_1 k;: Eoyify(Bin)
where &y=%—JX.
Let 51) p,=9,|&, (n=0,1,2,...). By (viii)

0

@0—‘(31) =H IE;I_‘:]E(HI',R)7

n=1 k=
i. 6. yy=Llim ¢, on account of 16.4. Therefore yy(s)=1Iim y,(x) for
n=co n=oo
every # e ¥—X. » being a homeomorphism, we obtain
pol@)=lm g,(x) for weF—X,

n=co

q. e. d.

Sufficiency. Suppose now that g(z)=lim ¢,(x) for ¥ ¢ F—X
n=occ

where X ¢ I, Let {[Gn]} be a strictly decreasing sequence of open
felements of B(Y)/I. By theorem 9.2 (ii) we may suppose that G
is an open subset of 9. By theorem 9.3 (i) we have

gz)me [621]=[Gap1]CG, S (n=1,2,...),
(%) g (Gra—@y) e T.
Let
(xi) Yo=Y — 3 (61 —62)
and Hy,=Y,Gr By (x) and (xi)
(i) - [H,1=[Gx] « B(Y)/L.

By (x) and theorem 8.2

yDHn-H: Y, yoGn—H: qu;‘;+1C?/0 Gy=Hp,
Le. {Hyp} is a strietly decreasing se ‘ s€ £
spaco 9. Lot g sequence of open subsets of the
L&Ey= e (Y —X
and =0
V=] %, (n=10,1,2,...).

51) See footnote ).
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The mappings ¢, map &,in Y, and lim y,=y,. By theorem 16.2
n=co

LB St

Consequently
Ol H =11 Sy, ()] « XL
Since Y—Y, «J, we have
7" Y — Y)=1 Y =Y DH=T],(0)=0,
ie. omH(Y—Y,) < I. Hence

- =X+ Y~-Y)eI
n=0
and

I (H)]=[¢7"(F)] (i=0,1,2,...; n=1,

Therefore by (xii) and (iii)

T06aD =11 3 FuralG)-
n=1 n=1 k=1

2,..).

{[@,]} being an arbitrary strictly decreasing sequence of open

clements of B(Y)/J, we infer that fy==lim f,, q.e. d.

The relation established by theorem 18.1 is important for
the following reason: for every C-algebra 4, for every o-complete
Boolean algebra B, and for every s-homomorphism f of B(4) in B
we may always assume without restricting the generality of our

consideration that

a) B(4) is of the form B(Y)/J where 9/ is a metric separable
space, e. g. Y is the Hilbert cube (see theorems 15.1 and 15.2);

b) B is a o-quotient algebra X/T of a set & ®);
¢) f is induced by a mapping ¢ of & in Y ).

Theorem 18.1 shows that we can always reduce the study of
the convergence of sequences of homomorphisms to the study of

the convergence ,almost everywhere (I)” of mappings.

52) See Lioomis [1], p. 757, and Sikorski {11, p. 256.
) See Sikorski [2], p. 19.


GUEST


200 R. Sikorski:

As such an application of theorem 18.1 we shall prove the
_followirg theorem:

18.2. Let A be a C-algebra and let f,f1,fy ... be o-homomorphisms
of B(4) in a o-complete Boolcan algebra B. If
i - f=lmf,,

=00
then also

(i) f=1m i,

Jor every subsequence {fu} of the sequence {fn}.

By theorem 14.2 there exist a o¢-ideal J of Borel subsets of
the Hilbert cube H and homeomorphism i of B(H)/J on B A4).
Similarly there exist a o-quotient algebra X T of a set & and an
isomorphism g of 4 on X/I. By (i) and 17.3

gfh=Tlm gf,h.
n=oo

Let ¢,¢n be mappings of & in H inducing respectively the
homeomorphisms f and f, (r=1,2,...). By 18.1

pley=lm ¢, ()
n=0ea
almost everywhere (I). Consequently

Pp(@)=Um ¢gn, ()
almost everywhere (I), i. e.

gfh=1lim gf,h
n=co

ou account of 13.1. By 17.3 the equality (ii) is true, ¢. e. d.

19. The (s)-convergence. It follows immediately from 17.1
and 18.2 that 5)

19.1 The set of all o-homomorphisms of B(d) in B together
with the definition of limit given in § 17 is o Frochet space L 59).

In general, the set of all o-homomorphisms of B(4) in B is
10t %) Kuratowski’s space L*5),

) In this section 4 and B denote always a C-algebra and a g-complote
Boolean algebra respectively.

%) See Kuratowski [1], pp. 76-77 or Kuratowski [2], pp. 83-84.

%) Theorem T in my paper [4] was falsely formulated.

Closure algebras 201

For example, let R denote the get of all real numbers and let 7, and L,

“he respectively the field of all measurahle subsets of the interval 021 and

the ideal of all sets Xe I of measure zero. Let {p, (@)} (0<z1) be a sequence of
measurable funetions such that n

(i) ¢, converges asymptotically to a function s

(ii) @, does not converge almost everywhere (I,) to @ 57).

Let f and f, be o-homomorphisms of BIR) in L'L, induced respectively
by ¢ and @, (n=1,2,...). By (ii) and theorem 58) 18.1 the sequence {f } does not
converge to f. Le.t { fmn} be ahny subsequence of {f - Since {«pm"} converges asympto-
tically to ¢ by (i), there exists a subsequence (ga"u } which converges to ¢ almost
everywhere (I). Consequently f=1lim 'f"n- hy 18.1. Thus the axiom55) 30 is not

n=o> K
satisfied, ¢. ¢. d. !

It is possible, however, to introduce another definition of
the convergence of a sequence of homomorpkisms in such a way
that the set of all homomorphisms of B(4) in B will be a space £+,
This follows from the followirg known remark 58%) on spaces L£:

Let £ be a space .L with o primitive term p=limp,. A se-

=00

quence {ppy is sald to be (*)-comvergent to an element pe@
(in symbols: p=1lim p, (*)) if every subsequence {Pm,} of {pa)

n=:=00
contains a subsequence {p,,,,f’} such that p=1lim p,,, . The space P*
t n=oo n
which we obtain from £ by admiftirg the wbove-defined notion
p=lmp,(*) as the primitive term is Kuratowski's space L.
ObV;‘iBusly lim p,=1p implies lim p,=p (*). Therefore the fundamental
n=co

n=co

topological notions (e. g. closu.e of a set, open set, closed set, ete.)
are the same in the space P* as in the space 2.

In accordance with the general definition we shall say that
a sequence {f.} of oc-homomorphisms of B{4) in B (#)-converges
t0 a o-homomorphism f of B{4) in B, in symbols:

f=Tim 7, (%)

if every subscquence {f,} contains a subsequence {f”’kn} conver-
gent to f.

Analogously, it X/T ig a o-quotient algebra of a set & and
i Gy PrPsy .. ave mappings of & in a metric space Y such that

eI (¥)e X for every Y eB(Y) (n=0,1,2,..),

&) An example of such a sequence {g,} is given in Saks [1], p. 61.
88) Where o is the ,null* 1deal, 1. e. J has only one element: the empty set.
s8) See Kantoroviteh [1], p. 148.
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202

we shall say that {g.} (*)-converges almost everywhere (I )'to ¢ if every-
subsequence {pm,) contains a subsequence {qﬂ”’kn} which converges.
to ¢, almost everywhere (I). .

Tt follows immediately from the above definitions and theo-
rem 18.1 that

19.2. Let &, Y, X, L, J, fny ¢n have the same meaning as in
the theorem 18.1. In order thai ]‘0=1112 fal®) it is necessary and suffi-
cient that the sequence {@a} (*)-can.‘nverge almost everywhere (I) to qq.

Obviously ]

19.3. The set of all o-homomorphisms of B(A) in B with the
(%)-limit as the primitive term is o space L*.

20. Baire homomorphisms. Let f be a o-homomorphism
of a C-algebra 4 in a C-algebra B. We say that f is of class a if f(F)
is o Borel element of the multiplicative class o for every F e Gld).
Obviously

20.1. f is of class a if and only if /|B(4) is of class .

Axiom V implies that every closed element is the product
of a strictly decreasing sequence of open elements. It follows imme-
diately from this fact and from the definition of convergence that.

20.2 ). Let f,f. (n=1,2,...) be o-homomorphisms of A in B.
Ij all homomorphisms fn arve of class o and

1% (A)=§_I§° fnlB(4)

then | is of class a--1.

An analogous theorem holds also for (*)-convergence.

Baire’s theorems on mappings of first elass can be generalized
in the following way: .

20.3. If { is & o-homomorphism of A in B of first class, then
D{f) is of first category in B.

The proof is the same as the proof of an analogous theorem
on mappings ).

90.4. Let § be o o-homomorphism of A in B. If%) B—ID(Bf)==0
for every B e F(B), B0, then f is of first class %2).

Let F e§(4). By axiom V, F'=3F, where T, ¢ F(4).
n=1

) See footnote 49).

80) See Kuratowski [1], p. 189 or Kuratowski {2], p. 301.

81y The symbol D(f) was defined in § 6, p. 177.

82) The proof of this theorem is an easy modification of an analogous
theorem given in Kuratowski{1}, p. 190. See also Kuratowski [2], pp. 301-302.
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We shall prove first that the equality
(i) : B=Bf(F). Bj(F,)
implies: B==0. In fact, if B satisfies (i), B is closed and
B=(Bf(F)—B{(F)~+Bf(F)) - (Bf(Fn)—Bf(F )+ Bf(F,))C
C(BI(E)—Bf(F))+(Bf(F,)—Bf(F,)) CD(B).

By the assumption, this inclusion is possible only in the
case B=0. )

On account of 3.4 there exists a developable element X, such

that f(F)CE, and f(F,)=0. Consequently j(F)=ﬁE,,. By 11.3
f(F) is & G4, q. e. d. n=1 )

21. The inducing of homomorphisms. In this section
F and Y are two separable metric spaces and I and J are twa
o-ideals of B(X) and B(Y) respectively.

The following theorem explaing the structure of o-homo-
morphisms of class a (in particular, in the case a=0: of continuous.
homomorphisms) 6):

21.1. Let f be a a-homomorphism of B(Y)T in B(FE)I. If F
is of dlass a, every mapping ¢ inducing f %) has the property:

(i) there ewists a set X e 1 such that the mapping ¢|F—X is

“of class a.

Conversely, if a mapping ¢ inducing the o-homomorphism | has
the property (i), f is of class a.

Suppose that ¢ induces a ¢-homomorphism f of class a. Let
{R.} be a basis of ¥. Since [R,] e G(B(X)/J), f([R,)) is of additive:
elass « in B(F)/T. By 11.4 there exists Borel set X,C&F of addi-
tive class a such that f([R,])=[X,]. Consequently

ii U Ry)]=[Xnl
(i1) Let L (Ba)]= [X5]

X =3 (g R =X )+ (Xn

n==1

(1ii) —g~(En).

By (ii) X ¢« X. The mapping y=¢|£—X is of class « since-
by (iii) the set

"P—_l(Rn):Xn(%_‘Y)

is of a(lditive clags a in F—X. Thus ¢ possesses the property (i)

83) See the remarks on p. 199.

84} If 9 is homeomorphic to a Borel subset of the Hilbert cube, such
a mapping ¢ always exists. See Sikorski [2], p. 19.
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Suppose now that ¢ possesses the property (i) and let y=¢|F —X.
Since X € 7, we have

(ED)=[p~"(F)]=[y~"(F)] for every F e F ).

w1 F) is of multiplicative class ¢ in F—X, i.e. y (F)=H—X
where H is of multiplicative class a in &. Rirce f([F])=[H—X]=[H],
J(F]) is of multiplicative class « in E(F)/T by 11.4. [F] being an
arbitrary closed element of B(Y)J (see 9.2 (iii)), the ¢-homo-
morphism j is of class a, q. e. d. '

The followirg theorem explains the structure of weak homeo-
‘morphisms between two C-algebras 85): .

21.2. Let h be a homeomorphism of B(Ei|1 on B(Y)[J. If
mappings p and ¢ induce the isomorphisms h and b respectively o),
there exist two sets Xoel arnd Yoe Y such that the mappings
o=¢|E—X, and py=vy|Y—Y, arc onc-one and continuous and

@o=y;". The mapping @, s thus & homeomorphism of F—X, on
Y—Y, such that

(1) WIXD)=lpo(X)] for every X eB(F) and

{ii) ¢o(X) e if and only if X el.

Conversely, "if there emist two sets X, e I and Yoeo and-

@ honwomorphism: %o Of —X, on Y —X, satisfying the condition (ii),
then the formula (i) defines & homcomorphism b of B(F, VI on B(Y)/T.
Siu(.ze  and ¢ induce the homomorphisms & and A~ respectively,
there'emst two sets X; eI and ¥,e such that the mappings
o=@ —X, and y=y|Y -7, are one-one, g, =y and %)

(it) MIX])=[gy(X)] for every X B ().

By ‘r:heore.m 21.1 there exist two sets X, ¢ I and ¥, ¢ J such
that the mappingy ¥ —X, and p|Y—Y, are continuous. Let

X=X +Z,+e7 (¥, and  Y,=T,+T,+p,(X,).

) See footnote €3).
ok 84) If. & and Y are homeomorphic to Borel subsels of the Hilhert cube,
such mappings ¢ and ¢ always exwsts. See Sikorski [2], p. 20.

87) The proof of this fact is the sp ¢ C s
paper (2], pp. 2091, ame as the proof of theorem 6.1 in my
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By (iii), ¢7(¥p) e I and ¢(X,) e J; hence XoeX and Yy .
The mappings

Po= |E—X,=0¢|(& —X,)~(X,+¢74T,)
and
Yo=Y [y*yo= 14 [(y'—yz) _"( Y{F% (‘Yg))

are continuous. They are - —u=l mince ¢ =~
y are also one-ome and g =y;? since =yt

(Kt ) =Y, e (X),
Py=0 & —X))~(X,+¢7NT,),
Yo=Y Y=Y )—(T,+¢,(Z)).
For any X ¢ B(&F)

WX = [ X)]=[po{ X) + o XX o)1= [o( X )]+ [ XX )] =
= [po(X)]+ M X X)) =po(X)]

gince XX, e Z. The equalify (i) is true. (ii) follows immediately
from (i). The first part of theorem 21.2 is proved.

Suppose now that the assumptions of the second part of 21.2
are fulfilled. It is clear that (i) defines then an isomorphism 7 of
B(E)/T on B(Y)/J. The proof that h and 5 are continmous is
analogous to the proof of the second part of theorem 21.1.
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algebras as fields of sets,

icm

On the boundary values of functions of several
complex variables, I.

By
A. Zygmund (Chicago, U.S.A.).

1. Introduection. Let f({) be a function regular for |Z|<1.
Fatouw's classical result asserts that if f({) is bounded there, then

for almost every point ¢¥ on [¢|=1 the limit of f(Z) exists as

approaches ¢® along any non-tangential path. A more general
vesult of Nevanlinna and Ostrowski asserts that the conclusion
of Fatou’s theorem holds if the houndedness of the function f is
replaced by the condition

27

1) f log™* |f(0c®)| @0 =0(1).
0

In a sense, this is the best possible result since, if w(u) is any
positive and increasing function tending to +oco with « but less
rapidly than log u, then there is a function f(¢) regular for |¢|<1,

satisfying the condition /nw(|f(ge"9)])(w=0(1), and deprived even

0
.of radial limit for almost every 61).

The main problem of this paper is that of boundary values
of regular functions of several complex variables. Let us begin by
the simplest case of two variables, and let f(2,£) be regular in the
bieylinder |z[<<1, [¢[-<1. Thus

fz,0) =3 e in
0,0

The first question that naturally occurs is whether an analogue
of Fatow's theorem holds here. The answer is affirmative: if f{s,7)
is bounded for |of<1, {¢{<1, then . :
lim  #(z,0)
2pel¥, Ll

1) $ee Paley and Zygmund [1].
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