6 W. Sierpinski.

Telle est la famille de tous les ensembles {Buz, B2z, B3w,...},
o @ parcourt tous les mombres réels >1 (et ol Bt désigne l'entier le
plus grand <Ci).

Démonstration. Soient 4 et B deux ensembles infinis de
nombreg naturels équivalents par décomposition finie. On a done
des décompositions en ensembles disjoints:

A=A+ A,+...+A4pn, B=B;+By+...+Bu,
ot 4;~B; pour i=1,2,...,m.

Admettons que pour ¢=1,2,...,p les ensembles 4; et B; sont
guperposables par translation, soit B;=Afa;) pour i=1,2,...,p, eb
que, pour i=p-+1,p+2,...,m, il le sont par rotation. Les nombres g,
(¢=1,2,...,p) sont évidemment des entiers, et les ensembles A4,
(i=p+1,p-+2,...,m) sont finis (deux ensembles infinis de nombres
naturels ne pouvant pas &tre superposables par rotation).

n étant un nombre naturel donué, désignons par P le nombre
de tous les nombres de I’ensemble de nombres naturels P qui sont <n.
On voit sans peine que pour tout @ entier on a [P@(a)—P®| <[a]
I en résulte tout de suite que |B®—A{|<|a;| pour i=1,2,...,p,
et on en conclut que

40— 50| < g, on gl + i+ .+l Tt Byt
est un entier indépendant de n.
Soient # et y deux nombres réels distincts >1, p.e. z<<y, et

posons
A ={Ez,B2z,B3x,...} et B={Ey,BE2y,E3y,..}.

On vérifie facilement Que
+1

B2l 1cumsns o BRI

—1<BwgE™ L
v

d’otr

A > +

o

n+1 Y—
—=—2 , Mm}AW—BW>m+U%@——z

B ——

ce qui donne

lim (A—B) =+ oo,

n=oc
contrairement & linégalité |A®@—B®|Lg trouvée plus haut dans
I’hypothése que ALB. Les ensembles A et B ne peuvent donc
&tre équivalents par décomposition finie et le théoréme 4 se trouve
démontré. ‘
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On the inducing of homomorphisms by mappings.
. By

Roman Sikorski (Warszawa).

Let X and X be two fields of subsets of sets & and Y
respectively and let f be a homomorphism (i. e. an additive and
complementative transformation) of ¥ in X. I say that the homo-
morphism f is induced by a mapping y=g¢(x) of & into Y if

*) f(¥)=¢ YY) for every Y «X3).

More generally, if T and J are two ideals of sets of the fields X
and ¥ respectively and 7 is a homomorphism of the quotient algebra
Y)J in X/I, I say that a mapping ¢ of ¥ into Y énduces the
homomorphism f if

(*¥) g 1(Y)eX and F(Y])=[p~1(X)] for every Y eX.

[Y] denotes here the element of X/ (i.e. a class of sets belong-
ing to ¥) which containg the set ¥ ¢ ¥ and [¢p—'(¥)] denotes the
element of X/I which contains the set ¢—1(¥) e X.

This paper contains several theorems?) on the induecing of
homomorphisms by mappings ).

Terminology and notation. A mapping f of a ‘Boplean algebra 4
in a Boolean algebra B is called a homomorphism, if :

Fdy+ A =F(A)+1(4y) and  f(Ay)=(f(40)"

for every A,,A,e A. The symbols ,,+* and ,’“ denote here the Boolean oper-
ations of addition and complementation which correspond to the operations
of addition and complementation of sets in the general theory of sets.

1) Hence ¢~1(¥)e X for any Ye ¥. Conversely, if ¢~ (¥)e X for every
Y e ¥, then the formula (*) defines a homomorphism f of ¥ in X.

2) An application of one of these theorems (th. 3.1) to the theory of the
integral ig given in my paper [1].

3) This paper was presented by me at a session of the Warsaw Section of
the Polish Mathematical Society on December 12, 1947.

A similar problem on the inducing of isomorphisms between fields of
sets has been considered by E. Marczewski in paper [2].
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A one-one homomorphism is called an disomorphism. If 4 and B are
o-complete Boolean algebras, a homomorphism f of 4 in B is called a o-homo-

phi. if
ompE Pyt Ayt o) = (Ag) o+ ] () +

for every sequence {dp} of elements of 4. Every isomorphism between two
o-complete Boolean algebras is a g-homomorphism.

Let 4, B, C be Boolean algebras. If f is a homomorphism of 4 in B and ¢
is a homomorphism of Bin €, gf denotes the composed homomorphism 0= g(f(d))
of 4 in C. If f is an isomorphism of 4 on B, 17! denotes the inverse isomorphism.
of B on 4.

Let & be an abstract non-empty set. A class X of subsets of & iz called
a field it X;+X,e X and F—X, € X for every X;,X, e X. A field X is called
‘a o-field if the condition Xpe X (n=1,2,3,...) implies X;+Xy+X;+...e X.

Let X be a o-field. A non-empty class I CX is called a o-ideal of X if the
conditions: Xpel (n=1,2,3,...) and X,C X, imply: X;+ X+ X;-+...e I and
Xoe I

If X is a o-field of subsets of X and I is a o-ideal of X, the o-complete
Boolean algebra X/T is called a o-quotient algebra of &. Elements of X/I are
disjoint classes of sets X e X such that two sets X, X, belong to the same class
if-and only if

() (X —Xp)+ (X, —X) e L.

The class containing a set X ¢ X is denoted by [X]. The condition [X;]=[X,}
is equivalent to (iy. The Boolean operations in X/TI arve defined by the formulas:

(XY =[¥—X), D Xa]=[3 Xl

I. Homomorphisms between fields of sets.

1. Homomorphisms between finitely additive ficlds.
In this section X and ¥ are two fields of subsets of two non-empty
sets & and Y respectively. f denotes a homomorphism of ¥ in X.

For every ye Y let f(y) denote the product of all sets f(Y)
such that yeY ¢ X.

1.1. In order that a homomorphism f of ¥ in X be induced
by a mapping ¢ of & into Y, it is néccssary and sufficient that

() E=3 f{y).
veyY

The necessity follows from the fact that ¢—1(y)CHy

therefore
= Z’tp“‘ C%f y)C&E.

), and
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In order to prove the sufficiency suppose that (i) is true. From

the definition of f(y) it follows that for y,==y, either fly,)=7(y.)

or f(y.)-f(y,) =0. Hence we infer that there exists a (transfinite)
sequence {y,} of elements of ¥ such that

Diy)=% and fy,) f(y,)=0 for o'=a".

«

For every z e & there exists exactly one ordinal number «
such that » ¢f(y,). Let ¢()=y,. ¢ is a mapping of & into ¥.
Now let ¥ be any element of ¥, let {y.} be the sequence formed
of all terms of {y,} which belong to ¥ and let {y} be the @equence
formed of all remaining terms of {y,}. We have

@ E=T M)+ and
(i) S Z i) =0.
Since 4, ¢ ¥, we have f(y,)C/(Y) and consequently
SHYICHE).
Analogously
SHACHY—T)=E—f(T).

It follows now from (iii) and (ii) that
f(Y)~\"'f(Ju) g (X)

and thus the theorem is proved.

A two-valued measure on a field ¥ is a function m defined for
every ¥ e ¥, such that: 10 m assumes only the numbers 0 and 1;
20 (YY) =1; 30 m(¥+¥y)=m(¥;)+m(¥,) for any two disjoint
sety ¥, Y, e X.

A two-valued measure m is ealled trivial if there exists ye Y
such that y e ¥ ¢ ¥ implics m(¥)=1. Then, obviously, the condi-
tion ye ¥ is equivalent to m(¥)=1. Conversely, if there exists
yeY such that m(¥Y)=1 implies ye Y (for YeX), then m is
trivial,
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1.2. In order that every homomorphism f of X in X be induced
by a mapping ¢ of & into Y, it is necessary and sufficient that every
two-valued measure m on X be trivial. :

Necessity. Let m be any two-valued measure on ¥ and let

fy)=F it m(¥)=1
and .
f(XY)=0 if m(X)=0,

for every Y eX¥. f is a homomorphism of ¥ in X. From the
agsumption, there exists a mapping ¢ of & into Y such that
@1 (Y)=f(X) for every YeX. Let #ye & and y,=g¢(x,). If m(¥)=1,
then f(¥)=F =¢ YY), hence y,=¢(z,)eY. Thus the measure
m is trivial. )

Sufficiency. Suppose that a homomorphism f is not induced
by a mapping ¢. From 1.1 it follows that there exists an x, such
that

@) o € ?:%}f('y)-
Let us put for Y ¢ X:

m(Y)=1 if x,ef(¥) -
and »

m(Y)=0 if a,nonf(Y).

) m is a two-valued measure on ¥. By hypothesis m is trivial,
i. e. there exists an element y,¢¥Y such that y,e¢Y ¢ ¥ implies
m(Y)=1. Hence x,e¢f(y,) which contradicts the formula (i). The
sufficiency is proved.

The field of all subsets of a set ¥ will be denoted by S(¥).

1.3. If 3 is finite, every homomorphism of S(Y) in a field X
és induced by a mapping ¢ of & into Y. If Y is infinite, then for
every field X there ewists a homomorphism f of S(Y) in X which is
not induced by a mapping ¢ of E into Y.

The first part results immediately from 1.1, the second from 1.2
since for every infinite set ¥ there exists a two-valued non-trivial
measure on S(Y).

icm
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1.4. For every field Y of subsets of Y there ewists a set Z and
a field Z of subsets of Z such that:

2) YCZ;

b) the mapping g(Z)=ZY (for ZeZ) is an isomorphism
of Z on X;

c) every two-valued measure on Z is trivial;

d) for every homomorphism f of ¥ in o field X (of subsets of &)
there exists a mapping o of & into & such that

HY)=g¢~L(g~(X)) for every Y eX.

Let M(Y) denote (for ¥ ¢ ¥) the set of all non-trivial two-
valued measures m on X such that m(¥Y)=1 and let

Z= ?/+M(Z/)7

and .
MY)=Y+M(Y) for YeX.

The class Z of all sets h(¥) (where ¥ ¢ ¥) is a field of sub-
sets of & and h is an isomorphism of X on Z. The properties a)
and b) are obvious. g is the inverse isomorphism of h.

I m is a two-valued measure on Z, mh is the same on X¥.
If mh is trivial, then there exists an ye 3 such that ye YeX
implies mh(Y)=1. Since the conditions ye¥Y and yeh(Y) are
equivalent, m is trivial. Suppose now that mh is a non-trivial measure
on Y, i.e mhe M(Y)CZ. It mheZ=NT) €Z, i e. it mhe M(Y),
then mh(¥)=1, hence m(Z)=1. Therefore m is also trivial. The
property c) is proved.

fg is a homomorphism of Z in X. Z having the property c),
on account of theorem 1.2 there exists a mapping ¢ of & into Z

such that
fg(Z)=¢™1(Z) for every ZeZ,
i e.
. f(X)=¢~1(g~1(X)) for every Ye X,
q.e.d.

As Stone has proved 4), every Boolean algebra may De considered as a field
of gets. On account of theorems 1.2 and 1.4 every homomorphism between two
Boolean algebras may be considered as a homomorphism f between two fields
of mets which is induced by a point mapping ¢.

¢) See Stone [1], p. 106.
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2, g-homomorphisms, A two-valued meagsure m of a

o-field ‘¥ of subsets of ¥ is called a two-valued o-measure if
m( Y+ Yot ...y =m(¥)+m(Y,)+
for every infinite sequence {¥,} of disjoint sets which belong to ¥.

The following theorems on o-homomorphisms are analogous
to those on finitely additive homomorphisms in § 1.

2.1 In order that every o-homomorphism f of a o-field ¥
(of subsets of Y) in a o-field X (of subsets of &) be induced by
a mapping ¢ of & into Y, it is necessary cmd sufficient that every
two-valued o-measure on ¥ be trivial.

2.2. For every o-ficld X of subsets of a set Y theve exists a o-field Z
of subsets of a sct G such that:

?/CZ;
) =YZ (for Z ¢ Z) is an isomorphism of Z on X;
¢) eveM/ two-valued o-measure on Z is trivial,
d) for every o-homomorphism f of X in a o-field X (of subsets
of &) there exists a mapping ¢ of ¥ into Z such that
f(Y)=¢~lg YY) for any Y eX.

The proofs of 2.1 and 2.2 are analogous to those of 1.2 and 1.4.

‘We say that a cardinal namber n is of two-valued measure zero
if every two-valued s-measure on &S(%Y), where ¥ is a set of potency n,
is trivial. If n is less than the first aleph inaccessible in the strict
sense, 1 is of two-valued measure zero ).

By this definition and theorem 2.1 we obtain:

2.3. In order that every o-homomorphism f of a field S(¥Y)
in a o-field X (of subsets of &) be induced by a mapping @ of &
into Y, it is necessary and sufficient that the cardinal number Y be of
two-valued measure zero. .

The following theorem is another consequence of theorem 2.1:

2.4. In order that every c-homomorphism of a field of all Borel
subsets of a topological metric space Y in a o-field X (of subsets of &)
be induced by a mapping ¢ of & into Y, it is necessary and sufficient
that the cardinal number Y be of two-valued measure zero.

This follows from the fact that every two-valued o-measure
on the field of all Borel subsets of a metric space ¥ is trivial if
and only if ¥ is of two-valued measure zero 5).

4) See Ulam [1], p. 150.
5) See Marczewski and Sikorski [1], p. 139.
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II. cshomomeorphisms between oc-quotient algebras.

3. Homomorphisins defined on fields of Borel sets.
In § 3 and § 4 we shall study o-homomorphisms of a o-field ¥
(of subsets of & set %) in a o-quotient algebra X/I (of a set &).
According to the definition (**) we say that a o-homomorphism f
of ¥ in X/I is induced by a mapping ¢ of & into ¥ if

(k) e (Y)eX and [p~Y(X)]=fY) for every Y eX8).

We begin with a study of the cagse where X iy the field of all
Borel sets of real numbers. R will denote always the set of all real
numbers together with d-oco, and W will denote the set of all (finite)
rational numbers. For r ¢ W the symbol R(r) will denote the set
of all real numbers greater than 7.

Lemma. Let X(r) be (for every re W) a subset of o set &. If

=2 X(r)
>r,
rew

for every vy e W, then there exists a mapping o of & into R such thai
(i) X(r)=p=1(R(r)) for every reW.

Let p(x) denote (for every ¢ &) the upper bound of all ra-
tional numbers ¢ such that z e X(r). In particular ¢(z)=—oco if
znon e X(r) for every re W and ¢(x)=-oo if z e X(r) for every
re W. The function ¢ satisfies the condition (i). The easy proof
is omitted. ‘

If G is a topological space, the symbol B(G) will denote
the o-field of all Borel subsets of 6.

3.1. Bvery o-homomorphism f of B(R) in a o-quotient algebra
X/ of a set & is induced by o mapping ¢ of & into R.
For any r e W let X%r) be a subset of & such that

() Xor) e X and [X°(r)]=F(R(r

and let

(ii) Xo= 3 ((X00)— 3 X))+ (5 Xo(r) — Xo(r)),
r >r' >r

(i) X(r)=X0(r)— X0

8) Conversely, if the first of the conditions (***) is satisfied, the second
defines a homomorphism f of ¥ in X/I
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(r, »" denote always rational numbers). Since R(r)y=) R(r), we
r
have

(iv) X =(R(")) =f§§, Rm)z[g X))

>
T being a c-ideal, we obtain from (ii) and (iv) thab
(v) XoeI
and from (i), (iii) and (v) that
(vi) X(r)e X and fRB(r))=[X(r)] for every reW.

It follows easily from (ii) and (iii) that the sets X(r) satisfy
the assumptions of the above proved lemma. Thus there- exists
a real function ¢ defined for all x ¢ & such that

(vid) o~ Y(R(r))=X(r) for every reW.
From (vi) and (vii):
(vili) ¢~1(R(r))eX and [p~(R(r))]=f(E(r)) for every re Ww.

) Let B be the clags of all sets ¥ e B(R) such that the condition
(***) is satisfied. By (viil) R(r) e B for every » e W. It is easy to
prove that B is a o-field. Consequently B(R)=21B, q.e.d.

3.2. Let 0=FCR. In order that every o-homomorphism f
of B(D) in any o-quotient algebra. X[T (of o set &) be induced by
a mapping ¢ of & in B, it is necessary and sufficient that Z e B(R)
(i. e. that & be a limear Borel set).

Sufficiency. The homomorphism f(&R) defined for B ¢ B(R)
maps B(R) in X/I. By 3.1 there exists a mapping ¢, of & into R
such that

1) ¢UR)eX and [gFY(R)=f(2ZE) for every R e B(R).
Suppose that ZeB(R). Consequently K—ZLeB(R) and by (i):
G (R—2) e X and [¢;! (R—2)] =[(Z(R—2))=0,

hence

(it) ‘ o7 R—Z) € 1.

icm
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Let 2, € £ and let

ple)=gpy(z) for o epy'(3F)
and
p(@)=2y for egy(R—Z).

It results from (ii) that
(iii) ¢~Y(R)eX and [p~!(B)]=[g;'(R)] for every B e B(R).
If Z ¢ B(Z), then Z ¢ B(R) and therefore by (i) and (iii):
p1(Z)e X and [p1(Z)]=f(Z) for every Z < B(Z).
Since p(F)CH, the sufficiency is proved.

Necessity. Suppose now that every o-homomorphism of
B(Z) in any o-quotient algebra is induced by a mapping.

Let F=R—%F, X=%B(%) and I=B(%) B(R) (I is the
ideal of all Borel subsets of & which are contained in- &).

I ZeB(Z), then Z=FR where ReB(R). Obviously
X=R¥ ¢ B(F). Thus for every ZeB(Z) there exists a set X
such that )

() XeX and Z4+XeB(R).

If X, is another set such that X;e&¥ and Z4+ X, e B(R),
then

(X—X)+ (X,—X) =((Z+X)—(Z+ X))+ (Z+X;)—(Z+X)) e B(R).

Since the set (X—X,)-+(X;,—X) is contained in &, it belongs

to 1. Consequently
[X]=[X,].

Let §(Z)=[X] for every Z e B(Z), where X fulfils the con-
dition (i). From the above considerations it follows easily that f
ig a o-homomorphism of B(Z) in the o-quotient algebra X/I.

By the assumption, there exists a mapping ¢ of ¥ in % such
that
(i) ¢ UZ) e X=B(F) and [¢g~UZ)1={(Z) tfor every Z «B(Z)-

From (i) and from the definition of f

(iid) Z+4o1(Z) e B(R) for every Z e B(L).
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Let p(#) =x for ¢ Z and p(z)=g¢(z) for z ¢ F. The mapping y
maps K on Z. From (iii) we obtain that

p N Z)=Z+p Z)c B(R) for every ZeB(F),
i. e. that  is a Baire function. Consequently

Z=E (y(w)=x) « B(R),
qg.e.d.

4. Homomorphisms defined on a simple field. Theo-
rem 3.2 can be generalized for an important kind of fields of sets
which I shall call simple fields. A field ¥ of subsets of ¥ is simple
if there exists an enumerable sequence {¥,} of subsets of ¥ such
that ¥ is the least o-field (of subsets of %), containing all the
sets ¥, (n=1,2,3,...). :

C will denote always Cantor’s discontinuous set 7).

4.1. A o-field is simple if and only if it is isomorphic to a field
of Borel subsets of a separable metric space.
' The sufficiency follows from the fact that every field of Borel
subsets of a metric separable space-is simple. The necessity follows
from the following theorem:

4.2. Every simple field X of subsets of Y possesses the following
properties:

a) there exists a sct ZCC such that X is isomorphic to B(B):

b) every two-valued o-measure on ¥ is trivial;

c) every o-homomorphism f of ¥ in a o-field X (of subsets
of &) is induced by a mapping. ¢ of & in Y.

Proof. a) The characteristic function 8) ¢ of {¥,} maps the
set Y on a set ZCC and induces an isomorphism % of B(Z) on ¥'?9).

7) This means: the set of all real numbers ¢ which can be represented in the
1,
form = S E?I where #,=0 or 2.
=1
8) The characteristic function of a sequence {¥,} is the function
<" n (9)
W= S
n=1
where cn(y) =2 if ye ¥pand ¢, (y)=0if y non € ¥y,. See Marczewski 17, p. 211.
9) See Marczewski [1], p. 212.
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b) Let » be any two-valued o-measure on ¥. Then m,=mc—!
is a two-valued o-measure on B(%), thus it is triviall0). Let 2y
be an element of Z such that z,eZeB(Z) implies my(Z)=1, and
let y, be an element of ¥ such that e(y,) =z, It is easy to prove
that yge XY e ¥ implies m(¥)=1. Hence the measure m is trivial too.

¢) is an immediate consequence of b) and 2

A topological space G is called a Borel spa,ee 1f it is homeo-
morphic to a Borel subset of the Hilbert cube.

4.3.. In order that every o-homomorphism f of a simple field ¥
(of subsets of Y) in an arbitrary o-quotient algebra X|I (of a set &)
be induced by a mapping ¢ of & in Y, it is necessary and sufficient
that X be isomorplic to o field B(G) of Borel subsets of a Borel space G.

Sufficiency. Let ¢, h and & have the same meaning as in the
proof of 4.2. From the assumption that ¥ is isomorphic to B(G)
it follows that B(G) and B(%) are isomorphie. Hence there exists
a generalized homeomorphlsm (in the sense defined by Kuratowskit)
between ‘G and Z*2). Since T is a Borel space, Z ¢ B(R).

The o-homomorphism fh maps B(Z) in X/I. On account
of 3.2 there exists a mapping y of & in Z inducing the homomor-
phism fh. Let x(z) denote (for every z¢Z) an element of % such
that ¢x(2) =2. The mapping ¢g==xy of & in y induces: the homo-
morphism f, q.e. d.

Necessity. Suppose that every o-homomorphism of ¥ in X/T
is induced by a mapping of & into' Y. Let Z, h, ¢ have the same
meaning as in the proof of theorem 4.2, and let g be a ¢-homomorphism
of B(Z) in X/I. Then f=gh™" is a a-homomorphism of ¥ in X/I,
induced by a mapping ¢ of & into . It is easy to show that py=cp
is a mapping of & in Z inducing the homomorphism g. X, T, g being
arbitrary, % is a Borel space sincé (by 3. 2) Zis a Borel subset of R.
The necessity is proved.

As an immediate consequence of 4.3 we obtain the following
characterization of Borel spaces (which is expressed only in terms
of the theory of Boolean algebras and of the general theory of sets):

4.4. In orvder that a separable metric space ‘G be a Borel space it
18 mecessary and sufficient that every o-homomorphism of B(G) in any
a-quotient algebra XX (of &) be induced by a mapping of & into G.
, p. 139.

W

1) See Marczewski and Sikorski [1

1) See Kuratowski [1], p. 221

12) See Marczewski [2], p. 138
Fundamenta Mathematicae, T. XXXVI.
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If Y is a field of subsets of ¥ and ye Y, then At(y) wil
denote the product of all sets ¥ such that yeY ¢¥. The sets
At(y) will be called atoms of X. Obviously (for every Y eX)
At (y)CY if and only if ye Y. If yy=1,, then either At (y,)=At(y,)
or Ab(y,) At (y,)=0.

4.5. Let ¥ be a simple ficld of subsets of Y, let X/T be a
a-quotient algebra of & and let @, and @, be two mappings of & into Y
such that ¢;7YY)eX for every Y e¥, i=1,2. The mappings ¢,
and @, induce the same homomorphism of X in X|I if and only if

) F (Ab{gu(@))= At (gy(2)) € I.

x

If every atom of X contains only one point (for instance if ¥=9B(G)
where T is a separable metric space), the condition (i) ean be expressed in the
form:

(ii) E (@u(@) F o)) € T.

x

Necessgity. Let
X = [ (At(@(@) At (ga@)))

and let {Y,} be a sequence of sets such that ¥ is the least o-field
which containg all ¥,. It is easy to show that for every pair of
different atoms At (y,), At (y,) there exists an integer » such that
either .

At (1,)CYn and At (y,)- ¥,=0

or
At (71)- Y,=0 and At (y,)CY,.
Therefore
X=%’((Pr‘(Yn)—%‘l(Yn)H—.Z'(w;‘(Yn)——svﬁ(Yn))-
If ¢, and @, induce the same homomorphism, we have
Lo (Xn)I=[g;*(¥a)]
ie.
?’I-l(yn)”__%_i(yn) eIl
and

%“1(]7,,)——(;61“1(1’,,) el
Hence X eI, q.e. d.

On the inducing of homomorphisms 19

Sufficiency. Let X have the same meaning as in the proof
of the necessity. If ze F—X, then At (g(x))=At(p,x)). Since
the conditions ’

o (@) e Y and At(g,(»)CY

(=1,2, ¥ e X) are equivalent,
e Y)—X=g7 1 (¥)—X
for every Y e ¥. If X eI, then
lor ()] =[g; " (¥)—X]=[e; (X)—X]=[e; (Y]],
q.e. d.
5. Homomorphisms between o-quotient algebras.
By (**¥) and (***) a mapping ¢ induces a homomorphism f of a
o-quotient algebra X/J in a o-quotient algebra X/I if and only
if ¢ induces the homomorphism A of ¥'in X/T defined by the formula
MY)=f[Y]) for YeX.
On account of 4.3 and 4.5 we obtain the following theorem:
5.1. Let X/I and X[J be o-quotient algebras of & and Y
respectively. Then:

a) in order that a mapping ¢ of & into Y induce a o-homo-
morphism | of X|J in X[I, it is necessary and sufficient that

(i) ¢ XY)eX for every Y eX and ¢ (XY)el for every Y e

b) if X is simple, two mappings ¢ and @, (of & into Y)
satisfying the condition (i), induce the same homomorphism f of X[J
in X[I if and only if

) E (At (puo)) = At (pafo) < T5

¢) if X is isomorphic to the field of Borel subsets of a Borel space,
every o-homomorphism f of X|J in X/I is induced by o mapping ¢
of & into Y.

If every atom of ¥ contains ounly one element, the condition
(ii) is identical with the condition:
(i) E (p(@)F=gp(z)) € L.

x

2%


GUEST


20 .. R. Bikorski:

Greneralizing the definition given in par. 4 we shall say that a ¢-complete
Boolean algebra A4 is simple if there exists.an enumerable sequence {An}
of elements of A such' that the least o-complete subalgebra of A4 containing
allAp (n=1,2,38,...) is identical with 4.

5.2 Every simple Boolean algebra A is isomorphic to a o-quotient algebra
B(C)/T of Cantor's discontinuous set C.

4 is isomorphic to a o-quotient algebra ¥/I of a set Y 1%). Let h be an
isomorphism of ¥/I on A and let ¥, be a set of ¥ such that

An=MW[¥y]).
f(Z)=Hh([c—1(Z)]) for ZeB(C).

(where ¢ is the characteristic function of the sequence {¥n}) defines a g-homo-
morphism of B(C) on 4. Let J he the ideal of all Z e B(C) such that {(Z)=
A is isomorphic to B(C)/J.

Let now 4 be a simple Boolean algebra and let B be any o-complete Boolean
algebra. B being isomorphic to a o-quotient algebra !3), on account of 5.2 and 5.1¢)
every o-homomorphism f of 4 in B may be considered as a homomorphism be-
tween two o-quotient algebras which is induced by a point mapping ¢

The formula

6. Isomorphisms. In this section we shall consider two
Borel spaces & and ¥ and two o-ideals Tand J of B(F) and B(Y)
respectively such that B(&)/I is isomorphic to B(Y)/.

Under these assumptions:

6.1. For cvery isomorphism h of B(F)/I on 58(?/)/;7 there
ewist two Borel sets: Xoe F and Y, eJ and a generalized homeomor-
phism ) @, of F—X, on Y—Y, such that

MIXD) =[po(X)] for every X « B(K)¥).

Y being a Borel space, on account of theorem 5.1 c) there
exists a mapping  of Y into & which induces the o-homomorphism %
of B(X)/T on B(Y)/J. Analogously there exists a mapping ¢ of E
into & which induces the o-homomorphism & of B(Y)/F on

&)/1.

The mapping e of & into & induced the o-homomorphism
vk of B(&)/Tin B(F)/T. Since h™ K[ X])=[X] for every X < B(Z),
the homomorphism A ~'% is also mduced by the identical mapping

%(z) =2. By theorem 5.1b) the set

Lo= I (yp(o) 1)

13) See Loomis [1], p. 757 and Sikorski [2], p. 2B6.

1) In the sense defined by Kuratowski. See footnote iy,

1) [X]is an element of X/I and [po(X)] is an element of ¥/J. gy (X) is
the set of all y=g(x) where ¢ X —X,.

icm
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belongs to the ideal I. Analogously the set

Yﬁéf? (pp(y)+y)

belongs to oJ. Let A and B denote the geometrical images of ¢ and y
respectively, i. e. the: subsets

E (y=¢(x))

xy

and Jg (@=v(y))

of the cartesian product & x Y. F—X,and Y —Y, being projections
of AB on the ,axes” & and Y respectively, we infer that the mapping
po=¢|F—X,1%) is a generalized homeomorphism of ¥ —X, on
Y—Y, and that the mapping p|Y—Y, is the inverse mapping
to ¢,. Therefore for any X ¢ B(&):

ol X)

[eolX) =Ly X)]—[ ¥ ]=R([X])
for every X ¢ B(¥) since » induces b and Y, e, q.e. d..

Let p(I) (p(J)) denote the greatest of the numbers
0,1,2,3,...,8, 2%, which is the power of a set X ¢ I (¥ e J).

6.2. Lei b be an isomorphism of B(X)/T on B(Y)J. In order
that there ewists a generalieed homeomorphism ¢ of & on Y such that

WE)]=HXT) for every X « B(X),

it is necessary and sufficient that p(I)=p(J).

The necessity follows from 5.1b), since ¢ induces 5
induces &.

Suppose that p(I) =p(J)=p. Let X, and ¥, be two sets such
that X, eI, Y,eJ and X,=Y,=p, and let @, X,, ¥, have the
same meaning as in theorem 6.1. The Borel sets

=y 1(X)—
Hence

and ¢t

Xy =X+ X+ (Y, and Y,=¥,+ Y1+ o(Xy)

are of potency p and
P E—Xp) =Y —Y,.

16) This means: ¢, is defined only on tlm set L—X, and gy (z)=p(2)
for z e F— X,.
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Let @, be a generalized homeomorphism of X, on Y, and let

p(w) =pq(w) for @eX,

and
p(@)=g4») for ©eF—X,

@ is a generalized homeomorphism of & on ¥ and
[p(X)] = [pa(Z)]+ [po X—X3)] = [0 X)]—[@o( Xe)] = [po( X )] =M[X])
for every X e B(F) since py(X)CY,ed and pu(X,)CYped.
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On joins of spherical mappings.
By
Sze-tsen Hu (Shanghai).

1. Introdution. In a recent work of G. W. Whitehead, [4],
an important generalization of H. Frendenthal’s Einhingung, [3],
has been introduced which seems to be one of the essential intruments
for the attacking of the unsolved problem of caleulating the homo-
topy groups of spheres. For each pair of elements & ean?(S™m), -
B en?(8m), a unique element oY e nPteti(§mtntl) iy determined,
‘which will be called the join of o and . If g=n and B is of degree -1,
then «“v'p is the (n-1)-fold Einh#ingung of a.

The objeet of the present paper is to give a detailed investi-
gation of this joining operation. Instead of considering it as an
operation on the homotopy groups, we shall present it by an
imbedding of the product space (8m) x (8787 into the space
(SmtttysP T whore X denotes, as usual, the space of all mappings
(i. e. continuous transformatiors) of X into ¥.

In another recent work of G. W. Whitehead, [5], it has
been proved in a quite complicate way that the Einhingung of
a Whitehead product, [6], is always inessential. By using our methods,
we are able to prove its generalization that the join a B is inessential
if at least one of the elements a,f is a product.

2. The imbedding by means of joining. For the sake
of briefness, we shall denote by {p,m} the space (§m)5°. In the
present paragraph, we shall define an imbedding of the product
space {p,m}x{qn} into the space {p+g+1,m-n-+1} which
forms the kernel of the whole investigation.

Let RrH, R+ be two euclidean spaces with coordinates sys-
tems (g, @y, ...ybp); (YoyY1y .-y ¥q) Tespectively. Let

Rptet2= Rpp+l x RH‘!,
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