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On Cyclic Transitivity ).
By
T.Radé and P. Reichelderfer (Columbus, Ohio)?).

INTRODUCTION.
Fund tal C ts

0.1. Let us denote by 1 a set which will serve as our space;
-the elements of the set 1 will be called points. We shall not assume
that the set 1 is topologized in any way — that is, 1 is a wholly
unconditioned set, unless a statement to the contrary is explicitly
made. : '

0.2, Given in 1 a binary relation %, we shall write aRb to
-express the fact that the points ¢ and b of 1 are in the R-relation.
Many important bina.}y relations arising in algebra are reflexive, sym-
metrie, and transitive — that is, aRa for every point a; aRb implies
bRa for every pair of points a,b; and aRbRe implies a¢Re for every
triple of points a,b,c. On the other hand, the general theory of
sets leads to binary relations — such as set inclusion — which ave
fransitive, but are neither reflexive nor symmetric. Binary relations
-of the types just mentioned have been studied and applied exten-
sively. Both of these types are transitive. In this paper we are
concerned with binary relations which are reflexive and symmetric,
but are not necessarily transitive; the requirement of transitivity
is replaced by a weaker condition which we shall call cyclic tram-
sitivity (ef. 0.3). We were led to consider such binary relations by
2 study of the theory (developed by G..T. Whyburn, ¢. Kura-
towski, R. L. Moore, and others) of the structure of various
Aabstract spaces.

*) Parts of this paper were presented to the Americau Mathematical Society
at its meeting in Chicago. 1989.

%) Le manuscrit de Pouvrage de MM. T. Radé et P. Reichelderfer
a été brulé par les Allemands et la plupart des feuilles déjd composies détraite.
I1 nous sont restées par hasard ces quelques feuilles que nous avons fait imprimer.
vNo.us espérons que les Auteurs pourront nous fournir la suite de leur travail,
-qui sera imprimée alors dans Ie prochain volume de ,,Fundamenta Mathematicae®.
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0.3. Given a binary relation R in 1, we say that R is cyelicly
transitive if, for every finite eyeliely ordered set of distinet points
Gy, Gy, O SALISEYING @, Ra,R ... Re,Ray, we have a,Ra; for every
choiee of the subscripts 4 and §. Let R be a reflexive and symmetric
binary relation; if R is transitive (cf. 0.2), then clearly R is cyelicly
transitive, but the converse is not true. Thus eyclic transitivity is
an extension of ordinary transitivity — that is, an extension of one
of the fundamental concepts arising in algebra. On the other hand,
we shall see presently (cf. 0.4) that cyclic transitivity also arises
in connection with certain fundamental concepts in topology.

0.4. Let us now assume that 1 is a set sufficiently topologized -
50 that we can speak of mutually separated sets, hence of connected
sets in 1. A basic concept in K.W.3) is that of conjugate points.
Two (not necessarily distinct) points e and b are conjugate if, for
every choice of the point z different from @ and b, the points a
and b are in the same component of 1—g. Writing af;b to mean
that ¢ and b are conjugate, we easily verify that &; is reflexive
and symmetric, but is not generally transitive. However, if we
have af;b, 8¢, afkD,Kc where b, and b, are distinet points, then
it follows easily that af;ec. A closer inspection of the properties
of &, reveals that this latter property is but a special case of the
more general property of eyclic transitivity (cf. 0.3) possessed by K.
In W.4), G. T. Whyburn uses the concept of a nodular set as
a basis for his work. A nodular set S is a connected set which is
disconnected by none of its points-—that is, §—= is connected
for every choice of ». A nodular set is called a maximal nodular
set if it is a proper subset of no nodular set; a non-degenerate ma-
ximal nodular set is called @ nodule. W. considers no binary relation
explicity; however, we may associate a binary relation with the
concepts in W. as follows: af,b if either a=b or ¢ and b are on
the same nodule. Inspection reveals that K, is a reflexive, sym-
metric, and cyclicly transitive binary relation which is not generally
fransitive. M.3) uses the notion of two points being separated by
o 3) in the sequel, K. W. refers to C. Kuratowski and G. T. Whyburn.
Sur les dléments eycliques et leurs applications, Fundam. Math., 16 (1939),
pp. 305-331.

4) In the sequel, W. refers to G. T. Whyburn, On the structure of cmmer'_,tyd
and connected im kleinen point sels, Trans. Amer. Math. Soc. 1931,

5) In the sequel, M. refers to R. L. Moore, Foundations of point set theory,
Amer. Math. Soec. Colloguium Publications, 13 (1932). .
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a third point as a basic concept. Two pqigts o :mfl b are said to
be separated by a point & if asr=b, and if 1—p is a sum of .two
mutually separated sets 4 and B such that aed, beB..Oonmd'er
the following binary relation: afsb if and only if no point @ dif-
ferent from a and b separates a and b in the sense of J[ ..Obyl011s.13'
R, is reflexive and symmetric, but is not generally t?:ajnsmrve. ‘Again,
a closer inspection shows that &; is eyclicly transitive.

In so far as we are aware, the cyeclic transitivity property
of the binary relations so intimately related to these three theories
in topology has not been stated or used explicitly. Yet, once atiten-
tion is called to this property, it is quite apparent that cyclic trauv-
sitivity aceounts for many of the fundamental results in the theories
just mentioned.

0.5. Thus the concept of cyelic transitivity may be construed
to have its origin both in algebra and topology (cf. 0.3, 0.4). The
purpose of this paper is to study the concept of cyclic transitivity
from this dual point of view. In Chapter I, two ways of gener-
ating all possible reflexive, symmetrie, and cycliely transitive binary
relations are developed. Let there be given, for every point & in
the space-1, a binary relation R, which is defined in 1—z and
is reflexive, symmetrie, and transitive there. Define in 1 a binary
relation as follows: aR(R.)b if and only if aR.b for every choice
of ¢ different from a and b. The relation R(R,) is clearly reflexive,
symmetric, and cyclicly transitive; conversely, every reflexive, sym-
metric, and eyelicly transitive binary relation can be generated in
this way (cf. 1.24). ’

A second method of generation is obtained ag follows. Let [
be class of subsets of 1 possessing the following properties.

Property P,. The empty set 0, the whole space 1, and every
set consisting of a single point of 1 is in I o

Property B,. It 2 be any subclass of I" such that the product

of all the sets in Q is not empty, then the swm of all the sets in £
is a set in I : ’

Given, now, any set S, we define a I-component of S t0 be
& maximal set with respect to the property of being both a subset
of § and a set in I'. Clearly & is the sum of its I-components, and
two distinet J-components of § have no point in common.

Next, we define a binary relation as follows: aR(IMb if and
only if, for every choice of x different from @ and b, the points «

: icm
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and b are in the same [-component of 1—z. This relation R
is clearly reflexive, symmetric, and eyelicly transitive; conversely,
every reflexive, symmetric, and cyclicly transitive binary relation
can be generated in this way (cf. 1.7)

0.6. In fact, there are generally several classes I possessing
properties P, and P, and generating the same binary relation
(cf. 1.10). A general example of this, important for the sequel, is
the following one. Given any class I" Dossessing properties P, and P,
define a class I” as follows: a set S belongs to I if it is either one
of the sets described in property P, (ef. 0.5) or if, for every choice
of the point  in 1—8, the set § is in one I-component of 1—z.
We shall call I the closure of I'. The class I” possesses properties
P, and P, and generates the same binary relation as does I"— that
is, RI™) =R, (ef. 1.9). A clags I’ possessing properties P, and B, is
said 60 be closed it I'=1I" (cf. 1.9). A necessary and sufficient condition
that a class I" be closed is that I" possesses the following additional

Property Ps. It 2* be any subelass of I" then the product of
all the sets in Q% is a set in I' (cf. 1.9). '

0.7. We next congider a system consisting of a reflexive, sym-
metric, and eycliely transitive binary relation R, any on of the
classes I' generating & (ef. 0.5), and its closure I which also gener-
ates & (cf. 0.6) — briefly, a system (&,7,7"). Such a system gives
rise to & sequence of concepts and theorems which correspond closely
to those ariging in the theories referred to in 0.4. For details, the
reader may consult the sections in Chapter I from 1.13 onward.

0.8. As we specified in 0.1, our space 1 is wholly untopologized
in the usual sense. However, the introduction of the class of sets I
(cf. 0.5) does topologize 1 in a faghion — the sets of I" correspond
to connected sets in the standard treatments (cf. 0.4, 2.1). This
observation suggests the desirability of a full axiomatic treatment
of the theory of the structure of a general space, using the notion
of a ,connected” set as an undefined concept. Such a treatment
is beyond the scope of this paper ).

f) The earliest suggestion of this kind of axiomatic treatment seems to
be due to F. Riesz, who proposed to use (essentially) the concept of a pair of
not mutually separated sets as a primitive concept (Steligheitsbegriff und obstrakie
Mengenlehre, Atti del IV Congresso Internazionale dei Matematici, 2 (Rome
1909), pp. 18-24). As far as we are aware, the concept of a conmected set has not
been used so far as a primitive concept@?{}\

Fundamenta Mathematicae. T. XXXIV. 2
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Given a system (&,0,I"), (¢f. 0.1), & cut point with respect
to (],1,I") is defined to be any point # such that 1—g is not in I’
{cf. 1.14). Next, an end poind with respect to (&,7,1") is defined
t0 be any point z which is not a cut point and for which there iy
no point distinet from # in the K-relation to 2 (cf. 1.14). Clearly
the notions of both a cut point and an end point depend essentially
upon the choice of I'. Further, this'definition of a cut point is a direct
generalization of that used for a Peano space in K.W., while thiy
definition of an end point is a direct generalization of a character-
izing property of the end point as defined in K.W. Generalizing
the definition of a proper cyclic element found in K.W., we would
have the

Definition. A proper cyclic element is the set of all points
each of which is in the K-relation to some point p which is neither
a cut point nor an end point.

This notion of a proper cyclic element would seem to depend
upon I also. It is quite interesting to observe, then, that a proper
eyelic element, as we shall define it (ef. 1.1), is clearly independent
of the choice of I', and depends solely upon &. A proper cyclic element
in our theory corresponds to a fundamental concept in algebra —
that of a residue class. Given a reflexive, symmetrie, and transitive
binary relation R (cf. 0.3), we consider in algebra classes which
are maximal with respect to the property that any two elements
of a clasy are in the R-relation. Our definition of a proper cyclic
element, although worded for convenience in a slightly different
form (ef. 1.1), is exactly equivalent to this: it is a non-degenerate
set which is maximal with respect to the property that any two
elements of the set are in the & relation (cf. 1.23). It is thus quite
interesting to note that, for the special choice of the system (&,.7.1")
used in K.W., (ef. 2.1), our definition of a proper cyclic element
is equivalent to theirs (ef. 2.22), but these two definitions of a proper
eyelic element are not equivalent for a general system (K,77.1")
(cf. 1.23). 4

For divers reasons we modify most of the definitions used in
the theories mentioned in 0.4 (cf. 1.1, 1.14, 1.17,1.19). To illustrate,
let ws consider the fundamental concept of a eyclic chain C(a,b)
joining two distinect points ¢ and b (cf. 1.19). In K.W., the cyeclic
chain ((a,b) is defined to be the produect of all sets 4 containing
the points @ and b, where a set 4 is defined to be a closed set which
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contains every arc whose end points are in the set. Since, in Chap-
ter I, we work with @& space 1 untopologized, except.in the sense
mentioned at the beginning of this section, none of the concepts
occurring in this definition are available. In spite of these defini-
tional modifications, several important structure theorems remadin
valid —for example, the theerem concerning the structure of
a cyclie chain in terms of proper cyclic elements (cf. 1.20, 2.23).
Because of this fact, and because our definitions are, for the Peano
space as considered in K.W., equivalent to those used by KW,
we felt justified in using their terminology, although our definitions
for certain concepts differ considerably from theirs.

0.9. It is beyond the scope of this paper to discuss the im-
plications of the abstract theory we develop here for the whole
literature (cf. 0.4). To illustrate the way in which important struc-
ture theorems for special spaces are simple consequences of this
general theory, we give in Chapter II a brief outline of the prineipal
structure theorems for a Peano space appearing in K.W.

CHAPTER I.

Cyclicly Transitive Binary Relations.

1.1. Until further notice, & will denote a binary relation which.
is reflexive, symmetric, and eyclicly transitive (cf. 0.3). Given &
we define various concepts which ﬂepend solely upon K. A set S is
called coherent if it is non-degenerate and if every two points of §
are in the K-relation —that is, ae8,be8 imply afd (ef. 0.2). °
Clearly every non-degenerate subset of a coherent set is eoherent.
A set S is called complete if it is non-degenerate and if it containsg
every point which is in the K-relation to two distinct points of § —
that is, afofb, aeS, bef, a=b imply xeS. It is evident that
the product of complete sets, if it be non-degenerate, is complete.
A set is called a proper eyclic element if is both cohdrent and eow-
plete; the letter ¢ is used consistently in the sequel t6 denote & proper
cyelic element.

1.2, Theorem. If two proper cyclic elements Gy anwd O, have
more tham owe Point in common, they are identical.

Proof. Suppose aeC,- Oy, be€y- Cy, ab. If 260, then a XaR Y,
sinee ¢ is coherent; hence weC,, since () is complete. Consequenty
0,C0,; similarly C,C(,. Theréfors C;=0,. -

2%
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1.3. Theorem, Given two distinet points « and b satisfying
aRb, there exists one and only one proper cyclic element containing them.

Proof. Denote by § the (ﬁon-degenemte) set of points z such
that aRxRb. We assert that S is coherent:. Suppose zed, yeS.
We assume that #,y,4,b are distinet points (since-otherwise the
agsertion is trivial). Then it follows from zRaeKyKbKx that Ky,
since & is cyelicly transitive (cf. 0.3). Thus § is coherent. Next,
we assert that § is complete. Suppose zR2Ky, xef, yeS, v==y.
We assume that 2,z,y,a,b are distinct points (leaving the dis-
cussion of special cases to the reader). It follows from 2R KaKbKYRe
that afz8b (cf. 0.3), hence z¢8. So § is complete. Consequently
8 is a proper cyclic element containing ¢ and & (cf. 1.1). That it
is the only one is a direct consequence of 1.2.

14. A finite ordered set of disting points-ay,ay; ..., a, satisfying
G RaR...Ka, is called a K-chain joining @, and a@,. Each of the
points ay,...,a, is called a verter of the K-chain —in particular,
the points a,,...,a,—y are called interior vertices. Clearly an ordered
pair of distinet points a,b is a K-chain joining @ and b if and only
if aRb. Similarly a closed R-chain is a finite cyclicly ordered set
of distinet points ay,as,...,a, satisfying a,Ra,%...Rae,Ka,. Of course,
in case of a closed RK-chain there is no occasion to speak of inferior
verbices, since every vertex plays the same role. The fact that &
is cyclicly transitive may now be expressed in the following equi-
valent form: any two vertices of a closed &-chain are in the R-relation
(cf. 0.3). Consider two distinet points @ and b such that there is

" a K-chain joining them 7). Then, in the class of all R-chaing joining:
@ and b, there is obviously at least one minimal K-chain — that is,
one with the smallest possible number of vertices. In fact, there
existy exactly one minimal &-chain joining o and b (cf. 1.5).

Lemma. If € is a minimal K-chain joining two distinet POLNiS
@ and b, if € is any K-chain joining a and b, then every vertex of G
s also a vertew of . ‘

Proof. If aRb, this is obvious. If not, both €, and © have
interior vertices. Denote the vertices of €, by A=00y Ty 0ny Bpyty Bi=b3
those of € bY @=94,Y1,-es¥n—1,¥a=b. If not all of the vertices of &,
are-amongst those of € there is a first vertex in the SeqUeNCe Xy ...y Ly,

?) Simple examples show that such a chain does not exist iﬁ general.
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not in € — denote it by @1, 4,2>0; then the vertex z;, of @, 13 also
avertex y; of €. Let &y, 4,>4;+1, be the next vertex in the sequence
Ditay ey @ Which € and € have in common — thus z,—y;. Either
1<y O §;>j, — et us assume that $1>j»- Then the finite eyclicly
ordered set Yj==sy Di 41y eery L1, =Yy Yjrt1y ore s Yi—1 satisfies .

0, R0 41 R RO =, K1 R o RYj1 Ky =,

hence is a closed R-chain. Since K& is cycliely transitive (cf. 1.1),
@1 R;,,%>%+1. Bub then the finite ordered set a=uazg,..., s,
Lgy ooy Bm=b satisfies aR... 8w K2, R...80 — that is, is a K-chain
joining a and b which has fewer vertices than G,. This contradicts
our hypothesis that €, is a minimal K-chain joining ¢ and 5. We
conclude that every vertex of €, must also be a vertex of G.

1.5. In the preceding lemma we show that every vertex of
the minimal &-chain €, is also a vertex of the R-chain € — that is,
we have z;=y;, ¢=0,..,m. A somewhat closer discussion, left to
the reader, would show that §<<jiyi; ¢=0,...,m—1. This remark
implies the

Theorem. If a and b are two distinct points such that there
exisis a R-chain joining them, then there ewists exactly one minimal
K-chain joining o and b. ‘

1.6. With the given binary relation & (ef.1.1) we associate

a class of sets, A(R), defined as follows: 0,1, every point in 1, is
in A(K); a non-degenerate set F is in A(R) if, for every pair of dis-

“tinet points @ and b in B, there exists a K-chain joining ¢ and b

all of whose vertices are in #. Obviously 4A(R) possesses properties
P: and P, (cf. 0.5). Moreover, we have the

Lemma. A(R) possesses propeny\iBs (ef. 0.6). .

Proof. Let 2 be any class of sets in A(RK). Seb E=SHOS, If the
set E is either 0,1, or a single point, then it is in A(K) by definition.
If ¥ is non-degenerate, let ¢ and b be two distinet points in H. If
E(a,b) is a minimal R-chain joining & and &, it follows by 1.4 that
Ca,b)CS for every set Sef. Thus €a,b)CE. So E is in A(RK)
by definition, and A(K) possesses property PB,.

1.7. Theorem. Given a binary relation %*,tibefreexisis a class I'
possessing properties P, and Py and generating R* (cf. 0.8) if dnd
only if R* is reflexive, symmetric, and cyclicly tramsitive.
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Proof. Firstly, suppose R* is a reflexive, symmetric, and
cyclicly transitive binary relation (cf. 0.3). Then the class A(R*)
possesses properties Py, Py, Ps, (cf. 1.6). We assert that the class
A(R*) generates W* (cf. 0.5). If a®*d then the set a-+beA(R¥)
by definition (cf.1.6). Hence if # be any point such that a==x=b,
then the points ¢ and b are in the same A(R*)-component (cf. 0.5)
of 1—g-viz., the one containing the set a--b. Thus afR(A(‘iR*))b.
If, next, aﬂi(/i(m*))b, then for every point « distinet from a and b,
the points & and b are in the same A(R*)-component of L—z —

denote it by S,. Now clearly a+b=—-l;[;5'.\.5 Thus, since A(R*) pos-
. x€1—(a-+b]

sesses property Pg, we have a-+bed(R*), whence aR*d. So A(R*)
generates ®* — that is, R(A(R*)) = R*. Secondly, suppose I' is
a class possessing properties 8, and P, such that R(I")=R*. Then
R* is reflexive and symmetric, since R(I") is (ef. 0.5). Consider any
closed R*-chain ao;R*z,R*... R*r,R*2,. Let », and ), i<<j, be
any two vertices of this R*-chain. We assert that z,R*z;. For
let # be any point distinet from both #; and x;; then z does not
oecur in at least one of the sets A:};jwk, B:f’;wk -1;31150,, — ®ay
—i = =

xzel—A. Clearly the I'~component (cf.0.5) of 1—a containing =
also containg every point of the set 4 — in particular, the point ;.
Thus it follows that x;R*sz;. So R* is cyclicly transibive (cf. 0.3).

1.8. Given a reflexive, symmetric, and cyeclicly transitive
binary relation &, how many classes do we have which possess
properties P, and P, and generate K. We have exhibited one in
1.7 — viz., A(R), We shall show that generally there are several.

1.9. Lemma. If I' be any class possessing propertics P; and P,
and generating the binary relation R(I") (cf. 0.5) then its closure I”
{ef. 0.6) possesses properties Py, P, and Py and also gemerates R(I") —
that is, RI")=R(I).

The proof is obvious.

A clags I' possessing properties P, and P, is said to be closed
if it is identical with its closure I (cf. 0.6).

o Lemma. A class I' possessing properties By and P, is closed
if and ondy if it also possesses property P, (cf. 0.6).
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Proof. That P is a property of I' if I' is closed is a conse-
quence of the preceding lemma. Conversely, suppose that I'is a class
possessing properties P, B, and PB,. We assert that I'=I". For,
if B be any set in IV (cf. 0.6), then for every point ze¢l—E, E is
in a I“component S, of 1—x. Now clearly E=[]8,. Thus EeT,

XE1—,
since I" possesses property B,. So I"CI, but we al,hga;ys have I'CI”
(ef. 0.6). Consequently I'==I" — that is, I" is closed.

1.10. Let I" be any class possessing properties P, and Py but
not property P, Then I' and its closure I are two distinet classes
generating the same reflexive, symmetric, and cyclicly transitive
binary relation &= R(I)=R(I") (cf.1.9). Also A(]) (cf. 1.6) is
a closed class generating the binary relation & (cf.1.8). Thus we
see three generally distinct classes possessing properties P; and P,
and generating the same binary relation ®. The outstanding exam-
ple where these three classes are generally distinct is furnished by
the study of cyclic elements in a Peano space (cf. 1.12, 2.1). Note
that the class I depends solely upon the class I" of which it is the
closure (cf.0.6); on the other hand, the class A(K) depends solely
upon the binary relation & (cf.1.6). Moreover, the class A(R) is
unique in the sense that it is the smallest closed class generating
the binary relation K; this fact is a consequence of the

Lemma. If I' be any closed class —that is, a class possessing
properties P, Py and Py — which generates the binary relation K =R(I")
then the class A(R) (cf. 1.6) is a subclass of I

' Proof. Suppose Eed(R). If E is 0,1, or a single point then

E eI’ by property %, (ctf. 0.5). Otherwise let a and « be two distinet

points of H; denote by €(z) a f-chain joining & and » all of whose

vertices are in F (cf. 1.6). Suppose y is any peint in 1—E(z); then

&(z) is in one Icomponent § of 1—y (cf. 0.5). Now G(z) =1H¢!§_,{,
g &1~

50 G(x)el” by property P, (cf. 0.6). But E=E(z), hence Eel
by property %, (cf.0.5). Thus A(R)CI. xeka :

1.11. Since there is a smallest closed class generating a given
reflexive, symmetric, and cycliely transitive binary relation &
(cf. 1.10) we naturally ask: Is there a smallest class possessing pro-
perties P; and P, and generating K. .Is there a largest class pos-
gessing properties P, and P, and generating K? The following exam-
ples will show that generally the answers to both of these questions
are in the negative.
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Example 1. Let 1 be any set containing at least four dis-
tinet points; denote by a,d,c,d four distinct points in 1. Let 8!
be the obviously reflexive, symmetric, and cyclicly transitive binary
relation: £y if and only if either z=y, or # and ¥ are the pointy
@ and b. Let I'y be the class comprised of the sets 0,1 every point
in 1, and a-+b; let I'y be the class comprised of the sets 0,1, every
point in 1 and a+4b+e, atbtd, atb-+otd. Evidently hoth
classes I and I, possess properties B, and P, and generate & (ef. 0.5),
Suppose there is a smallest clags I’ possessing properties B, and By
and generating &; I"is a subset of both I' and Ty, hence it iy com-
prised of the sets 0,1 and every point in 1. But 2Ry it and
only if #=y (cf. 0.5). Hence I" does not generate K — that is, there
is no smallest class possessing properties P, and P, and generating K.

Example 2. Let 1 be the set of points in a cloged linear in-
terval a<<i<d. Let & be the obviously reflexive, symmetrie, and
cyclicly fransitive binary relation: 181, if and only if by =1, Fix
& point & in 1; let I} be the class comprised of the gsets 0,1, every
point in 1, and 1—1. Clearly I} possesses properties P, and P, and
generates & (cf. 0.5). Assume that there is a largest class I” Pos-
sessing properties P, and P, and generating R]; then I' contains
every set in the class I for every point ¢ in 1 — in particular, every
set of the form 1—i, tel. But clearly, for every pair of points 1y
and 4, in 1, 4, R(IN1,. Thus a contradiction to the assumption that- I’
generates & is reached. So there is no largest elass possessing pro-
perties B, and P, and generating K.

1.12. By way of illustration, we point out, for a Peano space 1,
(cf. 2.1), four important classes which are generally distinct, possess
properties P, and P, and generate the same reflexive, symmetrie,
and eyclicly transitive binary relation. Let I" be the clags com-
prised of all the connected sets in 1, including 0,1 and every point
in 1. Let I be the closure of I" (cf. 0.6); the sets in 7" will be called
quasi-connected sets. Now I' and I Dossess properties P, and P,
and generate the same binary relation K=RI)=RI") (cf. 1.9)?
Also A(R) is a class possessing broperties B, and P, (and P;) and
generating & (ef. 1.10), But there i another important clags which
clearly possesses properties P, and P, and which generates f-namely,

the class I, comprised of 0,1, every point in 1, and every connected
open set in 1. '
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1.13. Given a class of sets I" possessing properties P, and P,
(cf. 0.5); it gives rise to a closed class " possessing properties §By, B,
and P (cf. 0.6). We have seen that I" and I generate the same
binary relation K=R(I)=R("), which is reflexive, symmetric,
and cyeliely transitive (cf.1.9). In the rest of this chapter we regard
I" as fixed, and introduce for study various concepts depending
upon one or more of the entities K,I71" (ef 1.14,1.15,1.17,1.19).

1.14. A point z is called a eut point it 1—z is a set not in I"8).
A point z is called an end point if it is not a cut point and there
exists no point y distinet from # such that yRKax (cf. 0.8). A point
% is said to separate two distinet points @ and b if a==z==b and
a and b are in different I™components of 1—g (ef. 0.5). Denote by
K(a,b) the totality of points each of which separates ¢ and b. The
following statements are now obvious. Every point in K(a,b) is
a cut point. K(a,b) is empty if and only if afkb (cf.0.5). If ¢ and &
are any two distinet points and if a+bCEH where Eel”, then
K(a,))CE—(a-+b). It follows that a-+ K(a,b)-+bel". Finally, every
coherent set (ef.1.1) is in ["; thus every proper cyclic element
(cf. 1.1) is in I79).

1.15. A configuration consisting of # >1 distinet points ay,...,a,
and n sets §y,...,8, satistying the conditions: S;el” for i=1,... n;
81-8p=ay, 8,-83=a3, ..., Su-S1=ay; 8;-8;=0 for |i—jj>1 and
4,j=1,...,n, is called a closed polygon 1°). Such a configuration is
denoted by the symbol (ay,...,a,; 8y...,8:). A closed polygon is
a generalization of a closed f-chain (ef. 1.4) in the following sense:
if the finite cyclicly ordered set of distinct points ay,...,a. satisfies
0, R, K ... Ka,Ra;, — that is, constitutes a closed K-chain — then the
configuration (a,ay, ..., Gn; @1+ gy @y + ag, ..., a,4-a,) is clearly a closed
polygon. The points ay,...,a, are called the vertices of the polygomn;
the sets 8y,...,8, are called the sides of the polygon. The two ver-
tices on a side of a polygon are called adjacent vertices.

8) Tt is understood that all the concepts considered in the sequel are
relative to a fixed system (&,I71). .
9) In special cases (ef. Chapter II), it may happen that every proper eyclic
element helongs to I itself, but this is not true for a general system (&,1,I").
19) We should speak, in fact, of a simple closed polygon.
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1.16. Theorem. If (ay...,an By,...,8,) be o closed polygon,
then the set X a; is coherent (cf. 1.1).
=1

Proof. Because & is cyclicly transitive (cf.1.13) it is suf-
ficient to verify that adjacent vertices are in the K-relation (cf. 0.3).
‘We shall show this for the adjacent vertices a; and a,. Since a, -+ a,C8,,
it follows that K(aya,)C Sn—(u,%—}— a,) (cf.1.14). Similarly, since

s

n—1
"'1+%C_§Si we have K(ay, an)CZ; 8i—(0,+ @n). Consequently K(a,,a,)
is empty — that is, a,Ra, (cf. ~1“.14).

Corollary 1. If the n>2 distinct points ay,...,an, together with
the set 8 el”, satisfy the relations aRai, t=1,..,n—1, ond
n n
S ~__\j]a,=an—‘ra1, then the set Y a; 15 coherent.
= i=1

Proof. Consider the closed polygon

(0’17“21"'70‘11; ay +a270’2 +a3; serg On—t —i-a,,,, S)?
and apply the above result.

Corollary 2. If 8; and 8, are two sets satisfying Syel” Syel”,
83708y, 8,-8,=0, there is at most one proper eyclic element ('
such that 8,-0==0+48,-C.

Proof. Suppose ¢, and ¢, are two distinet proper cyclic elem-
ents such that 8- Cj==08,-0; for j=1,2. Since ¢, and C, have
at most one point in common (cf.1.2) we may choose four points
aye8;-C; for 4,§=1,2 such that at least three are distinet. Now
;R ay; for j=1,2, since the proper eyclic elements 0, are coherent
(f:f. 1.1?. Suppose all four points a; are distinet. Then the con-
figuration (ay, Gy, Gos, Go15 S1, Grg+ gy, Sy, Ggr+ ay) is a closed polygon
(ef.1.15), hence the set i;‘;z‘-,» is coherent. Since ayRKapKay for

'z:},z and’ @ya=kag, it %ollows that axeCy for i=1,2, becanse
C, is complete. Sinee ay==a,, it follows by 1.2 that ¢,={0,, con-
trary to assumption. So the theorem is established, assumin’g that

the four points ay are distinet; we leave th
g e treatment of ;
cases for the reader. ’ the otber

Corollary 3. If  is not & cut point (cf. 1.14), then there emists
at most one proper cyclic element containing .

Proof. The sets S;=w, S,=1—=z satist

y the conditions i
corollary 2, whence the result follows. itions in

icm
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Definition. Let 8 be any non-degenerate set; denote by (8)
the class of all proper cyclic elements ¢ each of which has at least
two distinet points in common with § — that is, for which §-C
is non-degenerate.

Corollary L. Given a non-degenerate set S and a non-empty
set 8* satisfying S eI, 8* eI", 8-8*=0, there exists at most one
proper cyclic element O ep(S) such that 8*-C=0.

The proof follows immediately from the preceding corollary 2.

Corollary 5. Given two distinct proper cyclic elements C, and Cy.
in w(8), where 8 is any non-degenerate set in I", either €y and Oy have
no points in common or else they have a single point of § in common,
which is a cut point.

Proof. By 1.2 the distinct proper cyclic elements ¢, and €,
have at most one point in common. Suppose ¢, and €, have the
point 4 in common. Assume that zel—=S. Set S§*=u=z; clearly N
and S* satisfy the hypotheses in corollary 4, hence Cy=GC,, con-
trary to hypothesis. Therefore zeS. It follows from corollary 3 that
x is a cut point.

1.17. We introduce further notions needed in the sequel.
A set which is complete (cf. 1.1) and belongs to the class 7" is cal-
led an $-set. The letter H is used consistently to denote an H-seb
By definition every $-set is non-degenerate.- Clearly the produet
of §-sets, if it be non-degenerate, is an $-set (cf. 1.1, 1.13). If S be
any non-degenerate set, the product of all H-sets containing § is
evidently the smallest $-set containing § — denote it by H(S).

" We now state a property of $-sets needed in the next chapter.

Lemma. If Hy and Hy be two $-sels such that Hy-H, consisis
of a single point z, then Hy+H, is an $H-sel.

Proof. Firstly, H,+H,el” by P, (cf.0.5). Next, we assert
that H,+ H, is complete. Let y be any point for which there are
two points @, and ®, in H,+H, such that »RKyfwz, — suppose
2, e H,. Assume that y e1—(H;+ H,); then clearly we have x e H,—H,,
‘wpeH,—H, (cf. 1.1). But obviously the configuration

(4,803 Y + @1 Hyy Ho g +y)
is a closed polygon (cf.1.15), hence by 1.18, the set y-+o+a-+o,
is coherent. Thus mRySKe (cf. 1.1), and so yeH, since H; is com-
plete. This contradicts our assumption that yel—(H,+Hy). There-
fore H,+ H, is an $-set.
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Extending this result, we have the

Corollary. If H,,..,H, be any finite number of $-seis such

that every H, for k=2,...,n has exactly one poini in common with
k=1 n

the set 2 Hj, then JH; is an $-set.
j=1 =

1.18. Regarding the structure of H(S), we have the

Theorem., If 8 be any non-degenerate set in I, then

H(8)=8-+23C (cf. 1.16).
Cew(s)

The proof of this theorem will follow easily from two facts
concerning the set
{) BE=8+2C.

Cewls)
Lemma 1. The set B of (=) is an $-set.

Proof. Firstly, E?LZ(SHL C), so clearly Hel” by By (cf. 0.5).
i

Sy .
Secondly, we assert that ¥ is complete. Let # be any point for which
there are two distinet points z, and %, in H such that LRUKE,-
Assume that ¢ is not in H. Three cases arise: I) neither of the 1)0iuf:s'
4; and @, is in 83 IT) just one of the points &, and », is in § ; TIT) both
of the points ; and 2, are in 8. In case I the point ; is in a proper
cyclic element (jep(S) — that is, having two distinet points ;4
gnd Zp in common with § — this is so for 1=1,2, Cleal']i* we may
aggume that zn=me,. Now z,8w; for 4,=1,2, since tile proper
cyclic element ; is coherent (cf. 1.1). So the distinet points

i1y D1y &y By gy, tOgether with the set 8, clearly satisfy the hypo-

theses of. corollary 1 in 1.16. Consequently z,RzQw,. Since 93710,
a,nfl C, is complete, it follows that 2¢C,CH, contrary to assum-
ption. Thus the assertion is established for case I

; the discussion
of cases IX and IIT is left to the reader. ’ '

Lemma 2. Let 8 and E have meanings as above. If H be any
$-set such that H-E is non-degenerate, then H-S is %on-dcqemmtt;.

Proof. Assume, contrariwise, that H.§ is degenerate. Then
we have two cases to consider: )

(I) the sets H.and § have no point in:common;
(II) the sets H and § have a single point # in comimon.
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In case (I) the sets S and S*=H satisty the hypotheses of
corollary 4 in 1.16; since H-E is non-degenerate, it follows that
there exists a unique proper cyclic element (ep(S) such that C-H
is non-degenerate. Thus ¢CH since € is coherent {ef. 1.1) and H is
complete (cf.1.17). Consequently H .S is non-degenerate because
H-( is; this contradicts our assumption.

In case (II) there exists a proper cyclic element Clep(S) such
that (-H contains a point y=x, since H-FE is non-degenerate.
(-8 containg a point g==x since C-§ in non-degenerate (ef.1.16),
Now clearly the configuration (»,y,2; H,y-+2,8) is a closed polygon
(cf. 1.15), hence xRzQy (cf.1.16). Since a==y it follows that zeH,
because H is complete — that is, H-§ is non-degenerate, contrary
to assumption. So the assertion in lemma 2 is verified.

Obviously we have the ’

Corollary. Tet S and E have meanings as above. If C be any
proper cyclic element such that C-E is non-degenerate, then Cey(S).

Proof of the theorem stated at the beginning of 1.18. Since
B is an $-set containing S, surely H(S)CE (ef. 1.17). But because
H(S) is complete, ECH(S). Thus H(S):E:SZ}‘—%'SG.

Replacing E of (+) by H(S) in lemma 2 an(ef it)s corollary, we
have the

Theorem. Let 8 be any non-degenerate set in I'. If H be any
$-set such that H- H(S) is non-degenerate, then H-8 is non-degen-
erate. If O be any proper cyclic-element such that C-H(S) is non-
degenerate, then Cep(S).

1.19. If a and b be two distinct points, the $-set H(a+Db)
is called the cyclic chain joining @ and b (ef.1.17). We denote this
cyelie chain by C(a,b). ‘

Theorem. For any two distinet poinis a and b, we have

(}(a,b)=H(a+K'(u,b)—i—b). .
Proof. By definition, ¢(a,b) =H(a+D). Since a-+bCa +E(a,b)+b
it follows that H(a+b)CH(a+K(a,b)—{—b) (ef.1.17). However,
a+K(a,b)-bCH(a+b) sinee o+ bCH(a-+b) and H{at-b)el”
(cf.1.14); consequently H(a+K(a,b)+b)CH(a+bj. Thus

C(a,0)=H(a-+K(a,b)+b).
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