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On some problems of Hausdorff and of Sierpifiski.
By
Fritz Rothberger (Wolfville, N.S., Canada).
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Definitions, Introduction and Summary,
Chapter I.  @-limits in a stronger sense.
Chapter II. (2,0%)-gaps and £-limits.
Chapter ITI. Further theorems connected with the existence of £-limits.
Appendix.  Direct proofs of two theorems of Chapter III.

Definitions, The reader may be familiar with most of the
following definitions, which are given here for sake of completeness.

In this paper A denotes indiscriminately any finite set of
natural numbers, not only the empty seb 1). Thus ,,B=A" means
»B is a finite (or maybe empty) set of natural numbers”. We shall
write ,set of n. n.” for ,set of natural numbers” (natural number =
positive integer). Two sets (of n. n.) 4 and B are almost-disjoint
if 4-B=4A. A<B (or B>A4) means: ACB+4. Two sets of n. n.
differing in a finite number of elements shall be said to be equi-
valent. If A and B differ in an infinity of elements, i. e., if they are
not equivalent, we write 4 B. For example, E+ A means: E is an
infinite set of n. n.

(More generally: given any order relation <, the symbol &
means non-equivalent with respect to that relation).

A dyadic sequence is a sequence of 0’s and 1’s.

If 8=(s81,8,..18n,...) and T =(t},ty;sstny...) aTe tWO sequences
of numbers (e. g., dyadic sequences),

8<T means: s,<t, for almost all (i. e., for all n>ng).

') Cf., Ann. Math. 45 (1944), p. 397. The slightly changed definition enables.
us to diseard the symbol ~. The other symbol, 4, is indispensible, but the use
of both together is confusing.
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A partially ordered set F with, say, the order-relation <,
is said to have a gap of type (2,w*) if F contains an ordered subset:

L R o < OO e By B DAY,

(where the a's form an Q-sequence, and the b’s an invexjsely ordered
w-sequence), such that no ¢ e exists which would satisfy the con-
dition that a*< e<<b® for all a<Q and n<<w.

Similarly, we define (w,w*)-gaps, (£2,2%)-gaps, ete. o

F is said to contain an Q-limét if F contains a transfinite se-

quence
AP 0°< 00 < < a8, (6% a? for <),

such that the condition:

bia® and a*<b<a? for all a2

is never satisfied, for any b e F.

In this case a2 is the Q-limit of the transfinite sequence of
the a¥’s. ) )

(Example: The set of all rational numbers, in order of magni-
tude, has (w,0*)-gaps and wo-limits; the set of all real numbers has
no gaps).

A linear set is a set of real numbers.

Introduction and Summary. We shall consider the fol-
lowing three partially ordered sets:

10 the family 7, of all sets of n. n., with the order-relation <
(or =),

20 the family F, of all dyadic sequences, with the relation <,

3° the family F, of all sequences of n. n., with the relation <;
they are equivalent with respect to gap problems, and also limit
problems. More precisely:

' Lemma, Any gap existence theorem or limit ewistence theorem
Jor the family of all dyadic sequences holds also for the family of all
sets of n.m., and vice versa.

Any gap ewistence theorem or limit existence theorem for the
Jamily of dyadic sequences holds also jor the family of all sequences
of n. n., and vice versa.

The first part of this lemma is obvious, from the fact that
the two families F; and F, are isomorphic. (Since any dyadic se-
-quence is the ,characteristic function” of a set of n. n.).
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The second part is less obvious, but has been proved else-
where 2).

Without the continuum hypothesis, merely using the axiom
of choice, F. Haunsdorff?3) has shown that

The family of all dyoadic sequences containg (2,02%)-gaps, but
it does not have any (w,w*)-gaps, nor any o-limits.

Whether it has any (£2,0%)-gaps, or £Q-limits, is not known.
‘We shall show (cf. chap. IT) that the existence of (2, w*)-gaps
would imply the existence of Q-limits. Also; the hypothesis that
2% < 9% (which seems weaker than the continuwum hypothesis)
implies the existence of Q-limits. (Chap. IIX).

Other problems, connected with the Q-limit problem, are the
following:

(1) Does a non-denumerable linear get exists, every subset of which
is a relative F,? (Sierpinski and Hausdorff)4). Such a set
shall be called a Q-set.

Does every family F of real functions of power of the continuum
necessarily ‘have a denumerable base? (Sierpiriski) 5) i, e.,
given I, does a sequence (pl(w),qaz(m),‘..,qan(a:),... exist, such that
every function belonging to F is the limit-function of some
sub-sequence of {g (x)}?

Let 7 be the family of all real functions defined on a (linear)
set X of power &; does F have a denumerable base?

The answer to (1) and (3) is of course negative unless Lugin’s
»8¢0ond continuum hypothesis”: 2%=9% is assumed ). We shall
show that problems (1) and (3) are equivalent, and that the negative
answer would imply the existence of 0-limits. (Even if we assume
Lusin’s hypothesis, these problems are still unsolved). The positive
answer to (4) or (5), below, also implies the existence of Q-limits.

(2)

(3)

?) F. Rothberger, Proc. Gam. Phil. Soe., 37 (1941), p. 122 and 126 (only
proved for gaps, but it obviously also goes for limits).

5) F. Hausdorff, Summen von N1 Mengen, Fund.- Math. 26 (1936),
D. 243-247,

*) W. Sierpifski, Fund. Math. 30 (1938); p. 1, proposition P,. Cf., also
F. Hausdorff, Fund. Math. 20 (1933), p. 286, probléme 58.

5) Fund. Math. 27 (1936), p. 203, probléme de M. Sierpifski, also:
W. Sierpifiski, Pont. Acad. Sci. Acta 4 (1940), p. 211, F. Rothberger, Ann.
Math. 45 (1944), p. 397-406.

%) N. Lusin, Fund. Math. 25 (1935), p. 130.


GUEST


BP) F. Rothberger:

(4) Is there a linear set of power & and 2 category?7)

(5) Is there a linear non-measurable (Lebesgue) seb of power x,?
i.e., is there a set of power y Wwhich is not of Lebesgue
measure 07
If Lebesgue-measure is replaced by Banach-measure, the

problem is solved:

(Tarski and Sierpitski) 8). Every set whose power is less than

the continuum, is of Banach measure 0.

The above problems are dealt with in chapter III. The existence
problem of @-limits remains open.

Throughout this paper, needless to say, the continuum hypo-
thesis is never assumed, but the multiplicative axiom always is.

The three chapters and appendix that follow are independent
of each other and can be read in any order, with the one exception
that a theorem of chap. II is used in chap. ITI.

Chapter I. Q-limits in a stronger sense.

Apart from the definition of an Q-limit given in the introduction
(and treated in chapters IT and III), Hausdorff infroduces a second
kind of Q-limit.

Hausdorff?®) writes: ,HBs ist nicht bekannt, ob von zwei
geordneten Mengen [dyadischer Folgen] A< B, zwischen die sich
kein x [i. e., keine Folge 2] einschalten ligst, die eine von der Mich-
tigkeit §;, die andere hochstens .abzihlbar sein kann, z. B. ob
et << aP< ... 0P < .. @F<...<b und b=lim ¢¢ in dem Rinne sein
kann, dass kein o mit A<w<b (x+b) existiert, oder gar in dem
schiirferen Sinne, dass zu jedem #<b (z+3) ein af>x vorhanden
ist”. (The brackets [ ] are my own. Hausdorff writes < where
Sierpinski writes <; we have adopted the latter notation).

This second definition, ,,im schirferen Sinne”, is to be studied
in the present chapter. Taking sets of n.n. instead of dyadic se-
quences, and replacing the relation < (or <) by > (for later con-
venience), the problem may be stated as follows: ‘

?) Cf., F. Rothberger, Fund. Math. 30 (1938), p. 215, and Proc. Cam.
Phil. Soc., loe. cit., p. 112.

8) A. Tarski, Fund. Math. 30, p. 226, Korollar 2.99.

) Fund. Math. 26 (1936), p. 247.
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Does there exist a transfinite sequence of gets of n. n.
(L.1) .E1>E2>...E“$...E“>...EQ | (B“ 1 B
such that 4 >89 (44 E®) always implies: 4 > B for some a<Q?

The answer is negotive. (Without logs of generality, we may
agsume E?=A; put A=0CE? i.e., the complement of FE2. Then
we have 4 >4 (A A), bub certainly not A >E" for any a). Thus
there seems to be a misprint, or an oversight, in Hausdorffs de-
finition. However, if we drop the order relation in (1.1) and replace
it simply by E®>E* (for any a< ), the definition iy all right.
‘We have the following theorem:

Theovem 1. The continuwm hypothesis is equivalent to the
following proposition: There exisis a set of power 8, of sets of n. n.:

BLE . B B (BR4A for all a<Q)

such that for any 4 4.4, we have 4 >E* for some a< Q.
This theorem is an immediate consequence of the following

Theorem 2. If a family F of (infinite) sets of n. n. has the
property that for amy A4 A there exists a set B ¢ F such that A>EH,
then F=2%, :

Proof of theorem 2. It is obvious thatb F<2% Tn order to show
that also 2%<F, we require the following well known

Lemma. A denwmerable set (e. g., of n. n.) contains 2% almost-
disjoint infinite subsets.

(For proof, take the set of all rational numbers; for any real
number #, let 4, be a set of rational numbers with Z as only limit
point: obviously, 4, and 4, are almost-disjoint if z=y, q.e. d.).

Now let @ be a family of 2% almost-disjoint infinite sets of
n. n., and let 7' be a family satisfying the hypothesis of the theorem.

Then, if 4,Be®, we have A>H, B>E for certain sets
B, B <F. Besides, if A==DB, we havel®) 4B=/, hence EE =,

-and therefore B=fJ'. Thus different elements of & correspond to

different elements of 7, thevefore @< F and hence. 2% T, g. e. d.

10) This mesns ,4B is a finite set*, of. Introduction.

Fundaments Mathematicae, T, XXXV, 3
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Chapter IL (2,0*-gaps and Q-limits.

The object of this chapter is to prove the following

Theorem 3. If the family of all dyadic sequences contains
any (Q,0%)-gaps it also contains Q-limits. .

As usual, ,dyadic sequences” may here be replaced by ,.sets
of n.n.”, ete. (cf., lemma in the Introduction).

Definition. A set S of sequences of natural numbers is said
t0 be nonm-bounded if no sequence T' exists, such that §<T for
all Se8.

We have the following theorem proved in an earlier paper1):

The existence of (Q,w*)-gaps (viz., for dyadie sequences, as
above) s equivalent to the following:

Proposition non-B(x,). There exists o set S of sequences of n. n.
which 4s well-ordered of type Q (rel. <) and non-bounded.

Hence our theorem 3 iy equivalent to the following

Theorem 3% The existence of o mon-bounded Q-sequence of
sequences of n.n. implies the existence of an Q-limit (for dyadie se-
quences, or for sets of n. n.).

The idea of our proof of this theorem is, roughly speaking,
a projection:

A strictly increasing sequence of 1. N, (5<C8,<<...8,<C...) can be
represented in the cartesian X Y-plane as a set of points with the
coordinates: (1,8y,) (2,8,)... This set is then j)rojected onto the Y-axis,
giving there the (infinite) set of points s;,s...,8n,... We are going
t(.) construct an unbounded set of sequences which, if thus projected,
gives a sebt of sets with A ag its Q-limit.

For this purpose, we need a convenient notation and two
Jemmas:

Notation. We shall denote strictly increasin quences
by {hn)}, {K*n)}, {f(n)}, ete. instead of {%,.}, {kn}, {ff}, ?t%uer;ﬁlefi
the qorresponding »projected” sets shall be denoted by the 07()1’1‘cs~
ponding italic capitals: H, K% F, etc. More precisely:

It the sequence {i(n)} is given, H is the set whose elements
are: h(1),R(2),...h(n),... Or, conversely, if H is given, {h(n)} is the

sequence consisting of the elements of H in natural order. (Note

that this correspondence works both ways)

) F. Rothherger, Proc. Cam. Phil. Soc. 1 i
and théoréme 2, p. 113. o ot et

théoréme 6, p. 121 .
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Lemma 1. Given a strictly increasing sequence {h(n)} and
a denumerable set of sets (of n.mn.)

B>KE>. E>.EK>.. (B L A), a<y,

there exwists a set K & A such that E<E® (amy a<y) and {h(n)}-<3{k(n)}.

Proof. Owing to & theorem of Hausdorff (non-existence of
w-limits) 12), there exists a set P<E" (a<y), (F ). Then, for
any value of m, we have f(m)eF; in particular, if m=h(n), we
get f(h(n)) e F. Putting f(h(n)) =k(n), it follows that k(n)eF,
hence K< F.

. Also, since {f(m)} is strictly increasing, we have m<f(m), hence

In)<f(h(n)) =k(n) for all n, and therefore {h{n)}-<{k(n)}, q.e.d.

‘Lemma 2. If E>Hi4, then {k{n)}<{h(2n)}.

Proof. To begin with, it is easily seen that HCK implies
k(n)<< h(n) for all n, hence {k(n)}<<{h(n)}.

Now, if merely H<K, there exists a finite set 4, such that
H—A,C K. We may assume that A, consists of the first n, elements

of H. The set H—.1 corresponds to the sequence {h(n-ng)}, (i. e,
h(ny+1),h(ng+2),...) and it follows, just as above, that

(2.1) ()} <2 {h(n+ )}

Besides, since n+n,<c2n for all n>n,, we also have
{2.2) B —+ng) <h(2n) for all n>mn,,
and therefore {&(n)}<{h(2n)}, q.e. d.

Proof of theorem 3% We assume the existence of a non-bounded
O-sequence of sequences (of. n. n.), say

(2.3) W@} L@} <L @S )} < (a<< ).
‘We assume further, without loss of generality, that (2.3) consists
of strictly increasing sequences.

‘We shall construct an Q-sequence of sets (of n.n.) K* (a<<Q)
such that:

(2.4) (%)} <{k%n)} and E*>E? for a<p,
(2.5) lim K =A.
a>Q

3%
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First, we put Ki=H!; then, supposing the K“’s already de-
fined for all a< y in accordance with (2.4), we define E” by applying
lemma 1 with h(n) =h"(n) and K =K. Thus K’ also sabisties (2.4),
and by transfinite induction the same holds for all K% a<Q. It
remains to show that (2.5) holds.

Now, if (2.5) were false, there would exist a set K244
with K< K* (for all a<); but, by lemma 2, we would have
{F“m)}={&"(2n)}, hence, by (2.4), {h“(%)}%{k‘g(‘u’%)}, againgt the
hypothesis that (2.3) is non-bounded, q. e. d.

Chapter III. Further theorems concerning the existence
of Q-limits.

The object of this chapter is to prove the existence of 0-limits
under the assumption of some or other hypothesis. The strongest
of these theorems is theorem 4, below, from which the other ones
(theorems 7 a, Tb, 7 ¢) follow without too much difficulty.

Definition. A linear set F will be called a Q-set if every
subset whatsoever of F is a relative F,.

Theorem 4. If there are no Q-limits in the family of oll dyadic
sequences, then every linear set of power 8, is a @Q-set.

In other words: the existence of Q-limits would be established
if we could prove the existence of at least one set of power &, which
is not a @-set.

We require a few lemmas.

Definition. A finite product is the product of a finite number
of terms (not necessarily a finite set itself).

Lemma 3. If X,,X,,...,X,,... is « finite or infinite sequence
of sets (of n. m.) such that every finite product

m
H X"v+ A!

=]

then there exists a set A4A such that A< X, for any n.

Lemma L. (Cf. Hausdorffs ,Brster Einschaltungssatz” ) 12)..

.
Given twq sequences of sets, Xy, Xy, ..., and X3, X,,..., such that X,;< ¥,
for amy i,k, there exists a set A such that Xi<A <Y, for any t, k.
These two lemmas are identical respectively to lemmag 2 and 3%
of my paper ,,On families of real funetions” 1). We omit the proof here.

12)

F. Hausdorff, L ¢., Fund. Math. 26, P- 244 (Erster Einschaltungssatz)
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Lemma 5. The following two propositions are equivalent:
(1) The family of all sets of n.n. does mot contain any (2, w*)-gaps.
(2) Given a set of 8, sets Xy, Xoy.ooy Xayers Xeoy.oo (<), and a set
of 8y sets ¥y, Yoyoooy Yyooo (m<ow) such that X.<¥, for any
a<<Q and n< w, there always exists a set B such that X,<BE< ¥,
(for any a,n). )
Proof. The implication (2)—(1) follows immediately from
the definition of a gap.
Now, assuming (1), we shall prove (2) for given sets X< ¥,.
First we show the existence of a transfinite sequence of sets A,
satisfying the conditions:

(8.1) Xo<Ap<¥, and Ad.<4p for all a<p<? and all =.

Suppose the A4g’s already defined for p< §, and satisfying (3.1);
they form a denumerable set of sets (f, being fixed), hence by
lemma 4 there exists a set A4y such that 4,<A4;, X.<<dg, and
Ag<¥,, for all a<<py, i.e., satisfying (3.1) for a<f, Thus, since
there is no difficulty in defining 4, all 4,’s are defined, by trans-
finite induction.

Next, putting B,= g Y., we have

. n

3.2) - A< A< Ap<..iAg... ... <Bp<...<By<<Bj.

Since (3.2) is ordered of type Q-+ w*, there exists, because
of (1), a set E such that 4,<F<B,. But X,<<4, (by (3.1)) and
B,<Y,, hence X,<E<¥,. Thus (1)—(2), gq.e.d.

Note. The relation < does not necessarily imply £ and
if (3.2) contains less than &, non-equivalent A4,’s, or less than s,
non-equivalent B,'s, (3.2) is not strictly speaking of type Q24 w*.
But there is no difficulty here; for example, if B, =B, 41=Bs12=...,
it is sufficient to put #=5,,.

Lemma 6. Of the following two propositions, (1) implies (3).
(1). There are no (2,w*)-gaps in the family of all sets of n. n.

(8). Given a set of & sets Zy,Zyy...;Z0y.csLay.n. (0<<L) such that
every finite product

11 P
there exists a transfinite sequence of sets B, satisfying the con-
dition: _ .
(3.3) Zy>Bg, Ba>BgiA for a<<f<f.
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Proof. For any given y<Q the set of all Z,s with a<y is

atmost denumerable. Therefore, by lemma 3, there exists a set 4,

such that
(3.4) Z,>A, for any a<y<.
In this way we define 4, for every y<@Q. Next, put B,=2Z,
and suppose the Bg's already defined for f<f, satisfying the re-
lations
(3.3) Zy>Bg>4, and B.>B; for a{f<f, and fy<y<id
Now, for fixed f, the Bg's satisfying (8.5) form a denumerable
set, whereas the set of the A)’s (y=8,) is of power Ry
Therefore, by lemma 5, there exists a set B such that
By>E>4, for p<p<y<f.
Putting Bs,=HEZ,, we have Zg>By and, by (3.6), Bs> By,
for B <<B,. Besides, by (3.4) and (3.6), we -have By >4, for g,<y.
These last inequalities together with (3.5), show that
(3.7)  Zu>By>4, and B.,>B; for a<{f<fy+1<y;
thus we find by induection that (3.5) holds for any f,<<£2 and this
implies (3.3), q.e. d.
Lemma 7. The following two propositions are equivalent:
(4) There are no Q-limits in the family of all sets of n. m.
(5) If ZyZyyyZy,...
finite product

(3.6)

1Dayeey Gr€ Ky S€is of n.m. such that every

QZ“v+A5

then there ewists o set DA such that D<Z, for all o<Q.
(Proposition (5), if true, would be a generalization of lemma 3).

Proof. Tf an Q-limit exists then there exists a transfinite
sequence of sets Z, with Z,>Z; for a<f and lim Z,=A. Thus
Q

every finite product of Z’s is 44, but there can b?ﬁo DA with
D< Z; for all ¢, in contradiction to (5). Hence non (4) ~ non (b).

On the other hand, if proposition (4) holds there are no
(Q,0*)-gaps, (by theorem 3), hence, by lemma 6, there exists
a (decreasing) transfinite sequence of sets B, satisfying (3.3). Then
because of the assumed non-existence of 0-limits, there exist;

a set D4 A such that D< B, < Z, for all a, in accordance with (5)
Therefore (4)— (5), g.e. d.
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Definitions. A denumerable base for a family F of functions
is a sequence of functions such that every function belonging to ¥
is the limit of some subsequence of that sequence.

We shall denote by @ the (denumerable) set of all functions ¢(z)
satisfying the following conditions:

19 @(z) is continuous for all real » excepting possibly a finite
number of rational points,

20 g(x) takes the values 0 and 1 only.

If the domain of # is restricted to a set E, we shall denote
by O(E) the set of all ¢(z) (as above) restricted to z e E.

Lemma 8. The proposition (5) (see lemma 7) implies the fol-
lowing proposition:
(6) If B is a linear set of power sy then O(B) is a denumerable base
for the family of all dyadic functions on E. (4 dyadic function
is @ function which only takes the values 0 and 1).
(In other words: Every dyadic function on F is the limit of
some sequence of functions belonging to P(E)).
Proof. Leb @;,%,...; 805y Tay... (a<<Q) De the elements of F,
and let ¢ (2),@a(%);--;@,(%),... be the elements of (E). Given any
dyadic function f(z) on E, let Z, be the set of all n such that

Pl @a) =[(22)-
Now, we have Z,{A and even every finite product

n
H1 Zo, 44,

because @(F) contains infinitely many funetions which have any
assigned value (0 or 1) at any given point, or even at any given
finite set of PoInts e ,Layy- s %ay,-

Thus the sets Z, satisty the conditions in proposition (5),
lemma 7. Therefore, if (5) holds, there exists an infinite set D<Z,
(for all a); let my,ms,...,7s,... De the elements of D. We shall show
that:
(3.8)

Hm @n () =f(,) for all a<Q.

The point z, being arbitrarily fixed, we have, by definition,
¢,(@,) =[x, for every n eZ,.

But sinece D < Z,, almost all n,’s are elements of Z,, hence
@ny(r,) =f(2,) for almost all ¥, and this is the same as (3.8).
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From (3.8), proposition (6) follows immediately. Thus (5)—(6),
q.e. d.

Lemma 9. The proposition (6) is equivalent to the following
proposition:

(1) Every linear set of power 8; is o @-set (i. e., a seb every subset
of which is a relative Fy).

Proof. Without loss of generality, we assume that the linear
set F of power §, contains no rational points. Then @(E) is a family
of continuous functions on E, and it follows from proposition (6)
that every dyadic funection f(z) on ¥ is a function of class 1 of Baire
(rel. B). Therefore the set of the 0’s (or of the 1’s) of f(x) is an F,
(vel. E). Hence every subset of F is an F, (rel. E). Thus (6)—(7).

To prove that (7)—(6), let f(#) be any dyadic function on
the @-set K. Then there exist two sets F, and F,, both of class F,
and satisfying the following conditions:

0. on EF,

F.F,=0, ECF,+F, j(m):{ b
-

Now it is easily seen that a function which is =0 on one F,
- and =1 on another (disjoint) F'; can be approximated by a sequence
.of functions out of @. Hence the arbitrary function f(z) can be thus
approximated, and this proves (6), on the assumption of (7), q. e. .
Proof of theorem 4. Combining the lemmas 7, 8, 9, we get the
following chain of implications: (4)— (5) — (6) — (7), hence the
non-existence of 2-limits implies that every ny-set is a Q-set, q. e. d.
We now require some theorems on Q-sets.

Theorem 5=, (Sierpiniski and Hausdorff)%). The emistence
of & Q-set E of power x, implies that 2%=2% (i ., Tusin’s Second
contimuum hypothesis). )

(Because E has 2% different subsets; each subset of B being
separated from its complement by an F,, there would have to be
at least 2% different F,'s, hence 2%=2%)

Theorem 5% Every Q-set of power 8, 45 of Lebesgue measure 0.

Proof. Let B be the set in question. We have to show that

it is of measure 0. Let EyEyy ..., Bpy... be a sequence of mutually

disjoint. bounded subsets of F. Since each set B, is contained in
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an F, which has no points in common with E—Ep,, there exist
Borel sets By, Bay...yBpy-.. satisfying the following conditions:

B;-B;=0, (for any ¢,j, i=]), E,CB, (for any )
(3.9) Mo Ba) =m(Br), e (X B)=m( 3 By),
n=1 n=1

where n(...) is the Lebesgue measure, and m(...) is the outer measure.

The existence of these B, satisfying (3.9) is easily verified.

It follows from (3.9) that the set-function m., if restricted
to E (i. e., to the domain consisting of E and its subsets), is an
absolutely additive set-function defined for all bounded subsets
of E. .
But, by Ulam’s theorem ), every absolutely additive set-
function defined for all subsets of & set of power x; must vanish
identically. Hence m(HE)=0, q. e. d.

Remark. Since Ulam’s theorem holds for any power smaller
than the first inaccessible cardinal, it follows that theorem 5°
still holds if w, is replaced by any such power.

Theorem &°. Bvery Q-set (of any power) 1is of first category.

Proof. Let ¥ be the closure (fermeture) of E, and let DCE
be a denumerable set dense in E. Since every subset of F is a rela-
tive Fy, the set E—D is contained in an F, digjoint to D. We may
assume this F, to be contained in F'; then it is necessarily of first
category, since its complement is dense. Hence E—D is likewige
of first category, and therefore also ¥, g.e. d.

In this order of ideas; we may mention the following theorem:

Theorem 6. The following two propositions are equivalent:
(8) There erists a Q-set of power 8.
(9) On a set E of power s, there exists a denumerable base for the

family of all real functions defined on F.

Since we do not require this theorem for our immediate purpose,
we shall_postpone the proof.

From theorem 4 and theorems 5, 5% 5¢, we have immediately
the following theorems 7%, 7° 7¢. Theorem 74 is identical with
theorem 3.

18) Cf., W. Sierpinski, Hypothése du continu (Monoé’raﬁe Matematyczne 4,
1934), p. 159, or S. Ulam, Fund. Math. 16 (1930), p. 142-143.
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Theovem ¢, 1%, 7, ¢ There exists an Q-limit in the family
of all dyadic sequences (or sets of n. n., or sequences of n. n. ), provided
at least one of the following propositions is true:

(a) 2% <2% (Negation of Lusin’s hypothesis).

(b) There exists a linear set of power 8, and positive outer measure.
(c) [There exists o linear set of second category and power 8.

() The family of all dyadic sequences contoins (Q2,w*)-gaps.

Proof of theorem 6. I have shown in an earlier paper ) that
we may restriect ourselves, without loss of generality, to dyadic
functions in (9), instead of real functions generally. (A dyadic function
takes the values ¢ and 1 only).

Assuming (9), let o, (2),9,(a),...,9,(®),... be a base for the
family of all dyadic functions on a certain set X of power 8. We
transform the set X into the set ¥ =T(X), by means of the function

e 7]
y=t@)= 300

n=1

(3.10)

Now, the set ¥ confains no ,dyadically rational” numbers:
in fact, for any given % ¢ X the sequence v,(®) containg an infinity
].ooth of 0’s and I’s; because, being a base for all dyadic functions,
it contains two subsequences, one tending to 0, the other one
tending to 1.

From this it follows that X and ¥ are in one-to-one correg-
pondence, and it is verified without difficulty that the funetions

(3.11) ?.(y) =v,(0), Where y=1T(a),

form a base for the dyadic functions on Y, and that they (viz., 3.11))
belong to the class &(¥). (Ct., definition, p. 39). Hence, (cf" proof
of lemma 9) the set Y is a Q-set of power x;, therefore (9),—>(8).
In order to prove that (8)—(9), it is sufficient to apply literally
the second part of the proof of lemma 9, g.e. d.

’P'roblems. Apart from the problems mentioned in the intro-
duction, the following minor questions might be raised:

Are the implications in theorems 3 and 4 resp., reversible?
to prove the inverse of theorem 4, it would be sufﬁci(:nt to ‘prov’(.z
the inverse of lemma 8, i. e., to prove the implication (6)~>.(5)'
then we would have (4) = (5) = (6) = (7), ete. ’

) Ann. Math. 45 (1944), p. 898, theorem 1.
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Many propositions are known that dmply Lusin’s ,.second
continuum hypothesis” but very little is known about consequences
of Lusin’s hypothesis 15).

Appendix. Direct proofs of theorems 7* and 7.

We give here two direct proofs, that is, independent of

chapters II and III; all that is necessary is Lemma 3. The two proofs

are independent of each other.

Theorem 7* may be stated as follows:

If there are no Q-limits in the family of all sets of n.n., then
2&::231_

Definition. We shall say the sequence A;,4,,... contains the
infinite subset B, if A,>B-LA for all n. (Similarly for transfinite
sequences Ag).

Proof. The proof consists, roughly speaking, in taking the
set of all n. n., and splitting it in two, over and over again,
altogether Q times, so that we finally arrive at 2% gifferent sets of
n. n. More precisely:

Let E, be the set of all n.n. We proceed by transfinite in-
duction. ' i

First step: Subdivide B, into two infinite subsets &y and B

Second step: Subdivide each of the two above sets into
two infinite subsets; thus we have four disjoint sets: By, Fs, B, By
(In particular, let E,<F;). We shall denote this quadruple of sets
by E,, ete.”.

nth gtep: Subdivide each set of the (n—1) step into two
infinite subsets. This gives 2= disjoints sets, to be dencted by Hy,
ete. In particular, let Bp<<Bnpi-

ot step: We have arrived at 2% decreasing sequences of
sets, e. g., By, Fyy...y By ... By lemma 3, each one of these sequences
contains an infinite subset, e. g., B,. This gives 2% almost-disjoint
sets H,, ete.

a step (a non-limit number): Subdivide each set F.1, etc., '
defined in the (a—1) step, into two infinite subsets E,, ete. In
particular: B,<<H. .

15) N. Lusin, loc. eit., W. Sierpinski, Fund. Math. 25 (1935), p. 182.
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ot step (¢ limit number): We have 2% decreasing a-Sequences,
e.g. By, By,...; By, B, ... (< a), each of which contains (by lemma 3)
an infinite subset, e. g., H.; these 2% almost-disjoint sets shall
be denoted by Ee, etc. In particular, let B,<<Hp (for f<w). (The
sets covered by the ,etc.” may remain nameless).

This goes, by transfinite induction, for all a<Q. Now, assuming
the non-existence of Q-limits, we may add the following:

Om step: We have 2% decreasing Q-sequences, e. g,
By By oy Boyoury Bey... (a<<Q), each of which contains (by hypo-
thesis) an infinite subset Eg, ete. -

We have thus constructed 2% different sets, Hp, cte., whereas
there are only 2% sets of n.n. altogether. Therefore, 2% 2",
hence 2% = 2% ¢ e. d. ,

Theorem 7° may be stated as follows:

The existence of a linear set of power 8, and positive outer measure
(Lebesgue) implies the ewistence of am Q-limit in the family of all
sets of n. n.

For the proof we require a few definitions and a lemma.

Definitions. A denotes any finite set of n. n. and 04 denotes
the complement of a finite set, i. e., a set containing almost all n. n.
(CF is the complement of E, generally).

To every seb of n.n. corresponds a dyadic sequence (cf., in-
troduction) which may be considered as the dyadic ,,decimal”
expansion of a real number z, where 0<#<1. This correspondence
between sets of n.n. and real numbers @ is a one-to-one corres-
pondence, excepting the case of A’s, CA’s, and the dyadic rationals,
where it is 2 to 1. These &, exceptions need not bother us.

Thus also every set X of sets of n. n. corresponds to a linear
set X' contained in the interval [0,1].

Definition. We shall say the set X (of sets of n.n.) is of
measure 0 (or of positive measure, or of 1st category, ete.) if and only
if the corresponding lincar set ¥’ is of meagure  (

or of positive
. meagure, or of 1% category, etc.)

Lemma. Given a set E4A and
of measure 0:

(1) The set of all sets X satisfying the relation X C E,
1 kE] 22 3 3
(i1) ” s X<E,

+CA, the foilow’ing sels are
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(iii) The set of all sets X satisfying the relation X>E2
(iV) 1 FERE PR ) 3 3 s 3 .X, > C_E,
(V) 2 2 EE) 23 32 9 3 B 93 41 +E == 01].,
(Vi) 22 2 EEEE 29 a:‘ 3 3 35 X—E =:./1,
(vil) 5 o o» s . at least one of two relations:

X+EB=04 or X—E=a.

Proof of Lemma. It is easily seen that the linear set 00.1:-
responding to (i) is a Cantor discontinuum of measure 0. Hen(.je (i1)
is the sum of %, sets of meagure 0, therefore of measure 0 itself.
The same holds for (ifi) (proved similarly) and _also _for (iv) (re‘plzfj-
cing E by CE in (iii)). Now, (v) is identicall Wlb}% (iv), and '(Vl) is
identical with (ii) (since- the relations are identical 1‘espect1v91§f).
Finally, (vii) is of measure 0 because it is the sum-of (v) and (vi),
q. e. d. .
Proof of theorem 7°. Suppose there exists a linear set of
power 8, and positive outer measure; let
(5.1) By By s Boyoy Bay.. (a<< )
be the corresponding set of sets of n.n. Without loss of generality,
we assume that (5.1) contains neither a A-set nor & CA-set.

By a process of transfinite induction, we are now going to
construct an Q-sequence of sets A® with ]:Lné Ay=04

o>
Let A,=%,. Next, let B, be the first set in (5.1) such that
. Bu—A144 and A+ By d CA.

Such an B, exists, for otherwise (5.1) would be of measure 0,

by our last lemma.
" XNow put 4,=4,+E,, hence we have At 4, and A< A4,

We continue by transfinite induction. Suppose all A4, have

been defined for p<y (y fixed, for the moment), such that
Agf A1 0A and  dg <Ay for Bi<fiply.

By lemma 3 there exists a set By, 0d such that Ap<B, for

all f<<y. Now let H,, be the first set in (5.1) such that
B, —By+4 and By~ EHa, 7 04

Such an H, exists, by the last lemma, just as above.
Now we put 4,=B,+Ee,.
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Thus we have an increasing Q-sequence A, A,,...,4q,...,4
and we have to show that lim A,= (4.
a->8Q

wyone

Otherwise there would exist a set Ap+ C4 (and obviously £4)
such that A,<<dg for all a<®. But it is easily seen that for
every o there is a f such that

Bo—Ap=4

hence (for all a),

or B,+A,=0C4;

either H,—Adpo=d4 or B,+dg=04;

it would follow, by the lemma, that (5.1) is of measure 0, contrary
to the hypothesis, g. e. d.

Remark. Theorem 7° can be proved in exactly the same
way; all that’s necessary, is to replace ,,measure 0” by ,first category”,

and ,positive outer measure” by ,second. eategory” in the above
proof.
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A positive, lower semi-continuous, non-degenerate
function on a metric space.
By
Marston Morse (Princeton, N. J., U.S.A.).

§ 1. Introduction. Many terms in analysis such as the
order of a zero or pole of an analytic function, the multiplicity of
a branch point, a critical point, an extremal, the index of a critical
point or extremal, a non-degenerate critical point or extremal, etc.
admit useful topological definition. Seel!) Kuratowski (1), Sei-
fert and Threlfall (1), Morse (3), (6). These definitions are not
precisely equivalent to the definitions of analysis, but are equivalent
in certain well determined consequences. The topological definitions
give the principal relations in analysis in the large their proper
setting, and lead to the simplest proofs. Artificial distinetions such
ag those between a critical point of a function of » variables and
an extremal of an integral disappear.

It is, however, desirable that a topological theory which is to
unify many forms of analysis of historic importance shall choose
its definitions and axioms not so much in a subjective mood of
abstract generality, as from the viewpoint of ready availability and
interpretation in analysis. It is with these ideals in mind that the
definitions and axioms necessary for the theory of a positive, lower
semi-continuous, non-degenerate function F on a metric space S
are presented.

The principal term in analysis to be topologically characterized,
both in the small and in its global setting, is that of a non-dege-
nerate critical point or extremal. Historically a critical point of
a function f of class " of n variables (#,...,2,) is non-degenerate
if the Hessian of the function fails to vanish at the critical poinf.
An extremal g which satisfies the self-adjoint conditions of a boundary
problem in the large is termed non-degenerate in the sense of analysis

1) References are listed al the end of the paper. References to Morse are
indicated by the lefter M. '


GUEST




