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On a problem of S. Ulam concerning Cartesian
products.

By

R. H. Fox (Princeton).

1. In Fundamenta Mathematicae 20 (1933), p. 285, the fol-
lowing problem. was proposed by S. Ulam: v

»Soient A et B deun espaces topologiques et A% et B? respecti-
vement leur carrés... ). Est-il vrai que si A* et B2 sont homéomorphes,
A et B le sont aussi?”.

It will be shown below that the answer to this question is in
the negative; moreover the topological spaces which will be consi-
dered for this purpose are not in the least pathological (as would
be allowed according to the statement of the problem) but are
actually combinatorial manifolds (with boundary) of dimension
four. : ‘
The Ulam problem belongs to a class of problems, problems
which are concerned with the ,arithmetic” properties of the Car-
tesian product?). One such problem is concerned with the failure
of the cancellation law. The nature of this failure, which is basic
for our construction, is considered in section 5. In the final section
Ulam’s conjecture is shown to be true for manifolds of dimension
less than three.

1) To shorten notations I have followed Ulam in writing X" for the n-fold
Cartesian product XX XX ...X X of the topological space X with itself. I shall
also take the liberty of using the equality sign between the symbols for topolo-
gical spaces to indicate the existence of a homeomorphism of one onto the other.
Throughout this note the symbol E will denote the unit interval 0x<ul. The
boundary of a manifold X will be designated by X.

2) Of cowrse Ulam’s problem and problems of a similar nature arise in
other connections; as one instance, a recent note by P. F. Kelly. (Bull. Am.
Math. Soc. 51 (1945), p. 960) is concerned with Ulam’s problem for the Cartesian
products of metric spaces using isometry as the basis of classification.
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2. The main result is the following:

(1) There ewist bounded 4-dimensional combinatorial mani-
folds A and B such that®) A*=DB> although A==B.

First of all let us recall ¢) that a lens-space L(p,q) is defined
for any pair of relatively prime integers p and ¢, and that L(p,¢)
is a closed 3-dimensional manifold. A good way to describe L(p,q)
is as follows ®): Consider an anchor ring T, that is to say, the bounded
3-dimengional manifold determined by the subset (o—2)2-22<1
{(in cylindrical coordinates) of Euclidean 3-space, and denote by
a and b the simple closed curves on ' which correspond respectively
to the circles (p—2)*-+#2=1, 6=0 and z=0, o=3. A torus knot
of type (p,q) on iy corresponds to the skew curve which is given

by the equations Q—Zzeosg—e z:;sinﬂ and represents, in the
q 7’

sense of path-multiplication, the path-class a?b”. A lens space L(p,q)
may be obtained from two anchor rings T, and T, by matching
their toral surfaces T, and 7T, in such a way that the torus knot
a?83 on T, is matched with the canonical curve a, on T,.

From a lens-space L(p,q) 2 bounded 3-dimensicnal manifold
M(p,q) is obtained by removing the interior of some 3-cell. If we
think of this 3-cell as corresponding to the set (0—2)2-+22<K1,
e 0 2n—¢, then we see that M(p,q) may be obtained from an
anchor ring T and a cylinder ¢ by matching the lateral surface
of ¢ with a ribbon-shaped neighborhood of the torus knob a?b’ on
the toral surface 7.

(2) The four dimensional manijolds A and B mentioned in (1)
are the respective Cartesian products M(p,q;) X E and M(p,q) X E
where E is a line segment, p is a prime congruent to 1 modulo 4, ¢ s,
o quadratic residue modulo p and gy is @ quadratic non-residue mo-
dulo p. (To be specific one could choocse pzﬁ, ;=1 and g;=2). -

The proof of (1) consists in the proofs of the two statements
A?=R® and A=B. These will be the concern of the next two

sections.

3) Actually not only is A= B® but A*=A4X B= B*. This follows easily

from § 4.
4) H. Seifert and W. Threlfall, Lehrbuch der Topologie, Leipzig (1934},

pp. 210, 215 and 279. o .
@ 5) This is the deseription of L{p,q) used by J. W. Alexander in his classic

paper on the lens spaces (Trans. Am. Math. Soc. 20 (1919), p. 339).
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3. Tirst we prove that A==B. Since the boundary of the 4-gi-
mensional manifold M(p,q) X E is i

(M X Bj =M x E+M x B,

it 15 easily seen to be just the double ) (Verdoppelung) of the bounded
3-dimensional manifold 3, i. e., the 3-dimensional manifold without
boundary obtained from two similarly oriented copies of M by
identifying their boundary 2-spheres in such a way that the orien-
tations of these two 2-spheres agree. Let us denote the double of
M(p,q) by N(p,q). In order to show that A=B it is clearly suffi-
cient to show that

(8) if pyqu and g5 are as in (2) then N(p,¢n)+FN(p, ).

Before giving a proof of (3) let it be observed that, although
L(p,q) and L(p,q,) are distinguishable by their linking invariants 7),
the manifolds N(p,q) and N(p,q,) can not be so distinguished. In

fact, the linking invariant of N(p,q) is the Legendre symbol (g)

where d is the determinant of the matrix

™

which is always +1 since ¢? is always a quadratic residue.

To prove (3) we make use of the linking numbers in relation
to the fundamental group.

Given any closed 3-dimengional manifold, consider its funda-
mental group @, its 1-dimensional homology group H and the na-
tural homomorphigm 6 of G onto H (whose kernel is the commu-
tator subgroup of G). As is well known, the elements of finite order
in H constitute a subgroup H’ called the torsion group; for every
element h of H’ there is defined a self-linking number ?) (Higen-
verschlingungszahl) A(h) whose sign depends on the orientation of
the given manifold and which is only determined modulo 1. Those
elements g of @ which are mapped by 6 into the torsion group H’
constitute -a subgroup G of ¢ which is characteristic (i.e., @ is
sent into itself by every automorphism of @); the concept of self-

§) Seifert and Threlfall, loc. cit., p. 129. '

7) H. Seifert, Verschlingungsinvarionten, Sitz. Ber. Prouss. Akad. d. Wisg.
Berlin (1938), p. 811.
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linking may be extended to the elements g of G“ by the definition
Hg)=2(6(g)). Now the elements of finite order in & all belong o &
and form a characteristic complex G'. Thus, since G is sent into
itself by every automorphism of &, the set X of self-linking numbers
{+Ag)}, ¢ ranging over G, is a topological invariant. The funda-
mental group G; of N(p,q), (¢=1,2), is the free product®) of two
cyclic groups of order p, so that this group is defined by generators
& and y satisfying the relations aP=yP=1. The generators z and y

q -
may be so specified that A(w)sl(y)gij (mod 1). It is known?)
that the only elements of finite order in & are the powers of # and

7%q,
the powers of y and their transforms. Hence 2 ig the set {;{: —E)—’(modl)}

—1
where » takes on the values 0,1,...,%—. Since p=1 (mod 4) the

numbers —-12g, are all quadratic residues (mod p) and the numbers
4r%g, are all quadratic non-residues (mod p). Hence N(p,q,) cannob
be homeomorphic to N(p,q,). It may be of some interest to note
that our condition on p,d,¢, is more restrictive than the classical
condition g =--1%g, (mod p). For example, our argument does not
apply to distinguish between ¥(7,1) and N(7,3) although the linking
invariant distinguishes between I(7,1) and I(7,3).

4. The proof that A2=DB* makes no use of the special pro-
perties of p,q;, and g, other than that g and ¢, are relatively primg
to p. Before proving that 4% =B let us first remark that J. H. C. Whi-
tehead has proved®), as a corollary to a general theory, that
M(p,q,) X B®=M(p,q,) X B, and that this fact, togethgr with 1.3he
result of the previous section, already implies a negative solutx.on
of Ulam’s problem. (In fact, the ‘Whitehead result was my pm.nt
of departure in the present investigation). For there must exist
an integer 1<{k<3 such that

M(p,q,) X B* =M (p,gs) X B*

M(pyfb) X -EZk:-M(PaQE) XE%‘

i '] i 2. is theorem, applied
8) Seifert and Threlfall, loc. cit., p. 177, §§‘7 This
to the two copies of M, shows that the group of N is the free product of ﬁhe
groups of the two copies, since their intersection is a 2-sphere and therefore has
a trivial group. Cf. Ibid. § 85. i}
) 0. Schreier, Hamb. Aphdl. 3, (1924) p. 167.
10) Annals of Math. 41 (1940), p. 825.

and
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Then, writing A=M(p,q)x B* and B=M(p,g.) X E* (50
that A and B are topologically ineguivalent (k--3)-dimensionat
bounded manifolds) it follows immediately that

M(p,a,) X (M(p,ga) X B**)
=M(p,q) X (M(p,qs) X B*)
M(p,es) X (M(p,q1) X E*)
=M(p,gs) X (M(p, gs)+ B*)
=

Although this argument disposes of the Ulam problem, it is
not completely satisfactory Dbecause it does not specifically deter-
mine the nature of the counterexample but merely shows that not
all three pairs (4,B), (4 X E, BXE) and (4 X E?, B X E?) can fail
to be counterexamples. For this reason, and because the general
theory utilized by Whitehead is rather complicated, I prefer to
give a direct proof that A2=hB2

The proof that FA?=B? exhibited above, with k=1, shows
that it is sufficient for this purpose to prove that A X E=B x %, i.e.,
that M(p,q) X £2=M(p,q,) x B2 To demonstrate this fact we
return to the description of M(p,q) as the manifold obtained from
an anchor ring T and a cylinder ¢ by matching the lateral surface
of ¢ with a ribbon-shaped neighborhood of the torus knot a%”
on I. The manifold thus obtained is not imbeddable in 3-dimensional
space. However, the part U of the manifold which lies in a neigh-
borhood of T can be imbedded in 3-dimensional space and can be
visualized as follows: Denoting by T the actual set (g—2)%--22<1,
the set U consists of 7 and a 3-dimensional neighborhood of a%”
in R5—IT. Let us denote as the f,-cross section Ky, of U the inter-
section.of U with the half-plane §= 6,. Such a cross section consists
of a 2-cell W and p 2-cells Vy,...,V, attached to W at regular inter-
vals about the circle W. Of course Lhe manifold U could be obtained
from a cylinder standing on K as base by identifying the top with

the bottom with a twist through angle pq The 5-dimensional ma-

nifold U X E*=TU x[0,1]x [0,1] has as cross section K x [0,1] x[0,1]
and this is homeomorphic to the subset

W x[0,1] % [0,1]+§'Vi x[0,e] X [0,¢],
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where 0<<e<<1. Furthermore, these homeomorphisms ean be applied
simultaneously to all cross sections Ky (0<<0<<2x) and can be extended
to define a homeomorphism of M x E? into a subset of the Euclidean
space of appropriate dimension. Now the intersection of W x[0,1]*
with > V:x[0,¢]? is just a 3-dimensional neighborhood of p points.
in the 3-sphere (W x E?)’; thus. the intersection of 7 X E? with
0% [0,e]? is just a 4-dimensional neighborhoed of the torus kmot
a’b” in the product (T x E?)" of the 3-sphere (W X E?)" and a circle.
ATl such knots for which p has the same value are homotopic in the
4-dimengional manifold (7' X E?)" and therefore, since the dimension
of this manifold is greater than three, an isotopy of 7'x E? ean
be found which transforms the neighborhood of a”b” into the
neighborhood of a®b°. This isotopy can be extended to CxE?
and this shows that M(p,g) X E? is bomeomorphic to J}£ (p,q5) X B2

5. The finite complexes, or rather the classes of topologically
equivalent finite complexes, together with the operation x of Car-
tesian multiplication and the operation 4 of union of disjoint copies,
constitute an extension of the set of natural numbers. In fact, the
correspondence between natural numbers and finite 0-dimensional
complexes under which the natural number »n corresponds to the
0-dimensional complex consisting of # points, the multiplication
corresponds to Cartesian multiplication and the addition corresponds
to union ig faithful in every respect. Of course, one would not expect
the extended system to satisfy all the rules of arithmetic. As a matter
of fact the fundamental theorem of arithmetic, i. e., the uniqueness
of factorization into prime factors, fails to hold, in general; the
problem of Ulam may be considered as belonging to a class of
problems relating to this failure.

Tt was shown by Borsuk™) that factorization into prime
factors is unique provided that the prime factors are of dimensio-
nality less than 2 and that factorization of closed manifolds into
prime factors is unigue when the factors are of dimensionality less
than 3. On the other hand, J. H. C. Whitehead showed?) by
examples that the cancellation law: AXX=BXX —~A=B fails
to hold even for 2-dimensional 4 and B and 1-dimensional X, thus

1) Fund. Math. 31 (1938),p 137, and 33 (1945), p. 273. Cf. also K. Boz-
suk, O rozkladzier itodci na il y kartezjatiskie, Tow. Nauk. Warsz. (Comptes
rendus, Section ITI), 33-38 (1946), p 1 and M. Wojdyslawski, Mat. Sbornik

18 (60) (1946), pp. 29-40.
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highlighting the sharpness of the Borsuk results. The simplest example
of the failure of the cancellation law was found by the present author
shortly after the appearance of the Whitehead paper but has not
been hitherto published. Let A Dbe the circular ring 2<{a?442<3
together with the spines —4 <o <3, y=10 and 3<<e<<4, y=0; let B
be the same circular ring together with the spines —2<{o<{—1, y=0
and 3<e<<4, y=0 (see figure 1). Denoting, as before, by I the

Fig. 1 Fig. 2
unit interval, it is trivial to verify that 4=4B and A X E=BX .
This example is really just a simplifieation of the example: 4 =sphere
with three holes, B = torus with one hole, given by Whitehead9)
(see figure 2), and this example is an illustration of a theorem (tri-
viall?) but not previously published).

In order that two (bounded) 2-dimensional mawifolds A and B
be such that A X E=B X E it is necessary and sufficient that they
have the same Euler characteristic and are either both orientable or
both mon-orientable.

The examples of this section also illustrate a sufficiency con-
dition which makes it easy to construct many such examples.

Suppose that A can be decomposed into two pieces A; and A,
such that A,-A, is a finite set of disjoint finite dimensional cells such
that a closed neighborhood of each such cell o in A is the union of
cells ot in A, and oyt in A, with o"=ortl.opt and suppose
that B has a decomposition B+ B, with the same properties. Suppose
furthermore that there exist homeomorphisms f, of A, onto By and f,
of A, onto B, such that fi(4,-A,)=B,-B, and o =F,j|o for any cell o
of A;- A, where j is an orientation-reversing homeomorphism of o onto
atself. Then A X E=B X E.

The simple proof of this sufficiency theorem, which will be
omitted, depends on the fact that if j; and j, are orientation-rever-

12) This theorem is easily proved by making use of the sufticiency condi- '

tion immediately below.
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sing auto-homeomorphisms of .m- and n-dimensional cells then the
aguto-homeomorphism 4, X j, of the product (m-+ n)-dimensional cell
is isotopie to the identity.

This detailed discussion of the failure of the cancellation law
is occasioned by the faet (cf. § 4) that this failure contains the germ
of the failure of Ulam’s conjecture. The essential réle played in all
known examples by the boundaries suggests the following questions:
(1) If A and B are cloged manifolds with A==B, then iz A X E==B X B?
(2) If 4 and B are closed manifolds with 4==B, then is 424-B%?
(3) If A and B are topological spaces with A==B, then, denoting
the circle by &, is .4 x §'==B x §*?

In every known example the complexes 4 and B belong to the
same homotopy type. This suggests the problem of investigating
the system of homotopy types of finite complexes with regard to
the validity or non-validity of the cancellation law, et cetera.

6. It is natural to inquire whether four is the least dimension
number possible for the construction of a counter example to Ulam’s
conjecture. 'Whether or not a counter example 4,B can be found
with 4 and B of dimension three is not known to me. However
we can prove the following: If A and B are compact manifolds, with
or without boundary, of dimension <2, then A*=B? implies that A =B.

That this is true for manifolds of dimension 1 or for closed
manifolds of dimension 2 follows from the Borsuk result™), and
can also be proved directly from the Kiinneth formula ).

Since A?— B implies that 4 and B have the same dimension,
are either both bounded or both closed, and are either both orien-
table or both non-orientable, the proof reduces to showing that
A2— P2 implies A=B if 4 and B are bounded surfaces either both
orientable or both non-orientable.

To demonstrate these two facts we make use of the Betti
polynomial 14)

dim X
Px(a)=_ p,(X)a,

=1

1) P. Alexandroff and H. Hopf, Topologie, Berlin (1935), p. 309, R
1) §, Lefschetz, Algebraic Topology, New York (1942), p. 104. Betti

polynomial seems a better name than the customary ,,Poincaré polynomial”.
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where p,(z) is the i Betti number of the complex X. If X is & mani-
fold with boundary X, then the boundary of X2 is

(X)) =X x X+ X x X,
where X x X and X x X intersect in the sub-manifold X x X. Accor-
dingly the Betti polynomial of (X2)" may be calculated from the
formulas of Kiinneth and Mayer-Vietoris.

The Kiinneth formula®®) for Betti numbers is ecompactly
-expressed as the following relationship between Betti polynomials:
Pyxz(w) =Py(z)Pz(x).

The Mayer-Vietoris formulal®) is expressed by the formula
Pyia(z) =Py(x)+ Py(x)—Pyz(x)+ (1+2)P*(x),

“where
dim ¥-Z

Pra)= D,

=0
-and p¥ is the rank of the intersection of the kernels of the two
injection homomorphisms
H{(Y -Z)—~H{(Y), H{Y- -Z)—>H;(Z).

Applied to the case under consideration, a combination of
these two formulas yields

Py =Py —P )Py +(1+2)P% g,
where
dim X

Pyy(@)= Dp(X,X)at,
i=0

-and pl.(X,X' ) is the rank of the kernel of the injection homomorphism
H{X)—>H(X).

Now if X is an orientable surface of genus b with 7 >0 bounda-
ries, then
Px(z) =1+ (2h+r—1)2,
Pi(z)=r(1+2), Pxi(@)=@r—1)+az,

15) Alexandroff and Hopf, loc. cit., p. 299,
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gnd therefore

Py (@) =1+ (4hr +- 12— 1) o+ (dhr +r2—1) 22+ 25,
Pxo(w) =14 2(2h+r—1) 2+ (2h4-r—1)22%
Consequently, if 42=DB? where A is an orientable surface

of genus hy with r, boundaries and B is an orientable surface of
genus hp with rp boundaries, then we must have

(dha474)ra=(Lhg+rp)rs,  2ha--r4=2hp-L7rs

Write 6 for 2hs+14=2hg+rz and eliminate 7, and 7z.
There results
(042h4) (0—2h4) =(6+ 2hz) (—2h3)

and therefore hy=hg.
There follows immediately r,=#p and consequently A4 =B3B.
On the other hand, if X is a non-orientable surface of genus &
with » >0 boundaries, then
Px(x)=1+(k+r—1)z,
Py(m)=r(1+a), Pxilo)=r—1}
and therefore
Py (1) =1+ (2Fr + (r—1)2) &+ (2kr 4 (r—1)%) 2% -8,
Pxe(2)=1+4+ 2(k +r— 1o +(k+r—1)%2
Consequently, if A%=B2, where 4 is a non-orientable surface
of genus ks with 74 boundaries and B is a non-orientable surface
of genus kp with rp boundaries, then we must have

2IGA’I"A+ (7'4‘_‘1)2 =2kpra+ (7‘}3”1)27
kat-1ra—1=kg+rp—1.
~Write 6 for ka+ra—1l=Fkg+rz—1 and eliminate r, and rp.
There results
9 (6—Teat 1)+ (0—Fa)2=2kp(0—kp+1) +(0—FE),
K —2hy=k5—2kp, (ka—1)2=(kz—1)%

From this follows ka=Fkp or ks=2—Fks But k>1 and there-
fore %iy—=kp From this follows r4=rp and hence 4 =B.
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