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La propriété (5) est ainsi établie.

D’apres 4) fet (5) 1a famille de tous les ensembles E(f), ot te T
est donic une famille de puissance 2% d’ensembles linéaires croissants

Yoy H
) Lexistence d'une telle famille entraine tout de suite le théoréme
suivant: ‘

Théoréme. Si M=y, Vensemble de tous les nombres’ réel;
est somme de 22% epsembles croissants 3), e
d’emfnlllge:n](izgz;r110118 savons définir effectivement wne famille
Pevs ares croissants pour laquelle on peut démontrer
a Paide (.ie Phypothése du continu, qu’elle est de puissance '7.2“"’

O‘r, il est 4 remarquer que nous savons démontrer sané f;ire:
appel & I'hypothése du continu (en utilisant seulement Paxiome

(}u,c?mlx) quiil existe une famille de puissance =o% d’ensembles
linéaires croissants4). )

3) Jai démontré ce théoréme par une autre voie dans mon livre othése

P: Hyp
du eontina, Monogxa,fle Matema; yczne IV (Warszaw 934), p. 120, Propo-
X t t. ( awa 1 ) P s L TODO

1) Voir W. Sierpinski, Fund. Math. 3 (1922), p. 109.
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On the imbedding of systems of compacta in simplicial
complexes.

By

Karol Borsuk (Warszawa).

1, It is one of the basic facts of geometry that every polytope
is decomposable in finite sum of elementar bries” called simplexes.
The importance of such decompositions for the study of topological
properties of polytopes sugdgest the investigation of decompositions
of more general spaces into sums of sets having particularly simple
homological and homotopical properties.

In the present paper I establish a simple connection between
arbitrarily given decomposition of a finite dimensional compactum ¢
in a finite sum of closed sets and a simiplicial decomposition of some
polytope. It turns out that every such decomposition of (' may
be obtained by an topological imbedding of ¢ in some polytope P
and by intersection of so imbedded set with simplexes of a simplicial
decomposition of P (Theorem 1). In the case when € has a decompo-
sition in a finite sum of absolute retracts such that every not empty
intersection of those retracts is also an absolute retract, it turns
out that all homology and homotopy groups of C ave determined
by the combinatorial properties of the decomposition.

2. Only metric spaces will be considered. By the cartesian
product of two spaces X and Y is meant the space X x ¥ consisting
of all ordered pairs (x,y), where r e X, y e ¥ and where the distance
is defined by the formula :

otz (27, 3)) = Vol P ey, 0P

If the space Y is compact, the space ¥¥ consisting of all con-
tinnous mappings f of X into ¥ metrized by the formula

olf.g) = sup olflx),gle))
xeX

is complete.
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By retraction we understand a continuous mapping f of X

onto ¥CX satisfying the condition
fl@)=2 for every zeX.

‘ 'If a retraction of X onto ¥ exists then Y iy called a retract
of l If there existsia continuous mapping f(m,t)f (called &' deforl
mation retraction of X onte ¥) of the space X x<0,1> (where <0 1>
denotes the interval 0<{t<{1) into X such that fi(#,0) =2 ‘a"nd
f(x,1) is a retraction of X onto ¥, then ¥ is said to be a deformation
retract of X. ' '

_ A compactum 4 is an absolute retract whenever a topological
image of 4 in any space X is necessarily a retract of X. A com-
Paotum 4 is an absolute neighborhood retract whenever a topological

image B of 4 in any space X is necessarily a v ' ot
g Y space X is necessa; a retract of son -
borhood of B in JX. o e
By the Hilbert space H is meant the space consisting of all

sequences of e s 2l with O g0 .
1 es of real numbers @ = {a,} with Zr:””fz convergent as points
n==]

and with the metrie

ol y) :I/ 2 (En—n)
) Thfe numbers x, are called coordinates of the point #. The
point with all coordinates vanishing will be denoted by 0

For the points of the Hilbert sp: g i
] i space there are d dditi
and substraction by the formula elined addition

{" 'n} + {,1/ n} = {4[' n = Y n}
and the multiplication by a real number by the formula
te{ag} = {t-w,}.

Let.k>Q be an integral number. The subset ¢, of H congistin
of al'l points {x,} with 2,=0 for every n>k i3 congruent \ﬁ;:h thg
Fuclidean k-dimensional space. Furthermore we ; )
empty set. and C, by the formula

define ¢y as the
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A finite system z%at,...,a% of points of the spake H'is called
linearly independent if the equabion

ty- k1 Al Ty 2R =0,
where i#g,t,...,1x are real numbers, with #,4-f;+...+#=0, implies
t0=t1)"‘)=tk=0‘

In partienlary linearly independent is every finite system con-
sisting of different points belonging to the sequeunce d%di,...,d%...,
where .
@) di={6f} with 8,=0 for n==i and &=1.

Let #%u!,...,#% be a linearly independent system of points
of H. By the k-dimensional (geometrical) simplex

A=A, a1, .. k)
spanned by the vertices 20xl,...,c* we mean the minimal convex
subset of H containing the points «°xt,...,x%. By the (—1)-dimen-
sional simplex we mean the empty set. ) )

A simplex A’ will be called a face of the simplex 454" if all
vertices of A’ are vertices of 4. The sum of all faces of the
simplex A will be called the boundary A of 4, and the set A—4;
the interior of 4. Evidently there exists for every k-dimensional
gimplex A a homeomorphic mapping f of 4 on the set

Qk:E[‘” € s o{r,0)<1],

x . "4
called k-dimensional spheric element. The homeomorphism f maps
the boundary 4 of 4 onto the (k—1)-dimensional sphere

Sp-1= F [ € Cx; olz,0)=1]

x

and the interior .d—_i of 1 onto the interior
Iy= Flr € Cy; ol2,0)<1]

of Qk- - )

A simplicial compler K is a finite - sequence of simplexes
Ay, Ay, ... Ay such that for every i,j=1,2,..,m the set 4:4; is the
gimplex spanned by all common vertices of A; and A;. The vertices
of the simplexes Ay, 4,,..., 4, are called the vertices of the complex K.
The sum of all simplexes Aj,ds...,dn Will be .denoted by K|
A polytope is a set P such that there exists a complex K with |[K|=%
Such complex K is ealled a triangulation of the polytope P.
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3. Lemuma. Let B be a closed subset of a compactum A, such that
dim (4—B)<p< e,

and f, a continuous mapping of B in the boundary of an (2p 4+ 1)-di-
mensional simplex A. Then there exists a continuous extension f of fo
over A such that f maps the set A— B topologically in the interior of 4.

Proof. We cari consider, instead of mappings in an (2p-+1)-di-
mensional simplex 4 the mappings into the (2p+1)-dimensional
spheric element )

Q=0Qpi1= F[r eCoppr; o(2,0) <1].
X

By the known imbedding theorem of Menger-Ndibeling1)
every compactum of the dimension <p is homeomorphic to a subset
of the interior TLoppg of Qspiq. We infer that the lemma is true if
B=0. Hence we can suppose in the sequel that B==0. Furthermore
We can assume, without diminishing the generality, that the dia-
meter of - ig less than 1/2.

Let us put

(2) L=F wed; ()(.I‘,B}}% for k=1,2,...
Then the sets 4, are compact and
®) dy=d,=0; 4—B=YA,.

k=1

Let us denote by Q4(f,) the subset of the space @4 cousisting
of all continuous mappings f* satisfying® both conditions:

(4) Fla)y=fo(x) for every i eB,

(5) olf'(2),0) <1— 1

% for every @ e 4y k=1,2...

It is (-]e:u.“ that @4(f,) is a closed subset of the complete space Q4.
Hence Q4(f,) is also a complete space. Furthermore it is

QA(/o) == (.

. *) Bee, for instance, W. Hurewicz and H. Wallman, Dimension Theory,
Princeton: Math. Series 4, Princeton 1941, p. 56. )
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For there exists?) a mapping fe@4 being a extension of f,
over 4 and thus satisfying the condition ({). Putting
f{@)=[1—o(x, B)]-f(x) wed

we obtain a mapping f e@4 such that for every reB it is

o 1

F{z)=Hz) =fo(x). Furthermore for every red, it is g(m,B))E

for every

and consequently L
olf'(2),0) <1— gl B) <1— 7.

Hence f' satisfies the inegality (5).
Denote by Ipan, for m and n natural, the subset of the space
Q4(f,) consisting of all mappings f' satisfying the condition

1 Ca
(6) I ryedn and olr,y)>— then flr)=7{y).

Clearly I'y, is an open subset of Q4(f,). Let us prove that I,
is dense in @4(f,). It suffices to show that for every mapping feQ4(f,)
and every number ¢ such that

(7) 0<eC1
there exists a mapping ' « @4(f,) satisfying the inegality
(8) ol (), fa)}<e

which maps the 4, topologically.
Consider the mapping 7/ defined by the formula

for every red

f"(m):(l—g)-f(.t) for every ze 4,.
# maps 4, onto a subset of the interior of @ and we have

(9) off (@), f@)] < fe
By the imbedding theorem of Menger and Ndbeling there
exists a homeomorphism f'* mapping 4, onto a subset of @ in such
a manner that
olf""(x),f (x)]<te for every xeA,.

for every r e A,.

By (9) it follows
(10) olf"" (@), f(@) 1 <}e

2) See, for instance, W. Hurewicz and H. Wallman, 1 c. p. 82.

for every r e Ay
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Putting
glw)={""(x)—flx) for every wxed,,

we obtain a eontinuous mapping ¢ of the set 4, onto a subset of
the spherical element

Q(he) = F L2 e Copias o, 0) < el

We extend the range of g putting
gle)=0 for every ped—d4,,,.

Thus the continuous mapping ¢ is defined in the closed subset
A,+4—4,;, of A. There exists 2) a continuous extension g’ of g
over 4 with values belonging to @ (Le). Putting

¥(xe)=fa)+g'(x) for every ze A

we obtain a mapping fV e Q4 such that

{11) odfY¥x),f(x)] <te for every xeA.

Furthermore we have :
(12) My =f(x) for every @ e A—A, 4.

Now we construct the desired mapping 7 by putting
(13) fla)= (1—32e)-/¥(z) for every o ed 4,
(14) Ie)={1—Fn+1)el(n+2): o(a,B)—11}- /¥ ()

tor every @ € d,p—A,pq,

(15) fle)=f¥(x) for every o ¢ A—14,,.

In order to show that the formulas (13), (14) and (15) define
a continuous mapping, let us observe that for €dnirdnpe—Any
it ig g(;t,B):m. Consequently the value of ' given by the for-

mulag (13) and (14) are the same. Similarly for e d A, 1y cA—A

e 1
it is g(w,B):;ﬁﬁ and consequently the value of f defined by (14)
is equal to the value defined by (15).

By (13) in the set A4,C A,y the mapping f' is a superposition
of the homeomorphism ¥ and the homeomorphism

My)=(1—3%e)y

1
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mapping @ in itself. Hence f' ix over 4, a homeomorphism. By
the formulas (13), (14) and (15) the values of f'(2) belong to @ and
F'(x}) is of the form )

- @) =) V()

with 0<Ca(z) <fe. It follows

ol (). ()] =alz) - o[V (), 0] < 3.

Combining this with the inequality (11) we conclude that f
folfills the condition (R).

It remaing to prove that f’ e/ h.,, this is that §* fulfills the
conditions (4), (5) and (6). The condition (0) is fulfilled, because f’
is & homeomorphism in the set 4,. The condition (1) is a conse-
quence of the fornmulas (12) and (15), because reB implies red—d4, 5
and f(a)=/fo{x).

To prove the inequality (3) we consider the following cases:

Ifvedp- A—A,yy with k=r-4-1, then (12), (14) and {15) given

oI (), 00 < ol (), 0] = o), 0] < 1— .

]'_‘(/*f'however red, with k<n—+1, then »red,-y and by (13)
we have ) _
of(), 0]=(1—3 &) - of /¥ (), 0].
I of[fV(x),01< 4, we infer by (3) that

1
o (), 0] <3 <1—7 -

It however o[V (2),0]>1, then by (13) and (11) we have
off (&), 0] = o[f¥ (), 03— & o[ f(), 0T o[/ (2), 01— o < :
< ol (), 0] — a1 (2),f)] < alf(2), 01 < 1.

Thus the inequality (5) is proved in all cases and consequently
f € I'mn. Hence the open set [y, is dense in the complete space

- Q4(f,). By the known theorem of R. Baire?®) there exists a mapping

fe [l I'mn We conclude from the conditions (6), (5) and (3) that f

=1
mgﬁs A— B topologically in the interior of ¢..Hence the lemma
is established.

3) See, for instance, W. Hurewicz and H. Wallman, L ¢. p. 160,
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4. By a decomposition of a space A we mean a finite sequence
{d,,4ds,..., 4s} of closed sets whose sum is A.

A decomposition {4,,4,,...,4;} of a space A is similar to
a decomposition {By,B,,...,B;} of a space B if k=1 and for each
sequence iy,ly,....7, of indices the relations

41,'1~:1i2..,;‘11v=0 and Bii'ABfg...Bi,‘zo

are equivalent. In particular 4,=0 if and only if B;=0. It is clear
that the similarity of decompositions is a reflexive, symmetric
and trausitive relation.

Applying the concept of the nerve of a decomposition introduced
by P. Alexandroff4) we see at once that two decompositions
are similar if and only if the correspondence A;— B; induces an
isomorphism of their nerves.

A simplieial complex

E={d,,dy,...,43)

will be called a simplicial realization of a decomposition {4;,4,,...,4,}
of a space A if it constitutes a decomposition of the polytope |K|
similar to the decomposition {4,,4,,...,4;} of A and there exists
a homeomorphism % mapping 4 into a subset of | K| in such a manner
that

A)=h(4)-4, for every i=1,2,...,k.

5. Theorem 1. For every decomposition of a finiie dzmenswnal
compactum there ewists a simplicial realization. )

Proof. Let {4,4,,..,4;} be a decomposition of a com-
pactum A of the dimension p<ocec. For every m=0,1,...,(k—1)

T . (% . .
there exists a(m)= (m) of different inereasing sequences 4,4, O -

with natural terms <%. Let us range the sets of the form

EPRY:| A,

th—m

(not necessarily different) corresponding to such sequences into
a (finite) sequence

dg " eee

= {AT, AT, AT

‘) See P. Alexandroff, Uber den allgemeinen Dimensionsbegriff und seine
2ur el taren geometrischen Amnschawung, Math. Ann. 98 (1928),

- B
p. 634,

]
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The sequence ™ constitutes a deeomposition of the set
AT AP AT AT

In particnlar afhk—1)=%k; 4*1=4 and the
(AT A AFTY constitutes a permutation of the
{4y, 4y, 42}, We can assume that

k-1 " - ¢
A7 =4; for every i=1,2,...,k.

sequence
sequence

We now prove, for m=0,1,...,(k—1), the following statement

(16m) There exists in the space (', a simplicial compler K™, with
all vertices belonging to the sequence {d}, constztﬂtmg a simpli-
cial realization of ihe decomposition [AT, AT, .. A%n} of
the space A™.

Evidently (16%-1) is equivalent to our theorem. Let us prove

{16™) by induetion.

For m =0 we have a(m)—(Zu k 0) land A'=4} =A;- Ay dpe
If this last set is empty, then the statement (16 ) holds if we put K*
equal to the complex constituted only by one (—1)-dimensionat
gimplex. If however

dim 4?=p,>0,

then the statement (16°) holds if A is constituted only by one
{2p,-+1)-dimensional simplex 4] with the vertices @%d,...,d%!
because, by the imbedding theorem of Menger-Nobeling, there
exists a homeomorphism A’ mapping A’ onto a subset of 3.

Now assume that the statement (16™) holds for an » <k—1.
By this hypothesiz there exists a simplieial complex

K™ (A7, 3 Vi)

constituting a de(ompusition of the polytope |K™] similar to the
decomposition (AP, AT, .., A% of 4™ and a homeomorphism 7™
mapping 4™ onto a \ub\et of the polytope [K™| in such a manner

that

(1) ().

AT =1"(4™)- A7 for every i=1,2,...,

" e .
Nince the decompositians {47, 43, .., AL} and {4548, .. J&m}
are similar it follows that for ever tem of indices Al,zg,...,i,, the
anishing of the set Af- A7.... 47 is equivalent to the vanishing
m m m
1 AT LA

Fundamenta Mathematicae. T. XXXV.

of the set

15
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To prove now the statement (16m+1) let us consider the se-

quence

9[1"+1 — {‘4;11-%1’ :1_271-{—1

) AJ(MH)J

" > -+1 .
For every 2=1,2,..,a(in-+1) the set A3 can be written

in the form
_11117-1

-4 A;

Ay R RLITRD: S with 4y, =1z, for p-».

Let us range all natural numbers <k not appearing among
the nuambers iyy,09,...700—m—1 iD the sequence 7;1,),9,
Obviously it is .

7,’4,:11+1-

m+1
N 1
MAry

w=1

g m1 m__
A g =
- 'L
But every set A4, belongs to A™ and consequently
there exists an index z(/,,w) su(h that
A7 4
AFTho4;

Eray

=Aja. for every »=1,2,.. m41.

It follows from (17@) that
hwul(Ai(;.’v)):7’)}"(_{1_’")';_’_1‘;?,‘:’”).

Let us assign to each set A3 e Y™ the simplex AT defined
. J_
in the following manner: If 43" =0 and consequently also 4 =0
for every r=1,2,..,m+1, then we put AFT'=0. If however

+1 . .
A7 _;’T(J, then A7 denotes the simplex having as the set of ver-
tices
PESHPIT P

the collection of all vertices of all simplexes A ., v=1,2,...,m-+1
enlarged by some supplementary vertices which belong to the se-
quence {df} but differ from all vertices of the complex K™ and
for different values of 2 ave different. Furthermore we can sSuppose
that the number of supplementary vertices in every simplex A7
is 21 and so large that

B2=2p+1 for every Z=1,2,‘..,a(m+l)

It follows from our construction that every simplex Ag .,
r=1.2,...,m+1 constitutes a face of 4 and that for every other
simplex A7 of K™ the simplexes 4™ and A™! are disjoint.

icm
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Since all vertices of the simplexes AT belong to the sequence
Ad; the simplexes (A7 A7 AT A constitute a simplicial
cmnplex K™ It vemains to prm’e that K™ is a simplicial reali-
zation of the decomposition {ATH AP, A%FL Y of the set 4™
We shall first show that the (lecompoqtmn (AT AT, L AT )

of the polytope IL""1 is  similar to the decomposition
LAPFL AP AL o 47,
Let %, /r be a sequence of natural numbers <ao(m--1).

If there exists an index y such that 1<{a<{» and A""‘“ =0 then

also J"‘*‘ 0. Consequently both sets Aﬁ;*’-A,—’ﬁ;—i-...-Af{L“ and

- B .l.. -
AZ ! _1"‘ ¢ eeer A2 vanish. Hence we can assume that no any of
the gets AZ"‘"I,AE,’TTI,....A’-”TI is empty.
1 1y e
M -+ - -
I ly=l=..= then A"'Tl AP 4R X:AE;'I and

] i .
ARTL AT AR =427 In this case the equivalence of the re-

i e _ -+ . 1 -
lations ;1’" 1 Aﬁf,'r‘ wer AP =0 and AZ ! A7 1 w77 =0 is an

immediate consequence of the definition of the simplexe.\‘ AP

Let us assume now that in the sequence 2y, Z%,..., 7%, there exist

at least two different numbers. Let

2 Lot
. I .
where i U P L system of k—m—1 different

natural numbers <k. By our hypothesis there exists for every system

iz IPTRPY I ,z, p—m—1 a0 index x; of the form 1,11 with §'=j which

does not belong to the system iz, 1#2},2,---,?@.1;—"1 1. The set A"‘”1 Ay

Let us put

3 g m+t m
(18) A,—,j A,,j—-;fl,,j
Hence

m-1 m m
AT g g

+1 1 )
AT AT - Ag.

It follows from (13) that the simplex ﬂ’" constitutes a face of

the simplex JL-,";‘. I AR AR AT 0 then A A AR 0

lence, by hypothesis of induction, IZ" _If,f,-..nj,,w and conse-

A”’“ AL L AT .

quently also N
.-AE:H#O, then there exists a vertex p common

If AR ART

1o all simplexes .J;_J.“H. i=1,2,...,». Such a vertex can-not be a ..sup-
plementary vertex”, hecause not all numbers 4, 2, ..., ave identical
..supple-
Henece p is a vertex of the complex K™, It follows
15%

mentary vertices”.


GUEST


228 K. Borsulk:
that every simplex -_’IEJ’.%, j=1,2,...,» contains a face di, With the
vertex p. By the construction of Aﬁ{}“ we infer that :‘12}&11{?’.
But pedg-Ap...- Ay, implies that A7 Ag...-dy,+0 and con-
sequently also A,.’A”l"rl-‘fii"zﬂ‘,..-:l,'{:fl:l: 0. Thus we have show that the
s 4 +1
decomposition {AFTLATTE  ATHL v of the set A" and the
Py u + g 1
decomposition {AfF A5 L AZHL 1 of the polytope |E™H are
similar. '

It remains to show that there exists a homeomorphisn 4"
satistying the statement (16™7!). We define a sueh homeomorphism
by extending the homeomorphism %™ over every of the sets 42!

) g T i »
i=12,.,a(m+1). We can assume that AP=£0. Let us denote
by BFT! the common party of the set A7+ and the set Y A

. w=Ez
The homeomorphism %™ maps the set BF'! onto a subset of the

boundary of AP Since the dimension of AT iy >2p+1 and
the dimension of Bf™ is <p we infer, by the lemma of N. 3, that
there exists a homeomorphism A2+ being an extension of A™ over
AL and mapping AT —BI onto a subset of the interior of
A7 Since the interiors of verious simplexes A7 are disjoint the
mapping k™" defined by the formula

m

W (@) =0T e)  for every e ATH

is a homeomorphism of 4™ onto a subset of the polytope |E™|.
Fuathermore, by (17™), we have

hm—;—l( _lgh’»l)_vhm—i-l( _1;11+1_B;’n—}—1>_{‘_ ]lzll(qu+1)_

B ~* 4 it <A d ~ =
:7I’m-\'—l(A‘m+1)(Am+1_~1ﬂ'm+1)4_hm(Am)_L,]‘}n+1____
:71111+1(A1n+1).<Agz+1_‘__d'r_:r+l)4_7lxlx+l(A:11+1)_jqz+l_

~ i A -

=R AT A7

Thus we see that the condition (16" iy fulfilled. This com-
pletes the proof of our theorem.

6. Corollary. For two similar decompositions of two finite
dimensional compacta there ecwists a complex being their common-
stmplicial realization. .

) Pf’oof. {Let A, d,.., 4} be a decomposition of a finite
d‘u?mnsmnal‘clomp:%ctum 4 and {B,,B,,...,B;} a similar decompo-

sition of a finite dimensional compactum B. We can assume that 4.
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and B are disjoint subsets of the space H of Hilbert. The sets
{41+ By Aot By, Ay Byl constitute a decomposition of the
space A+ B similar to the decomposition fd, Aoy dyt of 4. In
fact. the relation A,-I-A,-I-...;A,-r-;o is equivalent with the relation
By By ...-B;,=0 hence also (by 4-B=0) with the relation
(Ay+By) (Ay+ By - oo- (4,4 B, ) =0,

According to the theorem 1 there exists a simplicial complex
H={d;, dy,..., 4} being a simplicial realization of the decompo-
sition {41+ B, 4+ Bs,..., 43+ By}, It means that the decompo- |
sition {4y, dy,..., 5} of the polytope K| is similar to the decompo-

sition {d;-- B, 45+ B,....,d,+ Byl of 4B and there exists a ho-

“meomorphism & mapping 4 -- B onto a subset of | K} in such a manner

that

(19) WA+ B)=h4d+B)-4; for every i=1,2,..,k

The complex K constitutes the demanded common simplicial
realization of the decomposition {4,,4,.....4,} and {B,,B,..., By
In fact, by the similarity of the decompositions {4, 4,,...,4,} and
{4+ By, Ay By, .oy dp+ By} it follows that the decompositions
{Ady, Aoy dg} of 4 and Ly, 4y, 45} of |E| are similar, The ho-
meomorphism h, considered only in 4 maps 4 onto a subset of |K|
and from the relations (19) and 4-B=0 we find

WA)=h(d)-4; for every i=1,2,...,k.

Hence K is a simplicial realization of the decomposition,
{dq. s 4z} In the same manner we show that K is also a simplicial
realization of the decomposition {By,B,,...,Bx}.

7. Lemma. If 4 and BCA are absolute retracts, € is a closed
subset of 4 and v is @ continuous mapping of the set € ><0,1> into 4
such that

M, 0) =z,
ra,l)y=x

re,1)eB  for every i e C,

for every x € B-C,
then there exists a continuous extension v'(x,1) of r(x,t) over the space
4 2:£0,1> with the values belonging fo 4 such that:

{2, 0)=x for every red,

(a,1) is a retraction of A onto B.
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Proof. Putting
¢@)=x
(@) =r(z,1)
we obtain a continuous mapping ¢ of the closed subset B+ (' of &
into B. Since B is an absolute retract there exists a continuous
extension ¢’ of ¢ over 4 with the values belonging to B.

for every xe B,
for every e C.

Putting
(2, 0) =z for every x e 4,
(20) P, t)=1r(x,t) for every (r,f) e 0x<0,1)
(@, 1)=¢'(z) for every x eA

we obtain a continuous mapping of the closed subset
A X (0)4 € x<0,1>4+4 %< (1)

of the space 4 x{0,1> into 4. As 4 is an absolute retract there
exists a continuous extension (1) of 1'(z,t) over A <0,1> with
the values belonging to 4. It follows, by (20) that » is the demanded:
extension.

8. Theorem 2. If K is o simplicial realization of a regular
decomposition of a space A then A is homeomorphie with a deformation
retract of the polytope |K|.

Proof. By hypothesis K:-{A],Jz,...,Ah} i.s a simplicial reali-
zation of a regular decomposition {A,4,,..., 4} of 4. Hence there
exists 2 homeomorphism % mapping 4 into }E [ in such a mammer
that

(21) Md)=h(A)-4; for every i=1,2,.. L.
It suffices to prove that the set
B=n4)

is a deformation retract of the polytope

For every m=0,1,...,(k—1) there exists a(m)= U)") of different
increasing sequences dy,dy,...,im—z With natural terms <k Let
Ty Moy ey Tatmy D these sequences. If

Ty = (11, Gy e ey Tm—r);
then we put .
(22) A=Ay Ay Ay, s BY=R(4™),
{23) A=Ay Ay

m—k"

icm

Imbedding of compacta 231

The simplexes 7,13

yeoordagm) constitute a simplicial eomplex
AH™. We see at

once that the sets {BIBY.... B, constitute
u(m)
a regular decomposition of the set B™ =3 B™ similar to the decom-

p=

position {47,435, ., _tm} of the polvtope K™, Furthermore,
by (21), (22) and (23) we infer that
(24) BY=B". 13" for every r=1.2%....clm).

Hence K™ constitutes a simplicial realization of the regular
decomposition {BY. etmy) of B™.

We shall now prowede by induction showing for wm=0.1...,.I-
that there exists a continuous mapping 7 {.r,t)
™30 <0,15 into jK™! such that

—1
of the set

rE (e ) =g
(e, 1) ix a refraction of LK™ onto B,
(e ) e 150 for every ae 17 and Ui

for every a e K™,

m;

{25m)

In the case m=0 the set B™ is
Bi=h(d;-4,-...- 4y and the complex K™ is constituted by one
simplex A0%=1,..45- ..« Ay I B'=0 then also A%=0 and onr statentent
is evident. If however B94=0 then B° is an absolute retract Iying
in the simplex A° By the lemma 7 {(where we put (=0, B=RB"
and 4'=4% we infer that there exists a mapping #%r,1) m’naiymg
the condition (259).

Now let us assume ﬂmt f(n' an m<k—1 there exists a con-
tinuous mapping m(r,f) of | 40,1 into IK™] satisfying the
condition (25m), Now let us (un\xder two not empty different
simplexes A% ang 1" of the complex K™, It is clear that
there exists two \nnplews dgrand J% of the complex K™ such that

identical with the set

int—!-i‘“lgz-r-] _]m m
3 z 3 +1 1+
Hence the mapping ™ (a,1) is defined for every wedy™l. 45t
and 0<it<<1 and, by (25m) its values Dbelong to the set
Ay <] ’"_.l"'_1 AT Farthermore the set

Bm—l ]5)11-1—1 Jn|+1
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is an absolute retract. Applving the lemma 7 we infer that the
mapping 7(c,t) may be extended over the seb AT £0,1> in such.
a manner that its values belong to A% and that it constitutes
a deformation retraction of Jj’,"“’ onto the B}'f'i'i. Extending rm(w,t)
in such a manner over every set 1.1}','““, =12, ,am-+1), we
obtain a mapping rmH (1) satisfying the condition (25m+1),

Thus we see that a mapping m(x,t) satisfying the condition
(25m) can be constructed for every m=0,1,...,k—1. In particular
the mapping »5Yx,f) constitutes a deformation retraction of the
polytope [KA1={K| onto the set B*-'=B. Thus our theorem
iy established.

9. Corollary 1. If 4 and B are finite dimensional compacta
having stnilar regular decompositions then there exists a polytope P
containing two deformation retracts homeomorphic respectively with A
and B.

Proof. By the corollary of Nr. 6 there exists a simplicial
complex K being common simplicial realization of given similar
regular decompositions of A and B. By the last theorem A and B
are homeomorphic with some deformation retracts of the poly-
tope (K] :

Following Hurewicz two spaces X and Y are said to Dbe of
the same homotopy type provided there exist two mappings fe XV
and g e ¥¥ such that there exists a continuous mapping ¢(a,t) of
X2<0,1> into X and a continunous mapping w(y,t) of ¥ x<0,1>
into Y such that

¢(x,0)=x and

P(u,0)=y
It is known 8) that two absolute neighborhood retracts of the
same homotopy type have isomorphic homology and homotopy
LTOUPS.

We assert that if X is & deforination retract of « compactum ¥
thew X and Y are of the same homotopy type.

In fact, if Y is a deformation retract of ¥ then there exists
4 confinuous mapping ¢{x,1) of X k0,1 into X such that

glz,1)=Ffg(x) for every reX

26
26) and  (y,1)=gf(y) for every yeX¥.

q(;r,Of:m for every zeX

5) See W. Hurewicaz, Beitrdge zur Topologie der Deformationen II1, Klassen

und Homologietypen von Abbildungen. Proceedings Akademie te Amsterdam 3¢
{1938), p. 125.
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and that the mapping
g(x) =g(a,1)

is a retraction of X onto Y. If we put

fy)=y for every ye X

and

wy )=y for every (y,t)e X »<0,1>,

we see at once that )
FeXY, gex?¥
fo(e) =g(r) =q¢(r,1) for every ae ¥
and
giy) =y =2(y,1)
Hence the conditions (26) arve fulfilled, that is X and T have
the samie homotopy type.
It enables us, with reference to the corollary 1, to formulate
the following

for every ye X.

Corollary 2. Finite dimensional spaces admitiing similar
regular decompositions have necessarily the same homotopy type.

It follows that all finite dimensional spaces admitting similar
regular decompositions have isomorphic homology and homotopy
groups. Hence the topological structure of finite dimensional spaces
admitting regular decompositions is in high degree determined by
the combinatorial scheme of their regular decompositions.

Furthermore it follows from our proof that for every finite
dimensional space with a regular decomposition there exists a po-
Iytope having the same homotopy type. Let us observe now that
the notion of nerve enables us to construet such a polytope.

Let W={4,,4,,...,4;} be regular decomposition of a finite-
dimensional space 4 such, that 4;5=0 for every i=1,2,...,k. Let K
denote the simplicial complex constituted by all simplexes spanned
by vertices di,d, ..., dm helonging to the sequence (1) with 1<, <k
for every »=1,2,..,m and d,-4;-...-4; +=0. It is clear that A is
a geometric realization of the nerve of 9. Let A denote the bary-
centric subdivision %) of K. If we denote by B; the sum of all simplexes
of K’ containing the vertex df then we obtain a regular decompo-

8} Barycentric subdivision of K is the simplicial subdivision of K whose

verfices are the vertices of I and in addition the barveenters of all cells of K
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sition B=={By, By,...,Bx} of the polytope [K]. This decomposition
is similar to the decomposition 9 of the space 4, because for every
System iy, dy.ey i of indices the relation Bj - Bj,-...- By, == 0 holds if
and only if all vertices di,de,...,dm belong to one of the simplexes
of K 7), that is if Ay-dg- .0 dy =0,

By corollary 2 we infer that the space 4 and the polytope |K]
have the same homotopy groups.

Thus we have the following

Corollary 3. If the simplicial compler K is a geometric realiza-
tion of the nerve of a regular decomposition of « finite dimensional
space 4 then the space A and the polytope |K| have the same homatopy
type.

Problem. Remain the statements of the corollaries 1, 2 and 3
true df we omit the hypothesis of the finite dimension?

Y See, for instance, P. Alexandroff and 4. Hopf, Topologie T Berlin,
Sp}‘inger 1935, p. 148,
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Sur la méthode de généralisation de Laurent Schwartz
et sur la convergence faible.

Par
Jan G.-Mikusifiski (Lublin),

Nous montrons dans la note présente que la méthode de
Laurent Schwartz, emplovée dans son travail ..Genéralisation
de la notion de fonction...”?), peut étre appliquée i des espaces
abstraits beaucoup plus généraux (ue celui des fonctions. Elle onvre
ainsi la voie 4 des nouvelles applications bien différentes.

Nous nous appuyons dans nos considérations eci-dessous sur
la notion de convergence faible. .

1. Soient domnés trois ensembles guelconques F, @, (. On
définit une ..composition” qui fait correspondre a chaque couple
d’éléments f, ¢ (f e F, ¢ e @) un élément ¢ de C: jg =¢. On suppose
que lensemble @ est .total” par rapport a cette composition,
c’est-a-dire que la relation ,.fe=gp pour tout ¢ «®P” entraine f=y.

On définit ensuite dans C une convergence queleongue qui
fait correspondre univoquement & certaines suites ¢, e C des éléments
¢ de (' lim e, =c. [On suppose toujours que si o, =e, pour #=1,2,....
alors lim e, =¢,].

On dira gu'une suite f,eF converge faiblement vers f: Hm fn=]J,
lorsque lim fog=fe pour tout ¢ e @.

I se peut gue la suite f, étant donnée, les suites f,¢ conver-
gent dans ¢ pour tout ge®, mais qu’il n’existe pas d'élément feF.
tel que lim f,¢ =7g¢. Désignons, dans ce cas, par f 'ensemble de toutes
les suites fp e F, telles que lim frg =lim f,¢ (pour tout ¢ ¢ ®). Nous

1) Généralisation de la notion de fonetion. de dérivation, de transformation
de Fourier et applications mathématiques et physiques, Annales de I'Université
de Grenoble, 21 (1945). Un nouvel article sur le méme sujet a parn tout récem-
ment: L. Schwartz, Généralisation de la notion de joncltion et de dérivation,
TPhéorie des distributions, Aunales des Télécommunications, T. 3, N¢ 4, 1948,
p- 135-140.
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