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The lattice of all open sets of a Hausdortf gpace satisfies con-
ditions (1),...,(8) of the preceding theorem if and only if the space
is locally compact and totally-disconnected. Therefore (by virtue
of Stone's. theorem on the topological repregentation of Boolean
rings) ?) theorem 2 gives also the characterization of thg lattice of
all open sets of a locally compact totally-disconnected space. The
compact ease is obtained by adding condition (6) or (6').

%) See M. H. Stone, Applications of the theory of Booleun rings to general
dopology, Trans. Amer. Math. Soc., vol, 41 (1937), pp. 375-481.
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An undecidable arithmetical statement.
By

Andrzej Mostowski (Warszawa).

The purpose of this paper is to give an alternative proof of
the existence of formally undecidable sentences. Instead of the
arithmetization of syntax and the diagonmal process which were
used by Godel in his famous paper of 19311), I shall make use of
some simple set-theoretic lemmas and of the Skolem-Liwenheim
theorem.

My result is in some respect stronger than that of Godel:
The sentence corstructed by his method ceases to be undecidable’
if one enlarges the underlyirg logic by a new rule of proof, in the
gimplest case by the rule of infisite induction 2). The undecidability
of the gentence to be constructed here is, on the contrary, inde-
pendent of whether we accept the absolute notion of integers or
the relative (axiomatic) one 2*).

On the other hand the proof of undecidability to be given
below is unlike that of Godel non-finitary. It rests on the axioms
of the Zermelo-Fraenkel set-theory including the axiom of
choice and an additional axiom ernsurirg the existence of at least
one inaccessible aleph ). Finally the method of Godel gives un-
decidable sentences expressed in terms of the arithmetic of natural
numbers whereas we shall obtain here a sentence from the arith-
wmetic of reals.

1) Gidel (4], Numbers in brackets refer to the bibliography on p. 163.

?) Tarski [12].- ’

1) Other such sentences have heen constructed by
Tarski [15]. My method is different from theirs. )

3) Tarski[14]. Using Tarski’s terminology we would have to say that Rei's
weakly inaccessible.

Rossér [10] and
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1. Axioms of set-theory. V. Neumann *), Bernays 5), and
Go6del 8) have shown how to build up an axiomatic system of set
theory, presupposirg only the restricted functional calculus (with
identity) as logieal basis, in such a way that it contains only a finite
number of axioms. A glight modification of the systems of Bernays

and Godel allows us to reduce the number of primitive notions.

to one, viz. a binary relation 7).

We shall state here explicitly the axioms of the resulting
system (). -

Elements of the field of e are called classes and elements of
the domain of e are called sets. Thus every set is a class but not
conversely. The lower case Latin letters will be used as variables
for sets and the upper case Latin letters as variables for classes.

The axioms fall into several groups #):

Group 4.

Al JJa(ue X=ue ¥)>X=Y,

A2. 3 Jlh[uee=(u=a+4u=y)]

The set z whose existence is stated in 42 is called the non-
ordered pair of » and y and denoted by {z,y}. The ordered pair
of # and 4 is defined as

<o y>= {{=,y}, {w,2}}-
Group B.
BL. Sulla(<oyp e 4 = cy),
B2. Y¢[lulue C=(uecd)-(ueB)],
B3. 3p[lalue B=(ued)],
B4. Yp[lx(@ ¢ B = Yy;y,a) € 4),
B5. Y[y, 2> e B=x ¢ A),
B6. Yp[lx<m,y> ¢ B=<{y,a) e 4),
BT. Ya[lx:{<{3,{y,2>) ¢ B=<y,<z,8>) ¢ A),
B8. 3p[l:({m,<y,2>> € B =<m,<z,y>> ¢ A).

%) v. Neumann-[8]}.

¥) Bernays [1].

8) Godel [5].

7} The possibility of thiz reduction has been realised by A. Tarski. See
a remark made on p. 208 of [7]. ’

8) The logical symbols to be used in this paper are as follows: — (if, then),
+ (or), - (and), = (if and only if), ’ (not), 17 (for every), 3 (there is). The axioms

should have been preceded by general quantifiers so as to hind all the variables..
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From these axioms it follows that there is a uniquely deter-
mined class 0 (called the null-class) sueh that [z e 0).
‘We shall use the following abbreviations:

XCY for [[L(ueX—ue Y),
J(X) for [l (<, 13 € Xy uy € X —v=1e).

Group C.

0L D= 0)- [Iy{(y e @) > Xal(z e w)- (2 3y) - (yCo)Th),
C2. Syllwl(ev)- (v er)—(uey)],

03. SyI1al(uCa) —(u e y)],

Cd. J(A)=>Sy[Juf(n e y) = Fu[(v € x)- (1,8> € 4)]}.

Group D.
D1. A0 Y{(ued)-TLI(v eu)—(ved)).

Group H. .
Bl Pa(J(4)-[T{(e=£0) > Fy[(<y,a> € 4)-(y e 2)]}).

2. Preliminary lemmas. We shall assume as known the
derivation of set-theoretical theorems from the above axioms and
we shall make free use of them stating them in the current notations
and terminology ®). This applies in particular to theorems concerning
transfinite ordinals and to definitions by transfinite induction 0).

We define by transfinite induction the sets 7: as follows:

TO = 0} 1§+1=Exr'” Ctﬁ], tﬁ,:27;<21)7

(A — limit number).

It is easy to see that t,Cis for n<<é&.

If @ € tgpq—t¢, then @ is said to be of the iype &. It follows from
the axiom D1 that for every set  there is an ordinal £ such that «
is of the type &.

Irdecd, the axioms of group B entail the existence of the
class A of those sets which are of no type. If A were non void, there

9) It will therefore not always be possible to use swall and capital letters
in the manner explained on p. 144, )

10) For the treatment of ordinals on the basis of axipms 41—EL ef. 111,
{5], [8], and [9]. .

Fundamenta Mathematicae. T. XXXVI, 10
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would exist by D1 an element » such that « « 4 but no element
of 4 is in A. Hence every element v of » would be of a type, say
&(v), and all the ordinals &(v) would form a seb (according to the
axiom (4). Now there exists for every set of ordinals &(v) an ordinal £
surpassing all of them; hence we would obtain wCt; 1. e. % efpyy,
which proves that # is of a type not greater than £4-1 and hence
« non ¢ A. This contradiction shows that 4=0.

The sets

0, {0}, {0,{0}}, {0,{0} {0, {0}}},...

will be identified with the integers

and their set will be denoted by N. It is known how to define the
arithmetical operations, e. g.

sty, @y, av, 212y —1),...

on elements of N.
Bvery class of ordered pairs is called (binary) relation. If R
is a relation, then »Ry means the same as {w,y> ¢ R. The classes

EnymRyv EnymR?/s

are called domain, converse domain, and field of R and denoted by
D4(R), D_(R), and O(R).

I BCC(R), seB and no y «B satisfies the condition y R,
then = is ealled a minimum of R in B. If R has at least one minimum
in every non void class BCC(R), then R is called well-founded 11).

R is internal if for every two elements @y, Of its field the
following equivalence holds: -

FESy(eRy+yRe)

[y R, = yRoy) = (w,=w,).

An internal relation R has at most one minimuwm in C(R).

For any set # we denote hy e, the e-relation limited to wm,
1. e. such that

Uer=(Ues) (Uer) (ven)

1y Zermelo [17].

icm
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Theorem 1. . is an internal relation if and only if satisfies
the following condition E(x):

[l ({0 € @) - (u=E=20) - (v € @) > {[(w—v) + (1 —u)] 5=0}).
The proof is obvious.

Theorem 2. e is well-founded for every mon-void set x.

Proof. Evidently there is an ordinal £ such that #Ct;. Suppose
that ¢ is a non-void subset of the field of e,. Since ¢Cuwm, there are
ordinals #<C& such that ¢-1,5=0. If £ is the smallest ordinal of this
kind, then every element of ¢-#; is a minimum of e, in ¢. The existence
of these minima shows that e, is well-founded, q. e. d.

A set s is called complete 12) if every element of s is a part of s:
Hyly es—>yCs).

We assume as known the notion of isomorphism of two re-
Iations.

Theorem 3. For every well-founded and internal relation R
whose field is @ set there is a set s such that H(s), R is isomorphic with
<, and the field of e is complete.

Proof. R being internal and well-founded, there is exactly
one minimum z, of R in O(R). Put

{zo}=my, flz)=0

and suppose that sets m, are already defined for a<<£ and that
a function f is defined on the sum <.

Let mg be the set of all » € C(R)—}wcem. for which the fol-
lowing condition is satisfied

[Ty [yRe —y € Jacsa]
and let f(x) be defined on mi by the equation
{1) f) = By [y Re].

This definition of f(#) is correct since yRx implies (for z e my)
that y e Yacsiie and therefore f(y) is defined aceording to the in-
ductive assumption.

2) Gédel [5], p. 23.

10%
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It is evident that mg-m,=0 for &=y and that w;CC(RY

for every £. Since O(R) is a set, there must be a (smallest) ordinal ¢

such that mg;=0. .
We shall show that the difference D= C(R)—J ¢ is void.
Otherwise there would be a minimum 2 of K in D and 2 would satisfy
the condition
yRz—>ynoneD -y e SocrMa,
i. e. 2 would Dbe an element of m; contrary to the definition of .
Hence D=0 and consequently

C(R)=J M.

‘We now show by induection on £ that f is a one-one mapping
of the sum J.-pm. on a subset of ¢ and satisties the equivalence

(2) aRy = f(z) « f(y)

for every pair @,y of the elements of Jicsiie.

This i evident for §=1; it is also easy to see, that if f is a limit
number and the theorem holds for &< p, it holds also for &=p.

It remaing to consider the case f=y-+1 under the agsnmption
that the proposition holds for &é=y.

If » em,, then by (1) () is a set.of elements each of which is of a.
type <p. Hence f(z) is at most of the tiype  and therefore f(x) etyp1=1a.
The function f maps thus the sum S.cpm, on a subset of #.

In order to prove that this is a one-one mapping let us
suppose that # and y are two different elements of the sum SDlacaMe.
Sinee R is internal, there is an element « such that either (wRax)- (uRy)"
or (uRx) - (wRy). It will be sufficient to consider the first case. From
uRg it follows that #==2, and hence by (1) f(a) € f(z). Furthermore
%€ JucyMe since z is an element of at most my. If flu) were an
element of f(y), there would be an element U1 € DacyMa such thab
flw)=f(y;) and y,Ry. Since j is a one-one mapping on NeopMe,
it would follow u=y,, and consequently uRy what contradicts the

assumption. Hence f(u) non ef(y) which shows that fl) =k=f(y). Hence

@FY — f(@) = f(y),
i.e. f is a one-one mapping.

If » and y are elements of Dlacph @R /

; <pMa and aRy, then fw)ef(y)
according to (1). If f(a;.) €f(y), then by (1) there is & 2 such that
2Ry and f(w):h f(2). f being a one-one mapping, we obtain a==2 and
«Ry. The equivalence (2) is thug proved,

icm
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Putting =7 we infer that / maps C(R) on a set s and satisfies
the equivalence (2) for every pair #,y of the elements of O(R).
{ being a one-one mapping, it follows that the relations R and €
are isomorphie. Since R is internal, ¢, is internal too and theorem 1
gives H(s).

In order to prove that Cf(e,) is complete let us suppose that
y € O(es). It follows that y es and hence f'(y)e O(R) and con-
sequently there iy an a<<Z such that f™(y) ema. Tf a=0, then
=2 y=0 and yCO(e). I =0, then y=f"(y) is by (1)
identical with the set of all f(2) for which 2Bf '(y). Since f(2) e, Y,
it follows that all these f(2) belong to the field of e, and therefore
7 C0(e), which completes the proof of theorem 3.

For every set ACN we put

Ba=Eemn[271(20—1) € 4].

In this way a one-one correspondence is established between
subsets of NV and binary relations whose fields are contained in N.
The following theorem is evident:

Theorem 4, For cvery relation R with ai most denumnerable
Field there is a set ACN such that the relations R and R4 are isomorphic.

3. Set-theoretical and arithmetical formulae. A set-
‘theoretical formule is an expression built up from elementary ex-
pressions of the form

a=b, aebd

with the help of the logical connectives and quantifiers [[, and 3.
‘The letters a, & may be replaced by any other letters.

The formulae included in a given formula are called its con-
stituents. .

If one wishes to make general statements about formulae
one has to distinguish between the object- and syntax languages
and recur to intuitively clear but sometimes clumsy semantical
notions. For the readers benefit we may dispense with these com-
plications since we shall never make general statements about

formulae: we shall limit ourselves to the consideration of a finite

number of formulae. Symbols like @, ¥, ... or (e, a,...,m), e, a, :..,m)
are not names of formulae but abbreviations of them and specifically
of those of them in which variables a,...,m are free. We postpone
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till §5 the enumeration of formulae to be used in our proof, we
remark only that their class contains with every formula its con-
gtituents.

-Saying that all formulae have a property we wish to say that
all formulae of the considered finite class have this property. It
will be easily seen that we eliminate in this way all the meta-mathe-
matical notions and that all lemmas to he proved below helong
entirely to the object-language.

Suppose that the letter & does not occur in @. Replace in this
formula the unrestricted quanmtifiers []n, 3'» (where % is any Iefter).
by the restricted ones

[Tilhex—..0, Shl(hex)..]

{(which we will sometimes write, more coiveniently, as []nex and pey)-
The resulting formula will be abbreviated as @, and called
the formula @ relativized to @,
The symbol @(R,q,...,m) will be used as an abbreviation of
the formula resulting from @(e,q,...,m) by substituting in it the
letter R for the letter e.

Theorem 5. ((I)x)y's Dy

Proof. The theorem is evident for quantifier-free formulas.
Since its validity for the formulae @ and ¥ entails its validity for
the formulae @' and ®+¥ it will be sufficient to prove that if it
is true for a formula @, it is true also for the formula Ind. Let ¥
be an abbreviation of the latter formula. Then

Vo= ul(h e x)- @], (ij)y = Zixey[(h eie) (D))
and therefore
(yyx)y = Zb[(h ex)-(hey)- (q)x)y] = Z‘hu-u((px)x/-
On the other hand ‘If,‘c.yszh”.ydix.,, and since @y., = (D),

by the inductive assumption, we obtain (¥s)
the theorem.

p = Vs, which proveg
Theorem 6. If s=((c,) and « ¢ Syeeyi €8y them
(3) D(e, By ..y M) = Dy(ey, ay...,m).

Proof. If Qf' is an elementary formula a="0, then (3) reduces
to the tautological equivalence g—b = a=D,

icm
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If @ is an elementary formula @ e b, then (3) is equivalent to
aeb=[(acx) (aeb)(bex)]

which is true since aes and bes by the hypothesis and s is evidently
a subset of a.
From (2) it follows

Dy (€, 8,y ...,m) = Dyl e,y yiit)

which proves that the validity of (3) for a formmula @ implies its
validity for the formmula &'
Tf besides (2) the following equivalence holds

(€, tyvey Ry Mgoney @) = Pl €xy Gy ooy By 0y @)
then

Dy(e,ty..,m) Vele,a,.., 0 Ny ooy @)= D€y g ey 1) - Pl €,y eeny Tty 10y Q)

which shows that if the theorem is true for two formulae, it is true
for their conjunction.

Suppose now that (3) holds for a formula @ and let ¥(e,b,...,m)
be the abbreviation of Y.®D(e,a,b,...,m). Let by..,m be elements
of s. If ¥,(e,b,...,m), then there is an aes such that @.(ea,...,m)

%l
which yields according to (3) Ps(ex, Gyereym) and henee FoesD(ex; @ oo m).
Thus .
Weoleyby ooy m) = Pslens by ey it)-
I Wy(ex,b,...,m), then there is an @ e § such that @slex, @, .., m}
and therefore by (8) Psle,a,...,m) which gives SaesPs(€, 0y ey )
Hence _
st(ex,b,...,m)—>‘1Vs(s,b,...,m).

Theorem 6 is thus proved for the formula Y, q.e. d.

Theorem 713).‘ If the relations B, and R, are isomorphic,
8= 0(Ry), 8=C0(R,), Ugyory iy € C(Ry) AN yeces My correspond 1o
..My 0 the isomorphism betwecn R, and Ry, then

By, (Ryy @y ey M) = Dy, (By, tlyyevey M)

i r rov v A, Tarski and
1) Theorem 7 is a special case of a theorem Prov ed by A

A. Lindenbaum [16].
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Proof. The theorem is evident if @ has the form =5 or @ ¢ b.
We show similarly as in the proof of theorem 6 that if the theorem
holds for two formulae, it holds also for their negations and their
conjunction. )

It remains to consider the formula J3.P(e,4,...,m) which we
shall abbreviate as ¥(e,b,...,m).

I ¥, (Ry,b,..,m;), then there is an a,es; such that
Dy, (Byy @y byyoeymy). IE @, is the element of s, corresponding to
in the isomorphism between R, and R,, then the inductive assumption
gives @g(Ry,ay,byy...,Mm,) from which we infer that

Zazﬂszqssa(lgz: Gy bz; vy Mg}
Hence
Yo (Byy byy ooy iy) = P (R, by ..y ).

1

The converse implication is proved in the same manner.

Besides the set-theoretical -formulae we shall consider the
arithmetical formulae. In order to define them we first explain what
is meant by a term: the symbols 1,2,3,... and the small Latin letters
in italics are terms; if m and n are terms, then m-+ Ny M—Ny MM,
m" are terms.

The simplest arithmetical formulae are equalities m=n and
expressions m e A where m and » are terms and 4 any upper case
Latin letter.

Other arithmetical formulae are built up from the simplest
ones with the help of the logical connectives and, or, noi, ete. and
the quantifiers of the following four forms

Hp[p eN—...], 2el{peN)- ]
(*} [Ta[ACN—...], Dal(AEN)-..0.

These quantifiers will be written afterwards ag
{oexy  Zpen, [Tacw; Sacw.

The let-vters p and 4 may be replaced here by any other letters.

.'An arithmetical formula is called elementary if it does not
contain quantifiers of the form (*),

.The fol}oyv?ng theorem i3 an immediate consequence of the
admitted definitions and of the equivalence PR4g=2r-1(2g—1) ¢ 4:

icm
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Theovem 8. If Dlea,...,m) is a set-theoretical formula and
ACN, then Dowy (Ra,a,...,m) as well as Py(Ra,0,...ym) are equi-
valent to elementary arithmetical formulae.

It is evident that every proposition concerning only natural
or real numbers is expressible as an arithmetical formula. Further-
more those arithmetical formulae which correspond to usual axioms
of real number arithmetics are derivable from the axioms A1—E1
of the gystem (8). It follows that the whole classical mathematics
may be expressed and proved in the system ().

4. Reduction of certain set-theoretical formulae to
the arithmetical formulae. The theorem to be proved in this
section is the main result of the whole paper. It is a simple corollary
to the well-known theorem of Skolem-Lowenheim which for
-our purpose may be stated in the following form:

Theorem 9. If aca,..mex and D.le,a,...,m), then there
48 an ot most denwmerable subset y of & such that

(4) @Yy, M€Y, (5) Ey),
(6) Uep)=1y, (7) Dy(e, a,...,m).
Proofl), We may evidently assume that @ has the normal
form
ey o 23,1...2%]]:1..,prgtl...z,q... L2
‘where

Y=V €, @y eeeyBimy Yoy oees Yy Bryeeny By biyervylgyane)

is quantifier-free.
Owing to the axiom of choice the condition @D.(e,a,...,m) is
equivalent to the existence of a set of functions

Fil@ry ey @)y Gy(Bryeesy By Bry ey @)y ees
(where i=1,2,...,n, j=1,2,..,q,...) with the following properties:
10 they arve defined for all the values of their arguments running
Through x;
20 Gf @y ey ByyeeeyBpy. are clements of m, then
(8)  Wle@yeoyTmy i@, Bm)y ooy Tnlyy oy Bm)s 21500520
G1(BayeeeyBmy By "'7zp)7 vovy Ga(@yy ooy Bmy 21y "')ZP), )

1) For this proof compare Skolem [11].
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Let &(zt) Dbe a function defined for z,ies and such that
k(z,t) € (3—1)+(t—=2) for z=={. The existence of such a function
follows again from the axiom of choice.

Now define 4 as a smallest set such that

154 A. Mostowski:

GyoveyM €Y,

U ByyeeeBrny By ey Bpy oo €Yy TREN Fi(Byy e smi)y G101y oesBimy 21y 1oy 2p)yenn €31
(for i=1,2,...,m, 1=1,2,..,,4,...),

if 2,5 ey and z==t, then h(z,1) ¢ y.

It is evident that ¥ is an at most denumerable set and satisfies
the condition (4). If ,v ¢ y and u=Fv, then k(w,v) € [(u—0v)-+ (v—u)]-y,
whenee [(#—9v)4-(v—u)]-y==0 which proves that y satisfies the
condition (5). Since 0 e O(e;) and h(z,0) ez for 20 we see easily
that C(e)=y and hence y satisfies the condition (6). Finally y
satisfies the condition (7) since (8) holds for every @y, ..., Bm, 21y ..., 2pye. €3y
and the values of the functions f;,g;,... oceurring in (8) belong to y.

Theorem 9 is thus proved.

It will be convenient to use the abbreviation [#] for ((e,)
It is evident that

(yeloD) =(yea)-J{(t ew)-[(y et)+(t e )T}
from which it follows that .
9) Prale) = Jo{@s(e) [Ty[(y €5) = (y ew)- e{(t em)-[(y € 1)+ (¢ )T}

for any formula ®(¢). This equivalence will be used in section 5.
We shall now prove the following theorem:

l’heorem 10. For every set-theoretical formula D(e) there is anw
elementary arithmetical formula G(A,B) with two free wvariables
such that

2:APuy() [Ty € [8]) - (yCla])]} = Sucw [Iscy G(A, B).

Proof. By theorem 8 there is an element i ical
§ ary arithmetical
formula FH(A) such that v o

Doy (Ra) = FH(4).
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Let K(4) be the elementary arithmetical formula equivalent to
[T necir 0 [MaFER > Frecm ) (r Bam = rRyn)'].

K(4A) says of course that R, is internal.
Let .L£(4,B) be the elementary arithmetical formula equi-
valent to

EmeN(q”’ € B) 'l]ﬂeN{(p € B) “"'ZnsN[(’"I-RAp)+ (pRan)]} —
=Y men{(m € B)-[Tnenf(n € B)— (nRym)'T}.
L(4,B) says that if B is a non void subset of C(R4), them

R, hag 2 minimum in B.
Now take as G(4,B) the conjunction

F(4) K(4) L(4,B).

‘We shall show that this formula has the desired property. -

Suppose first that there is a set # such that @py(e) and lzl
is complete. .

By theorem 9 there is an at most denumerable set y such that

BE(y), Cle)=1y, and Pyle).

The second and third conditions give in virtue of theorem 6
®@,(e,). Since the field of ¢ is at most denumerable, there is by
theorem 4 a set ACN such that the relations ¢, and R4 are iso-
morphic. Applying theorem 7 we obtain from @,(e)

Doy (Ra),
which proves that FH(4).

‘We show further that K (4). For this purpose we assume-
that m==n and m,n ¢ O(R4). Let f be a function which establishes
an isomorphism between R, and ¢;. Thus f(m) and f(n) are different
elements of y. Since H(y), thereis a zey such that [zef(m)=zef(n)]-
Putting #=F""(2) we get r ¢ C(R4) and (rR4m=rR4n)’ which proves.

that K(4).

We shall finally show that if BCN, then .L(4,B). /This is evident
if B—0. Assume now that B==0 and that B is a non void subset
of the field of R4. Since R, is isomorphic with ¢ and ¢, i8 well-
founded (by theorem 2), B4 is well-founded too. If m is a minimum.
of Ry in B, then m ¢ B and

[Trenl( € B) = (R qam)].

This proves that .L(4,B).
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We have thus proved, that if &y(e), then there is a set ACKN
such that FH(4), K(4), and (for every BCN) .L(4,B). Hence

2 P(e) =Sacw[]pcn G (4, B).
Suppose now that there is a set ACN such that

G(4,B)
for every set BCN. It follows that
FH(4), K(4), and .L(4,B)

for every BCN. From K(4) we see immediately that B, is internal
and from [[pewL{4,B) that R4 is well founded. By theorem 3
there is a set « such that ¢, is isomorphic with R, and the field [#]
of e is complete. From H(A) we obtain depr o(Ra) and applying
theorem 7 we obtain @py(e,). This gives in virtue of theovem 6
Drq(e), whence, [#] being complete

2acn[lscnG(4,B) =3 {Da(e) [Tl € [&]) — (yCla]) ]

The proof of theorem 10 is thus complete.

5. Construction of an undecidable sentence. A limit
ordinal £ is called inaccessible if it satisties the following condition:
if ®Clg and @ is not of the same power as i, then % etg.

We shall add to the axioms of the system (8) the following
axiom

F1. There 1is at least one inaccessible ordimal £>
and shall call (S;) the resulting system of axioms.

In thie section we shall prove in (8,) theoremsg about the
system (S).

Let ®{e) be the conjunction of all the axioms of the system (8)
preceded by universal quantifiers so as to render all the variables
apparent.

) We shall apply the theorems established in gections 8 and 4
taking all constituents of D(e) as well as their normal forms as

<lements of the finite clagsy of formulae which were till now left
unspecified.
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Theorem 11. If &-is an inaccessible o1 dinal, then Q)ts. +1(e).

‘We omit the proof of this theorem since it is very easy and
essentially known 8),

Let A(e) be the following formula

2 2s{Psle) TIyl(y e )= (y e w)- Te{(t € 2)-[{y e ) (¢ € )T
Il € 8)-(t e y) > (t e )]}

According to (9) (see p.154) this formula could have beem
written as

(10%) 2 Prale)- [Ty[(y € [a]) - (yC L),
we prefer however the more complicated expression (10) since it

is important for what follows to have the formula 4A(e) written
without abbreviations such as ,[#]” and ,,C".

(10)

Theorem 18. There is a set a such that Pgle)- Ag(e).

Proof. Let & be the first inaccessible ordinal greater than o
and put e=tz (. Since [¢]=0, we obtain from theorem 11

(11) D ().

Tt follows from theorem 9 that there is an at most dennmerable
subset ¥y of @ such that
(12) By, (13) [l=0Clgl=y ad (1) By

The relation e, is well-founded and internal (see ‘(12) and
theorems 1 and 2) and therefore (see theorem 3) there is a set s
such that

(15) ey and e, are isomorphic,
(16) the set [s]=C(es) is complete.

It is eawy to see that (13) and (15) entail the equality
{(17) [s]= Cles)=s.

s is evidently an at most denumerable subset of a‘i. e. of tg41-
Hence if m es, then m eigp, i. e. mCls. Since m es implies TCz
because of (16) and (17), it follows that every element m of s is at

15) Cf, Kuratowski [6].
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most denumerable and hence m et; according to the definition of
inaccessible ordinals. This proves that

(18) sCt

and we obtain s ef; and finally

{19)

8 €.

Applying theorem 7 to the formula @(e) and using (13), (15),
and (17), we obtain the equivalence @y(e,) = Py(¢,). Theorem 6 shows
that we may omit the subseripts s and y staying by the letter e, In
view of (14) we obtain from the modified equivalence @y(e) and
further (since s=st;=sa according to (18)) Ps.(e). This gives in
virtue of theorem 5
{20) [Ps(e)]a-

It follows further from (17) that
yes=yels]
=(yes) Seflt es)[(y et)+ (¢ )]}
Since (tes)—(tea) we may replace the quantifier 3 by .
aud obtain the equivalence

W es)=(yes) Jeallt e 8) [(y €t)+ ey}

This equivalence being valid for every y, we infer that

Hgeul (3 € 8) = (¥ € 8) Jreal(t € 5)-[(y e 1)+ (1 e )]}

From (16) and (17) we see that (yes)-(tey)—(t es) which
proves that

(22 Dyeallteal(y € 3) (Pey)—>(tes)]

Consider now the conjunction of (19), (2 0), (21), and (22) and
put the quantlﬁer s before it. We obtain thus

E’ssa{[@s(i)]a‘nyea[(y €s)= (ye S)'Eieai(t €8) [y et)+
yeallreal (4 €8)-(t € y) — (£ € 5)T}

from which follows the validity of the weaker formuls

Yxea Mosa{[Psl

{21)

(tew)I}-

(e [Ipeal(y € 8) = (y e ) Dtea{lt € ) [(y e t)+
Hyeantea[yié) (tﬁ?j (tES ]}

(te )i~
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This formula is identical with the formmla A(e) relativized
10 @, i. e. with d,(e). Since [a]=a, we obtain Ap,(e) which together
with (11) yields @py(e)-A(e). Theorem 12 is thus proved.
Theorem 13. There is a set b such that Dpy(e)-[Apy(e)]'.
Proof. Looking at the proof of theorem 12 we see that there
are sets w etgro such that
(23)
(24) if
B, g. teyr I8 such a set. Let &k be the set of all these sets w.
By axiom D1 there is a seb b such that b « k& but no element of b

ig in k.
From b ek it follows in virtue of (23)

D) (e).

Suppose now that Ap(e). It follows according to (10) thatb
there ave sets @ and s such that

Dpuy(e)y

y e[w], then yClw].

(25)

(26) welb] and se[b),
(27) [Ps (€)1
(28) ITyennl(y € 8) = (y € @) Seerm{(t € #)-[(y e 1)+ e y)B],
(29) [ petr T erer[(y € 8)-{t € y) — (& € 8)].
(28) and (29) can. be rewritten thus
M1ty e s-[b]) = (y e -[6])- 3e{(t e 2-[6D)-[(y e )+ e )T},

TTuT1el(y € s-[B]) - (t e y-[b]) > (t € 8)].

According to (24) and (26) we have #C[b],-sC[b], and (for
¥ «[b]) yC[b]; we may therefore omit the letter b in square brackets
thorought these formulae and obtain thus

[Ty es)=(y ea) Se{(t em)-Ly e )+
[TpI1d(y e 8)-(t ey)— (e )]
The first formula shows that

s=[’n]

(t eI},

(30)
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and therefore the second is equivalent to
(31) y e [@]—y Clal.

Apply now theorem 5 to the formula (27). We obtain Pep(e)
what gives Og(e) since sC[b]. Replace here s by [#] according to (30);
it comes

{32) Prae).
Comparing (31) and (32) with (23) and (24), we see that » ¢ k.

On the other hand (26) proves that x e b. We arrive thus at a con-

tradiction since no element of b is in &.

This contradiction shows that it cannot be sp(e) and the
theorem 13 follows from (25).

From theorvems 12 and 13 we infer easily the following

Theorem 14, The formula A(€) is neither demonsirable nor

refutable in (8S).

Proof1s). If A(e) were demonstrable in (8), then every relation
satisfying the formula ®(e) would satisfy the formula 4(e). Now
there is by theorem 13 a set b such that all the axioms of the system
() remain true if sets and classes are interpreted as elements of [0]
and e as e; by the same interpretation A(e) is carried over into
a false statement. A(e) is therefore non-demonstrable in (8). )

Using theorem 12 we show in the same manner that A'(e) is
non demonstrable in (8) i.e. that A(e) is not refutable, ¢. e. d.

The formula A(e) yields thus an instance of an undecidable
formula. Observe now that according to (9) the formulae (10) and
(10*) are equivalent. Applying theorem 10 to the formula (10%)
we infer that the formula A(e) is equivalent to an arithmetical for-
mula of the form Yucn[[scnG(4,B), where G(A4,B) is an elemen-
tary arithmetical formula. This equivalence being provable in (8),
we obtain

Theorem 15. There is an arvithmetical formula &F of the form
DacxllscnG(A,B) where G(A,B) is an clementary arithmetical
formula such that & is undecidable in (8S).

8y ¥n this proof use is made of some notions from the general methodology
of deductive systems.

icm
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6. Remarks. (1) We compare here the undecidability of the
formula & (cf. Theorem 15) with the undecidability of formulae
constructed by the method of Gadel, Rogser, and Tarski).
The latter formulae assert their owh undecidability, their intuitive
truth is therefore evident. They become decidable after the intro-
duction of suitable axioms or of a suitable rule of proof.

In the case of the Godel’s formula it is sufficient to adjoin
the rule of infinite induetion, i. e. to replace the axiomatic (velativey
notion of integers by the absolute one.

To decide formulae constructed by Rosser and Tarski we
have to adjoin to the system a number of intuitively obvious
axioms stating certain properties of the notion of fruth for sen-
tences containing exclusively variables whose types do not surpass
a fixed type » (in Rosser’s case n=2). ’

The intuitive truth or falsity of the formula & from the
theorem 15 is not evident unless one assumes the existence of in-
accessible limit numbers. No ,reasonable” rule of proof seems to
exist which would be sufficient to decide within (8) whether & is
true of false.

We sec thus that the undecidability of & is caused by other
circumstances than the undecidability of formulae constructed by
the method of Godel.

On the other hand, if we define the .absolute” undecidability
as the undecidability irrespective of any assumption concerning
the existence of sufficiently high cardinaly or ordinals'®), we see.
immediately that & is not absolutely undecidable since it follows
from the axiom F1. A mathematical Platonist who believes in the
existence of ,any” cardinal and ,any” ordinal would therefore
consider & as ineontestably true.

The surprising property of & is that its truth eannot be
established without presupposing the existence of inaccessible
ordinals. Also it can be decided neither within arithmetic nor within
the theory of function nor within any theory translatable into a sub-
system of (8). Yet & expresses a fact concerning real numbers:z
it states that a Cd-set is non void. ’

1) G6del [4], Rosser [10], Tarski [15].

18) T owe the acquaintanece with this notion to conversations with Tarski.
The explanation given in the textis of course very vague and it is doubtful whether
an exact definition of the notion of absolute undeeidability will ever he found-

¢f., Tarski [14], p. 87.
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We note still one (though unimportant) difference between
the undecidable formulae of Godel and the undecidable formula &.
The formulae defined by Gddel are so long that it iy practically
impossible to write them down explicitly. The formula F is very
long too, but it occupies not more than one or two pages.

(2) The unprovability of A(e) within (S) could have been proved
as follows. The arithmetization of meta-mathematics enables us to
express as an elementary arithmetical formula the following meta-
mathematical statement: (§) is a self-consistent system. Let W be
the arithmetical formula obtained in this way. It is easy to see
that A(e)—9@ is provable in (8). Indeed A(e) says that there is a model
satistying all the axioms of (S) and therefore A(e) implies that (8)
is self-consistent.

Now 90 has been shown by Gédel®) to be unprovable within
{8) and hence A(e) is also nnprovable. :

We remark however that ) is decidable if one adjoins the
rule of infinite induction. The above proof gives therefore less than
the former proof since it leaves open the possibility that A(e) may
become provable after assuming the rule of infinite induction.

(3) If the existence of inaccessible numbers were provable
in (8), then A(e) would be provable too (ef. theorem 11). Hence
it is impossible to prove within (8) the existence of these numbers2?).

(4) The following remark concerns the theorem 9 of Skolem-
Lowenheim. It might seem that the hypothesis of theorem ¢
is unnecessarily strong. Indeed one can prove2) the following
theorem 9* which we propose to call ,theorem of Skolem-God el”:
if P(e) is a non-contradictory 2) formula, then there is a relation R with
at most denumerable field C such that Pq(R).

Theorem 9* however is neither stronger nor weaker than
‘theorem 9. Its hypothesis is indeed considerably weaker than that
of theorem 9 but its conclusion is weaker too since it cannot be
aseertained that R is well founded. As a matter of fact it can be
proved that for several formulae Y(e) the R of the theorem 9*
cannot be well founded.

13) Godel [4], Theorem XI, p. 106.

) This has been proved by Kuratowski [6]. Cf. also Fireston e and
Rosser [2].

) Godel [2].

2) I.e. such that taking @{ej as an axiom and applying all the rules of
functional caleulus one obtains never a contradiction. '
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In theorem 10 we used theorem 3 which ¢
for well-founded R. This
Tor our purpose.

(5) We shall show here that the axiom of choice counld have
been eliminated from the above proof. We have used this axiom

only in the proof of theorem 9. The following theorem is however
provable without this axiom:

ould be proved only
shows that theorem 9* would be useless

Theorem 9% If & is a well ordered sel, @ew,...,mex and
D.(ey...ym), then there is an at most denumeralle set Y such that
aecy,..,mey, Bly), Cle)=y, and Dy(e,a...,m).

Let @(e) be again the conjunction of the axioms A1-—-E1.

Godel®) has defined a transfinite sequence of well ordered
8et3 g, My, ..., me,... such that if £ is a suitable ordinal 2), then
Dme,4(c). Now the proofs of theorems 10-15 can be repeated using
theorem §** instead of 9.

(6) The finiteness of the axiom-system A1—F1 has enabled
us to carry out the proof of undecidability without using any
semantical notion. To extend our-construction to systems based
on an infinite number of axioms, one has to take the semantical
notion of satisfaction %) into consideration and the proof hecomes
much more complicated.
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Closure algebras.
By

Roman Sikorski (Warszawa).

This paper treats of s-complete Boolean algebras on which
there is defined a closure operation satisfying the well-known
axioms of Kuratowskil). A o-complete Boolean algebra with
a closure operation is called a clogure algebra.

Almost all topological theorems which can be expressed in
terms of the theory of Boolean algebras hold also for closure algebras.
The proof of these theorems on closure algebras is often the same as
‘the proof of analogous theorems on topological spaces. C. Kura-
towski has worked out a method for the proof of topological
theorems, the so-called topological calculus ). This method is
especially suitable for generalizing topological theorems to the cage
of closure algebras. In general, in order to obtain a proof of a theorem
on closure algebras it is sufficient to replace the term: »% subset
of a topological space” by the term ,.an element of a closure algebra”
in Kuratowski’s proof of an analogous theorem on topological
spaces. Therefore I shall omit proofs of many theorems on closure
algebras.

The specification of all topological theorems which hold for
closure algebras is not the purpose of this paper. I ghall show only
the method and the direction of generalizing and I shall cite many
examples of topological theovems (given in the work Kuratow-
ski [1]) which ean be generalized.

') Finitely additive Boolean algebras and lattices with a closure operation
were examined by many writers. S8ee e, g. Me Kingey and Tarski [1]; Monteiro
and Ribeirb [1]; Nobeling [1]; Terasaka 1.

*) Kuratowski [1] and Kuratowski [2]. See also S. Janiszewski,
Thése, Journ. Ee. Polytechn, (1911).
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