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Soit, en effet, Uy, U, U,,... la suite des ensembles donnés.
En applignant le théoréme de séparabilité simple aux ensembleg
ouverts disjoints U=T, et V' ="U,4 Uz+..., on trouve un ensemble
ouvert i construction dénombrable U, tel que U, DU, U,-¥=0
(done U, Uy=U;-Uy=...=0). En posant maintenant

U=Up V=Ut Uyt Upt ...

on trouve, moyennant le méme théoréme, un engemble ouvert
4 construetion dénombrable U, tel que

U,00, U, U=U, Uy=U, U,—..=0

et ainsi de suite.

La famille des ensembles Uy, U, U,,...
évidemment des propriétés demandées.

La généralisation au cas non dénombrable est privée de sens
grice & un résultat de M. Edward Szpilrajn-Marczewskis)
qui a montré gu'on ne peut trouver dans un produit topologique
Qespaces satisfaisant an second axiome de dénombrabilité plus
qunne guantité dénombrable d’ensembles ouverts disjoints.

ainsi obtenus jouit

Notes.

1) Cf. A, Tychonoff. Math. Annalen 102 (1930), p. 546.

%) Pour éviter 'encombrement des indices nous omettrons dans la suite
les indices supérieurs dans of (en éerivant simplement vy).

3) Nous dirons, en général, quun systéme @’ensembles est majoré par
un ensemble A si A renferme tous les ensembles du systéme.

1) Parce que deux ensembles ouverts élémentaires dans 7T': Oy, VigseresVig,)
€t Op..y (Ufgs-esty,) sont disjoints dans le cas, et dans ce cas Sel{‘l’(‘ﬁll‘nt, g:u
au moins mn e, est égal & un g et Lon a pour ce r et ce s: Vi = 0.

5) Dans le cas ol la puissance du systéme fondamental d’ensembles ou-
verts dans T« n’est pas dénombrable, mais est <m> Ry, on démontre de méme
la proposition analogue, dans laquelle les sommes au plus, dénombrables d'en-
sembles ouverts élémentaires sont remplacées par des sommes de puissance <m.

§) (. R. (Doklady) de I'Acad. dex Sciences de PURSS, 31, N° 6 (1941).
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On the representation of Boolean algebras as fields
of sets.

By

Roman Sikorski (Warszawa).

The subject of this paper is the problem of the representation
of an m-complete Boolean algebra as an m-additive field of sets?).
Stone hag proved that every Boolean algebra is isomorphic to a field
of sets. A c-complete Boolean algebra however can be no isomorph
of a ofield of sets. An easy analysis of Stone’s representation
theorem permits one to obtain simple necessary and sufficient con-
ditions that an m-complete Boolean algebra be isomorphic to an
m-additive field of sets (§1). With the help of these conditions
I shall formulate several criteria for a guotient algebra X/T
{where X is an m-additive ficld of sets and T is an m-additive ideal
of sets) to be isomorphic to an m-additive field of sets (§ 2) and I
shall give an answer to two questions posed respectively by Pro-
fessor BE. Marczewski (§3) and by Professor A. Mostowski (§ 4).

The final part of this paper (§ 5) contains a proof of the theorem
that every o-complete Boolean algebra is isomorphic to a quotient
algebra X/I where X and I are respectively a o-field and a
o-ideal of gets?). In contrast to this theorem, an m-complete Boolean
algebra, where m>2"™, can be no isomorph of a guotient algebra
X/T where X and T ave respectively an m-additive field and an
m-additive ideal of sets.

1) The definitions of an m-complete Boolean algebra and an m-additive
field of sets ete. are given in Terminology and notation onp. 248. m denotes always
an infinite cardinal number.

2) This theorem was presented by me at the Polish Mathematical Congress
in Krakéw in May 1947. Another proof of this theorem was given by Loomis.
See Loomis [1], p. 757. An application of this theovem to the theory of the
integral is given in my paper [1].
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Terminology and notation. Let 4 Dbe a Boolean algebra®), 4, 4,e4.
A+ dy, Ay —45, 434, and A) will denote the Boolean operations of addition,
cubstraction, multiplication, and complementation whieh correspond to thé
analogous operations on sets in the genmeral theory of sets. If 4, +.4,=4,
we write 4;C.d, and we say that 4, is contained in d,. 0 and |4| will denote
respectively the least and the greatest element of 4 (i. e. 0CAC|4} for any
Aded) An element ded (4::0) is called an atom it 0==A;CA implies A, =4.
A is called atomie if every element 4(=:0) of 4 containg an atom. .4 is called
m-complete if for every non-empty class 4,Cd of potency <<m there exists
an Age.d (the sum of all 4 e 4y) such that

ACd, for every Aded,
and:
if ACA ed or any le A, then .1 ,Cd,.

A4 is called complete if it is m-complete for every cardinal numhber m.
fNy-complete Boolean algebras ave called also s-complete algebras.
If 4 is m-complete, Az e 4 for every re T where 7 is an ahstract set of
potency <m, then the sum of all A, is denoted by 2: v || Az denotes the product
€T el
of all .1y, i. e. the element (EA;)’EA_. The meaning of the symbols EA,I and HA,,
1€l n=1 n=i

(in case of a g-complete Boolean algebra) is clear.

A non-empty class I of elements of a Boolean algebra 4 is called an ideal
(of 4) if the conditions Ay, d,eX, 4CA;, ded imply 4, +4d,eT and Adel.
An ideal T is called prime if 1° |4| non e I, 2° for every A e 4 either 4 ¢ I or
A’eX. An ideal I of an m-complete Boolean algebra is called wm-addifive it
AzeX (re T, T<in) implies EAMI. No-additive ideals will be called also
o-ideals. el

A class X of subsets of an abstract set & is called o field if the condition
Xy, Xpe X implies X+ X,e X and F—X, e X. A field X is called m-additive
(or: fotally additive) if for every subclass X,(CX) of potency <<m (or: of an
arbitrary poteney) the sum (union) of all &'e X helongs to X. Every field of sets is
a Boolean algebra, every m-additive field is an m-complete Boolean algehra®).
Ny-additive fields of sets will be called also o-fields.

A mapping & of a Boolean algebra 4 on a Boolean algebra B is called
a homomorphism (of 4 on B) if h{d;44,)=h(d,)+h(4,) and R(AL) = (W(Ay))”
for every 4, d,e 4. A homomorphism % is called an isomorphism if it is one-one,
i.e. if i{4)=0 implies 4=0. Two Boolean algebras 4 and B are isomorphic
if there exists an isomorphism » of 4 on B.

%) Boolean algebras will be denoted always by the letters 4 and B, their
elements by A,B,... Abstract sets will be denoted by &,%Y,..., their elements
by «.9,... and their subsets by X, ¥,... Fields of sehsets of &.Y,... will be denoted
by X.X,... v .

%) However, a field of sets can be an m-com i
) ; vlete Boolean algebra, without
being an m-additive field of sets. g, TR
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- §1. The two following theorems on representation are well
known %):

1.1. (Tarski’s theorvem) A complete Boolean alyebra is isomorphie
to a totally additive field of sels if and only if i is atomic.

1.2, (Stone’s theorem) Erery Boolean algebra is isomorphic lo
a field of sets. )

Namely let & denote the set of all prime ideals of a Boolean
algebra 4 and let s(:4) denote (for o ¢ ) the set of all prime ideals T
such that 4 non eI. The class § of all sets g(d) where ded is
a field of subsets of & and the mapping S=s(4) is an isomorphism
of 4 on S -

The basis of this proof is the faet that s(d)==0 for 4==0, i. e.
that for every 40 there existy a prime ideal I which does not
contain the element 4. &, S, and s will he ecalled respectivelly
Stone’s set, field, and isomorphism of 4.

The guestion arises now whether every wm-complete Boolean
algebra is isomorphic to an w-additive ficdld of sets. The answer
is given in the following theorem:

1.3. An w-complete Boolean alycbra is isomorplic to an m-additice
field of sets if and only if jor every A=0 (4 ed) there erists an
m-additice prime ideal I such thai A non e I8).

The proof of the sufficiency is the same as that of 1.2. Tt is
sufficient to add the words: .mt-additive” before the words: .ideal”
and .field”. The necessity follows from the fact that the condition
given in 1.3 is invariant under isomorphism and is fulfilled in
every m-additive field X. In fact, when 0==X,e¢X. let ay € Xg.
The class T of all X e X such that xgnen X iz an m-additive
prime ideal and X non e I.

A function m defined for all elements of an ni-complete Boolean
algebra A is said to be a two-valued m-additive neasure on 4 provi-
ded that: 10 s assumes only the numbers 0 and 1; 20 m(ld])=1;
30 if 4, d»=0 for T=1', then

m(z.—iu) =}_;, n(de)

€T
where T is any abstract set of poteney <mu.
5) Qee Tarski [1], p. 198, Stone [L], p. 98 and p. 106 and Stone [2]

§) This theorem was presented by me at a session of the Warsaw Section
of the Polish Mathematical Society on May 10, 1946. See Sikorski [2]. p. 2486.


GUEST


280 R. Sikorski:

If m is a two-valued m-additive measure on 4, the set I, of
all 4 A such that m(4)=0 is an m-additive prime ideal. Sinece
the correspondance m—>T, is one-one, we obtain immediately:

- 14 An m-complete Boolean algebra A is isomorphic to an m-ad-
ditive field of sets if and only if for every A==0 (A e A) there ewists
@ two-valued m-additive measure m on A such that m(A)=1.

An ifi.eélt]' .I of a m-complete Boolean algebra 4 is called
1t1.1-regular if it'is the common part (product) of a class of m-addi-
ive prime ideals of 4 7). By definition every m-regular i
is m-additive. Y gl denl of 4

Theorem 1.3 can Dbe expressed also in the following form:

L.5. The necessary and sufficient condition for -
Boolean algebra A to be isomorphic to an m-ad(liti@{e f::l?ld":)fc oggi'lez:
that the .null* ideal (0)8) be m-regular.

. It is well known that every ideal I of a Boolean algebra 4
divides the set 4 into mutually exelusive classes in such a way
thaf two elements 4, 4, belong to the same class if and only if
AAi+ 4, 4" eT. The class containing the element 4 iy denoted
by [4]. The set of these classes constitutes a Boolean algebra denoted
py A4/T and called a quotient algebra. It A4 is m-compiete and I
s m-additive, then 4/T is also m-complete. By definition:

[47=[47, Y[da=[3 4] ] =
EMPHER [ZT’ 4.] and q [A,]_[ﬂ Ad?).
1.6. Let I be an m-additive ideal of an
: n-complete Boolean alge-
bra A. Q’he quotient algebra A[T is isomorphic to an m-additive ﬁgld
of sets if and only if T is m-regular.

7 . . .
sontai ) x;s I.%.tg:i E;oved, evcr}:l édeal I is the common part of all prime ideals
aining T. vever, an m-additive ideal is i
o closs of madutren i, TRl eal is not, in general, the product of
8) L e. the ideal containing only the element OeAd

9) H ] i
) ereTZ’T [4z] does not denote the union of the classes [47] but the Boolean

€.
sum of the elements [4:]e A/T.

product D' [4,]. Similarly for the complement [A} and
€T
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The necessity of this condition follows from 1.5 and the fact
that if I, is an nt-additive prime ideal of A/T, the class ofall A e d
such that [A] e I, is an m-additive prime ideal of 4. The sufficiency
follows from 1.5 and the fact that, if T;is an wr-additive prime ideal
(of A) containing I, the class of all [d]e AT where 4 edy is an
m-additive prime ideal of 4/I.
An ideal I is called prineipal if it is formed of all elements
ACA,, where 4, is a given element of 4. By 1.5 and 1.6 we obtain:

1.7. An m-complete Boolean algebra A is isomorphic to an m-ad-
ditive field of sets if and only if every principal ideal of A is m-regular.

For, if A is isomorphic to an m-additive field of sety and T is a
principal ideal, 4/T is also isomorphic to an m-additive field of sets.

Every m-complete Boolcan algebra which is not an isomorph
of an m-additive field of sets is not atomic since:

1.8. Eeery m-complete atomic Boolean algrbra A is the isomorph
of an m-additive field of subsets of the sets of all atoms of A.

Let At(4) denote the set of all atoms contained in A4 ed.
The class of all sets At (L) is an m-additive field of subsets of At(j4])
which is isomorphic to .. i

§ 2. In this paragraph X will denote an m-additive field of
subsets of a set &.

An ideal T of X is called semi-prineipel?) if it is formed of all
sets X e X which are contained in a given set X,C & (X, can belong
to X or not). Obviously every principal ideal of X is semi-prineipal
and every semi-principal ideal of X is m-additive.

For every ideal I of X the symbol IT| will denote the sum of
all sets X eI Tt T is semi-principal, the conditions: X eI and
XCI| (X e X) are equivalent.

21, If I is a semi-principal ideal of an m-additive field X, -
X/ is isomorphic to the m-additive field of all sets X—|T! where X ¢ X.
Thus I is m-regular.

1) The property: ..I is semi-principal” is not invariant under isumorplisms
between fields of sets. The above defined semi-principal ideals do not coincide
with semi-principal ideals in the sense defined by Stone in paper [1}.
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Obviously the class of all sets X— || where X e X is an m-addi-
tive field of subsets of &—|[I| and the mapping

WX])=X—|TI (for X ¢ X)

is a homomorphism. Since R([X])=0 implies XC I, i.e. X eI
and consequently [X1=0, h iy an isomorphism.

The second part of 2.1 follows from the first and theorem 1.6,

A two-valued m-additive measure m on X is called #rivial
if there exists an v, e & such that x, e X e X implies m(X)=11m),
Clearly a two-valued m-addifive measuve m on X is trivial if and
only if the prime ideal I,, is semi-principal.

2.2, Let I be an wm-additive ideal of an m-edditive field X. If
ecery two-valued m-edditive measure on X is trivial (i.e. if every
w-additive prime ideal of X is semi-principal), then in order that X/r
be isomorplie to an m-additive field of sets (i.e. that I be m-regular)
it is necessary and sufficient that I be semi-principal 12)

The sufficiency follows from 2.1; the necessity follows from 1.6
and the fact that the common part (produet) of an arbitrary clags
of semi-principal ideals is a semi-principal ideal.

S(&) will denote always the field of all subsets of a set %.

A cardinal number n is said to be of two-valued measure zero 13)
provided that every wmjy-additive two-valued meagure on S (&)
(where & is a set of potency n) is trivial. Tlam has proved 1) that
the class of all cardinal numbers of two-valued measure zero contains:
18 %p; 20 with 1 the number 2% 3° with n every cardinal number
P<tt; 4% with n every sum Elm where 11, are of two-valued measure

&
zero and T=n. Tn particular every cardinal number which i less
than the first inaccessible (in the striet sense) aleph 1), is of two-
valued measure zero.

) The property: ,m is trivial® is not invariant under isomorplisin between

fields of sets. See Sikorski [3], theorem 2.2.

2) The assumption that every m-additive measnre is trivial is essential.

%) This term is due to Professor E. Marczewski. Sec Marez
Bikorski 1, p. 134 and p. 138.

) Ulam [1], p. 146 and p. 150.

15) A cardinal n<y, is called inaccessible (in the strict sense) if the
tions: z<n for every re T and T'<n impl
p. 72,

ewski and

condi-
v: q'm<n. See Tarski [2], p. 69 and
k3
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93. Let I be a o-ideal of &(&). If F is of two-valued measure
sero, then S(&) I is isomorphic to « o-ficld if and only if I is prin-
cipal. o

This follows from 2.2 since semi-principal ideals coincide in
S(&) with principal ideals.

For every topological space G the symbol B(T) denotes
the o-field of all Borel subsets of G.

94, Let G be a metric space and let I be a c-ideal of %E‘G).
If T is of two-valued measure zcvo, them B(G) T is wnmorpﬁzc to
@ a-ficld of sets if and only if I is semi-prineipal. In this case B{G) I
is isomorphic lv B(G—!T). ’

The first part of this theorem results from 2.2 and the fact
that every m,-additive mcasure on B(T) is trivial 1), The second
part follows from 2.1.

§ 8- A s-complete Boolean algebra A satisfies by definition the
condition (M) if for any A4 ed (4==0) and for any dyadic system
r4; (=12 i, =0 or 1) of e¢lements of A such that
L 'liz---inJ SETRILEIRY ]

) A=dy+d

(ii) Ayt =ity gL By

theve exists an infinite sequence {j.} of the numbers 0 and 1 such

that
QAiii2~~-f:x 0.

Professor E. Marczewski has remarked ) that the condition (M)
is necessary for A to be isomorphic to a o-ficld of sets, z.md he hqs
posed the guestion whether it is sufficient 7t00. The ansver i nega_m €.
Tet & be an abstract 'set of potency 22% and let I he t.hE 1def11
of all subsets X of & of potency < 2%. The Boqlean algebxfa &:(_ & );;
is o-complete and is not isomorphic to any o-fields of gets, S, :
satisfies also the condition (M) on account of the following theorem:

3.1. Let X be o 2%-additive field of seis (m_(l let I be .ah?xo-a(ldi-
tive ideal of X. The guotient algebra X T satisfies the condition (M).

18) See Marczewski and Sikorski [1], p. 125.
17) See Marczewski [1], p. 243.
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Let 4 =[X]+0 be any element of X;T and let ‘{"1"1 i1} De
any dvadic system satisfying (i) and (ii). We can easily defiﬁe by
induction ¥) a dyadic system {Xg, ..} of sets belonging to X quoﬁ
that . ) o o

Aiytyty =[Ny ty.,]
X =1,+1X,
) A\vi,igu.i,,:Xilig...inlu'i-Xilig...i,,,l-

_1.’ and I being 2'\'“~additive, we have by the definition of the

operations ., X and 7" in X/ I

” — S‘V DFJ . . — ot - ad P >
[X] ["f\ n1=1 Aq..,r,,] = -Tv\ [Il 11’1....',1] :S ” [iii,..i,,]:E I'IAi ine
{in} {in) n= (1") n=t {in) n=i1 1ot

Sinee [.V]#0, there exists a sequence {j,} such that

I7 Aj g, F0,
q. e. d. v N

@ § 45. Professor A. Mostowski has posed the guestion whether
here s an Nyoq- ich i

: .(. GXITSLS an M—[—l complete Boolean algebra which ig isomorphic
f) anixﬂ.‘addltlve field of sets but not isomorphic to any M,q-addi-
tive field of sets. The answer ig negative. ‘

+1. Erery s-additive two-valued measure m on an Nur1-complete
Boolean algebra 4 is Nq-additive. ‘

Suppose that Ty is a set of potency Xy and that 4, ¢4 for
every veT,, d;duy=0 if T==7". We shall prove that

(i) n (2; ;1,) = m(4,).
€T, T
The real function GT"
()= m (Y ;_{,)
1€T

defined for all subsets T' of T is an Ne-additive two-valued measure
on 3(T,). B?ma ch and Ulam have proved 9) that every N,-additive
measure defined for all subsets of a set is Ny pq-additive. 'Therefol‘e

molTy) = S m((z))
€T,

®) Namely, if 2L, =[] (i=0,1), let X, = XT .
v L e i 1), et X = XU, and X, = (X — LT
.fhe]n Y= Xyt X, and 4;=[X]] (i=0,1) 1 and Xy =T Up+ (X—(Ug+ Uy)),
18 clear.

1) Banach [1], p. 98 and Ulam [
C L], p- € ¢ 1], p.141. The thod
of theorem 4.1 is originally due to Banach. (f. Banae hn[lf;h;d l(afl e proot

). The inductive definition of Xy,
wordyy
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i. e. the equality (i) is true.

4.2. If an Nup-complete Boolean algebra is isomorphic to an
no-additive field of sets, then it is isomorphic to an Syqq-additive field
of sets. .
This theorem is an immediate conseguence of 1.4 and 4.1
and ib gives the answer to Mostowski's question. The following
theorem can be proved in an analogous way:

+.3. If an w.-complete Boolean algebra A is isomorphic to an
Ro-additive field of sets and if Ry is of two-valued measure zero, then 4
is isomorphic to an R.-additive field of sets.

§ 5. m-complete Boolean algebras ave constructed in practice
by means of the division of m-additive fields of sets by m-additive
ideals. The question arises whether every wm-complefe Boolean
algebra is isomorphic to a guotient algebra X/T where X is an
m-additive field of sets and T is an m-additive ideal of X. In the -
case =¥, the answer is affirmative (theorem 5.3), in the case m>=> oRe
it is negative.

Let &, S, and s be Stone’s set, field, and isomorphism of a
Boolean algebra 4. Admitting S as the class of neighbourhoods
of elements of & we obtain from & a topological space called
Stone’s space of 4. As Stone proved the space & is totally discon-
neeted and biconpact, thus nermal 20).

Yet N denote in this section the class of all Borel sets XC&
of first category in the space & and let Z denote the ¢lass of all
sets Z e B(S) which can be represented in the form Z =84+ X—T
where S e8; XeN and Y ¢ N. Obviously Z is a field of subsets
of & and N is a c-ideal of Z.

51. The mapping h{d)=[s(4)] (jor 4 ed) is an isomorphism

of 4 on Z|N.
T follows immediately from the definition of Z that h

maps 4 on Z/N. Since
A"y =[s(4)]=[S—s()]=[S]—Is(4)] = (h(d))
and:
WA+ B) =[s(4 + B =[s(4)+s(B)=[s(4)]+ [s(B)] =h(d )+ 1(B),

2) Stoune [3]. p. 378. By definition every set Se§ is both open and

closed in &.


GUEST


2506 R. Sikorski:
% is a homomorphism of 4 on Z/N. If i(4)=0, then the open set
s(4) is of first category. Since every set of first category in a bicom-
pact normal space is boundary ?!), we infer that s(4)=0. Hence
A =0 since s is an isomorphism. This proves that h is an isomor-
phism of 4 on Z'N.

5.2, If A is o-complete, then Z is o o-field.

Let Z,e¢Z, n=1,2,... By definition Z,=8,+X,—Y, where
SpeS and YpeN and T,eN. We obtain easily that .

Z=3Zn=2 Sut XY,

n=1 n=1
where X e N and ¥ eN. In order to prove that ZeZ it is sufficient
to show that ZIS,, € Z. Let Sy=s(4,), 4d,ed, and let d=3 4,
n= _—
8=s5(4). Since s is an isomorphism, and A4,CA4, S"Cél"iand
finally ) 8,CS. Let U=S———Z; Sn. We shall show that the set .U

. n=1 =
Isa boundary set. Suppose the confrary, i. e. that the interior of U
is not empty. Then there would exist a non-empty neighbourhood
Sy =5(do)CU. From the definition: d;40. We have ) 8,C8—8,,
and hence §,C5—#8, for n=1,2,3,..."1. e. S(An)Cs(4)"s(4,). As s
is an isomorphism, we obtain: 4,CA—4, for n==1,2,... in contra-
diction to the assumption that A=) 4,. )
2 v . n=1 .

Since the boundary set U is closed, it is nowhere dense, thus
of the first category. Hence
. ZiS,,ZS——Ue Z,

n=

q.e. d.

) W'e shall say that X/T is a c-quotient algebra (of & set &) it X
is a o-field of subsets of & and I is a o-ideal of X, By 5.1 and: 5.2
we obtain immediately:

5‘.3. Every o-complete Boolean algebra is isomorphic to an
a-quotient algebra. ‘
) In a locally compact, regular space G every sel of first calegory is boundary.
Proof: Let {T,} be a sequence of v g %
\Tn} be a sequence of nowhere dense sets, T'= 7', and let G0
'be’ a’l;x al‘?itr:ir)f open s.etv. Bince G ‘—T’\i Ug there exists an o?:n set G4 such that
U; (,lCG-zT’l ar;d Gy is compact. By induction we define easily a Sequence {Gn}
o N - 3 4 _ ra .
open sets sut; that 0F=GnpiCln—Tnpt (n=1,2,...). & being eompact, we
infer that U=[[Gn+0. By definition UCG—T . '
- n]llbn?(' By definition UCG—17. Hence G—T=+£0. Since @ is
an arbitrary open set, T is boundary.
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Similarly:

5.4. If A is a complete Boolean algebra, then Z=B(S). There-
fore A is isomorphic to B(S)/N =),

In order to prove the equality Z=B(J) it is sufficient to
show that every open set & =38, (where S;eS) can be represented

T
in the form G=8—X where §¢§ and X is boundary. The proof
of thig fact iz analogous to the proof of 5.2. The second part of
theorem 5.4 follows from 5.1.
Tn general, Z'N is a subalgebra of the complete Boolean algebra
B(S)/N. It is easy to show that B(S)/N is the minimal extension
of A4 in the sense defined by Mac Neille ),

Now let I denote the field of all measurable subsets of the
interval (0,1) and let L, denote the ideal of all subsets of measure
zero. Tt is well known that the yuotient algebra L/Lg is complete )
and does not satisfy the condition (II)%%). Let m be a cardinal
number >2%. Since the condition (3} is invariant under isomor-
phisms, it follows from theorem 3.1 that L/L, is an example of
an m-complete Boolean algebra which is isomorphic fo no guotient
algebra X/T where X is an m-additive fields of sets and £ is an
m-additive ideal of X.
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Approximation to functions by trigonometric
polynomials (II).
By
A. C. Offord (London).

1. The objeet of this paper is to give some criteria for the
convergence and strong summability of certain trigonometric po-
Iynomials introduced by Marcinkiewicz and Zygmund?), and
defined in the following way. Suppose

A7)

Fr——— 1=0,1,2,...,2n
M1 slyyaeey Sty

{1) &rp=

and that @y,44(u) ist a non-decreasing step function with jumps
2x{(2n-+1) at the 2n-+1 equidistant points x,. We define

sin (n4-4) (@—a;—u)
sin }(z—ax—u)

2n
@ Ie(eh=grg D et

=0

sm n—+4) {e—1
ff( ﬂDT ( )(1¢2H+1(1~1c),

so that I,(«,f) is equal to f(x) at the 2n--1 points x;+u. I u=0
they become the ordinary interpolation polynomials which we
denote by I,(z,f). We prove

Theorem 1. Let f(x) be periodic of period 2zt and write
(3) Af = E{fle+ )+ fla—t)—2f(2)}.

Then, if #>1, and if f(») satisfies either of the following con-
ditions

27 2
d
@ [ % [uiras<co,
o 0

1) Marcinkiewicz and Zygmund, 4.
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