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On the decomposition of spheres.
By

Raphael M. Robinson (Princeton, N.J., U,S.A).

§ 1. Introduction. According to a theorem of Banach and
T arskil}, it is possible to cut a solid unit sphere into a finite number
of pieces, and reassemble these to form two solid unit spheres. That
is, the set § defined by #2492+ 4+*<{1 admits three decompositions
into disjoints pieces ’
S:-A] ’1“A2+ 'JrAk—I—l,

8=B,+...+By, S=Bip+..+Buy,
such that
A~ B; for 4=1,2,...,k+1

Here by A=B is meant that 4 and B are congruent. We shall
call two sets .4 and B congruent only if 4 can be transformed into B
using translation and rotation. Thus retlection is exciuded.

No estimate was given by Banach and Tarski for the number
of pieces required. Von Neumann?) stated without proot that
nine pieces are sufficient, with k=4 and I=5. Recently, Sierpinskis)
showed that eight pieces are sufficient, with k==3 and 1=-5, or k=2
and !=:6. In this paper, we shall show that the smallest possible number
of pieces is 5. If we take k=2 and 1=3, then 4; may be taken to
consist of a single point.

The number of pieces could not be reduced by allowing reflee-

_ tions. In the earlier papers, reflections were not specifically excluded,
but were not actually used.

1) 8. Banach and A. Tarski, Sur la décomposition des ensembles de poinis
en parties respectivement congruentes, Fund. Math., 6 (1924), p. 244-277.

) J. v. Neumann, Zur allgemeinen Theorie des Masses, Fund. Math., 13
{1929), pp. 73-116 (p. 77).

%) W. Sierpifiski, Sur le paradoxe de MM. Banach et Tarski, Fund.
Math., 33 (1945), pp. 228-234. ‘
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A similar problem for the surface S of the sphere is also con-
sidered. It is shown that four pieces are sufficient in this case. In
fact, this result is obtained first, and the result for the solid sphere
is then an almost immediate consequence. .

The solution of the surface problem follows immediately from
the following fact: The sphere S, defined by 2?+y2+4-22=1, can be
divided imto two picces, each of which can be divided into two pieces
congruent to dlself.

Such a decomposition of S is possible on the basis of a theorem
proved in § 4, according to which § may be decomposed into pieces’
satisfying any system of congruences, provided that we do not
demand, explicitly or implicitly, that two complementary portions
of the sphere be congruent. This theorem is obtained by specializing
a more general decomposition theorem proved in § 3.

The theorem of Banach and Tarski rests essentially on a spe-
cial decomposition of S given by Hausdorff+#). This decompo-
sition has the form ‘

S§=A+B+C+D,

where the four sets ave disjoint, D is demumerable, and
A>B=>x(C=B4C.

Indeed, A and B--C are interchanged by a rotation @ of 180°
about one axis, and 4, B, C are permuted by a rotation y of 120°
about another suitably chosen axis. Disregarding the denumerable
set D, we see that 4 is both a half and a third ot §. This result was
used by Hausdorff to show the non-existence of an additive mea-
sure in space which is invariant under translation and rotation.

By using the Hausdorff decomposition, and the equivalence
theorem of Schroder-Bernstein, as extended by Banach 5y,
Banach and Tarski were able to prove not only the result stated
at the beginning of this paper, but also the more general result
that any two bounded sets in space with interior points are equi-
valent by finite decomposition. In the special case considered in
this paper, we shall avoid use of the equivalence theorem, as indeed
seems essential if we are to get the minimum number of pieces.

4) F. Hausdorff, Grundzige der Mengenlehre, Leipzig 1914, pp. 469-472.
5) 8. Banach, Un théoréme sur les tramsjormations biumivogues, Fund. )

Math., 6 (1924), pp. 236-239.
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o use is made of results from-any of the papers mentioned,
except that from Hausdorif’s book we take the existence of rota-
tions ¢ and y which satisfy the relations ¢®=1 and ¢*=1 (Where 1
denotes the identical transformation), but no other independent
identities.

In an appendix to this paper, & sharper form of the Haus-
dortf decomposition theorem is derived. From this and the equi-
valence theorem, it is easily shown that six pieces are sufficient
for the problem of the solid spheres, and five pieces for the surface
problem. These results were known to me before the better results
stated above. Their derivation has been omitted, gince the results
have been superceded. The discussion of the Hausdorfi decompo-
sition has been retained, because it is believed that this decompo-
sition is of considerable intrinsic and historical interest.

§ 2. The rotation group. By & rotation, we shall always
mean @ rotation of the three-dimensional space which leaves the
origin fixed. If g is a rotation, then the transform of a point % by ¢
will be denoted by up, and the transform of a point-set 4 by ¢ will
be denoted by Ag. -

In this section, we shall show the existence of m independent
rotations, and prove some properties of the subgroup of the rotation
group generated by them.

Suppose that we have two rotations ¢ and v which are inde-
pendent except for possible periodicity. That is, the two rotations
may satisfy one or both ot the equations pr==1 and yS=1, where r
and s are positive integers, but no other independent identity.
Suppose that r>1 and s>m. Let

ak—_—.:(py)k for Ic:l,Z,...,'m.

Then the rotations o? are readily sesn to be independent. Indeed,
if we congider any product of factors of?, which cannot be sim-
plified in terms of the u's, and then substitute the values of the a's
and cancel what factors we can, the first and last factors of the
form ¢f! remain untouched. ' .

Hausdorff showed how to find two rotations ¢ and ¢ which
are independent except for the relations ¢?=1 and y*=1. By the
last paragraph, we find two completely independent rotations a
and a. If we now take these as  and v, and apply the construction
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again, we obfain as many independent rotations as we pleage. A some-
what different construction has been given by Sierpinski ).

Let ¢1,0...,¢m be m independent rotations. Let us consider
the effect of the group of rotations generated by ¢y,...,¢m on the
points of the surface § of the unit sphere. The sphere § falls into
classes of equivalent points, that is, points which may Dbe trans-
formed into one another by rotations of the group. A point which
is fixed for some rotation of the group will be called a fixed point.
‘We notice first that any point equivalent to a fixed point is a fixed
point. Indeed, if va=w, then vf.f~taf=of; that is, if » is fixed

for «, then ¢4 is fixed for f—lef. Thus a class of equivalent points

consists entirely of fixed points, or entirely of non-fixed points.

Consider any class consisting entirely of non-fixed points.
Ii some point « of the class is chosen, then any point of the class
is representable uniquely in the form uf, where f§ is a rotation of the
group. .
Consider any class congisting entirely: of fixed points. Choose

a Totation 6 having a fixed point in the class and which is as short

as possible, that is, which is expressible as a product of the smallest
possible number of factors of the form ¢Fl. Let v denote a point
of the class such that v==v. We shall show that if va=wv, then a=07,
where n is an integer. If « is the identity, then the conclusion holds
with #=0; we may exclude this case in the following discussion.

We observe first that the initial and final factors of 6 cannot
be inverse, sincé otherwise some rotation ¢—'fc would be shorter
and have a fixed point in the class. Thus 6 and 6! do not begin

‘with the same faetor, and do not end with the same factor.

Now if ¢ has the same fixed point » as 6, then af=fa. If fa

-does not simplify, when 6 and « are written in terms of the pif?, then a6

must also not simplify. Thus ¢ must begin with the block 6. We

find inductively that o is obtained by writing the block f# times,

that is, ¢ ==6", where n is a positive integer. In case 6a does simplify,
then 0-lq does not. Thus we may apply the same argument to the
equation af—!=01q, and find that «=0-" where » is a positive
integer.

Any point of the class may be written in the form vp, where f
is a rotation of the group which does not start with the block 6

8) W. Sierpinski, Sur le paradoze de la sphére, Fund. Math., 33 (1945),

pp. 235-244 (p. 236).
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(when written in terms of the gi'), nor with the inverse of the lagt
factor of 6. For the latter property may be achieved by replacing p
by 678 where n is sufficiently large; and we may then simplify and
remove any blocks 6 remaining.

This representation is unique. For suppose that vf == vy, where §
and y have the form specified. Then vfy—'=wv, hence fy—l=gn
If n>0, this gives f=0y, which is impossible, since 67y does not
simplify, and # does not begin with the block 6. If n<<0, we may
interchange the roles of g and y, and again reach a contradiction..
Hence n=0, that is, f==7.

§ 3. A general decomposition theorem. We shall now
prove a general theorem concerning the decomposition of the
sphere § into n pieces 4,,4,,..., 4, Let B be arelation whose domain
and range are both identical with the set of integers {1,2,...,n}.
A rotation ¢ is said to be compatible with R, for the subdivision
of § into the pieces Ay, ..., Ay, if n0 point of 4, lies in A;unless kR

The product RR’ or two relations B and R’ is defined by the
statement that ZRR'T if and only if there is an s such that &LRs
and sR'l. The converse B of R is the relation such that IRk is
equivalent to kRI. Notice that RR™ is not in general the identity.
We call % a fixed point for R if kRE.

Theorem. Given m relations Ry,...,Rm, each having {1,2,...,n}
as domain and range. Then we can decompose the sphere S into n dis-
joint pieces Ayy...,An, and for this subdivision -find m rotations
@ryeey Pm cOMpatible with Ry,..., Ry respectively, if and only if every
product of any number of factors of the form R has a fized point.
If such rotations exist, they may be chosen so as to be independent.

Proof. Necessity. Suppose that such 4,,....,4, and ¢y,...,¢0m
exist. Let some relation

R=RARE..R]

be given, where the exponents are --1. Then the rotation
p=oligh. ..o

must be compatible with R. Since ¢ has a fixed point, so also must E..

Sufficiency. Suppose that every R generated by the given
relations has a fixed point. Let g¢i,...,pnm be independent rotations.
‘We consider the group of rotations generated by @y,...,¢m. With
respect to these, the points of the sphere fall into classes of equi-
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valent points. It is clear that the distribution of points into the »
sets Ayy...,An is independent for different classes. Thus we mneed
only show how to make this distribution for any class in such
a way that the rotations ¢, are compatible with the relations Rs.

Non-fixed points. Given a class consisting of non-fixed points.
Choose at random a point » of the class. (We use here the axiom
of choice). Any element ot the class may be written uniquely in the
form «8, where S is a rotation of the group. Start by assigning
to any set Ax. Atter o has been pub in some set Az, if f=ag] where.
j=-+1 and the extra factor does not cancel with a factor of «,
we pub uf in some class A; such that LRIL Then all conditions are
satisfied.

Fixed points. Choose a shortest rotation & having a fixed
point ¢ in the class, as in § 2. If

b=pligf...of,
where each exponent is'4-1, then fror: the point v we obtain successi-
vely the points
oo w{ll, @rpiflitpg"zfz,...,'vzp{il...%s:@.
‘Thus we have s points forming a closed cycle.
We know that every point of the class can be written uni-

guely in the form B, where £ does not begin with the block 6 nox
with the factor gpJs, Thus there are no other closeq cycles. Conse-
s

quently, if we can assign the s points of the cycle to the classes
Ayy...;4n, 850 that the compatibility conditions are satisfied, then
the remaining points may be assigned in the same manner as for
the non-fixed points. o
The relation corresponding to 6 is
] R=RURE..R]s
Since R has a fixed point %, there must exist integers ko, %y, ..., bs,.
chosen from {1,2,...,n}, such that
Fors REF B for r=1,2,...,5,
and ko= lks=k. If we put the point » in the set A and the point
ot gl
in the set Ay, for 7=1,2,...,s—1, then all conditions will be sa-
tisfied.
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§ 4. Systems of congruences. We now ask whether it ig
possible to divide the spherical surface S into disjoint pieces
Ay, A,,..., A, satisfying given congruences. Each congruence is to
have the form

Ap A Ap o Ap 2 Ay F A4 4y,
where 0<r<m, 0<s<n, and
1<k <k <. <k, 1< < <. .. < LK 0.

TWe notice first that this congruence is equivalent to the exi-
stence of a rotation ¢ compatible for the given decomposition of §
with the relation R having {1,2,...,n} as domain and range, and
for k and I in this set satisfying the condition

kRl<> (ke K<>lel),
where
K= A{kyykigy ey s}y L={ly,ly s b}y
and the double arrow denotes logical equivalence. A relation of
the above form will be called canonical, and will be said to correspond
to the given congruence.

Since to any congruence, a relation E can be found, such that
‘the existence of a rotation ¢ compatible with R is equivalent to
the given congruence, it is clear that the theorem of § 3 gives an
-answer to the question when a given system of congruences can be
-satisfied. The purpose of this section is to transform this condition
into a form relating directly to the congruences.

Notice that each congruence is equivalent to the comple-

mentary congruence obtained by writing on each side of the congru-
ence the sum of the pieces A4,,4,,...,4, which are absent in the
given congruence. Notice further that if two congruences have one
member in common, then a congruence may be written between
the remaining members. This new congruence will be said to be
obtained by transitivity. With this terminology, we may state
the desired condition for satisfying a system of congruences.
) Theorem. The sphere S may be decomposed into n disjoint
pieces satisfying a given system of congruences, if and only if none
of the given congruences and no congruence obtainable from them by
taking complements or by tramsitivity asserts the comgruence of lwo
complementary portions of 8. Furthermore, if the decomposition is
possible, then each congruence may be effectuated by an independent
rotation.
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Proof. The necessity of the condition is cfear, since two com-
plementary portions of § cannot be congruent. We shall derive
jts sufficiency from the theorem of § 3. Let R; be the relation corres-
ponding to the i-th congruence in the sense described above. Then
the existence of a rotation ¢ compatible with R; insures the truth
of the given congruence. Thus by the theorem of § 3, the given
congruences are solvable provided that every relation E obtained
as a produet of factors R has a tixed point.

The- relations R corcespond to congruences, and hience are
canonical. While not every product formed from these factors need
be canonical, we shall show that only those products which are
canonical need be considered. .

If there is an I with 1<I<n such that kR7 for every % with
1<k<n, then R includes a function defined on the domain of B
and having a constant value I. We shall say briefly that R includes
a constant. If R includes a constant, then every product of B by
other relations haying the usual domain and range evidently also
includes a constant. Since a relation including a constant certainly
has a fixed point, such products need not be considered.

We shall show next that a product of canonical relations. is
either canonical or includes a constant. It is sufficient to consider
a product of two factors. Suppose that

ER's<> (ke K' <>s¢el'),
sRl<>(se K" <>1eL").

Now kR'R”l it and only if there is an s such that kR's and
sR’1. It E'* ig either L' or its complement with respect to {1,2,...,n},
then it is easily seen that R'R’ is canonical. For example, if K ”=Lf »
then we have - '

ER'R'l<>(he K'«>leL"”).

" On the other hand, if K" has points in common with both L*
and its complement, then we find that R'E" includes a constant..
Indeed, kR'R'7 for any leL’ and any k. A similar eonclusion may
be drawn if the complement of K’ has points in common with
both L’ and its complement.

Thus every product of the R is either canonical or includes
2 constant, Since every prodmet which includes a constant has
a fixed point, we need only find under what conditions & product

which is canonical has a fixed point.
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The given relatxons Ry,...,Bn correspond to the given congru.
ences, or equally well to the complenlentarv congruences. The con-
verse relations Bi" 5 R,,l correspond to the same congruenees with
the left and right s1de% interchanged. The multiplication of two
relations, in the cases in which the product is canonical, corresponds
exactly to deducing a new congruence by transitivity from the
two given congruences, if necessary replacing the second by its
complementary congruence. Thus if there is any relation without
a fixed point, we shall find by transitivity a congruence corres-
ponding to it, that is, one which asserts the congruence of two
complementary portions of S. ’

§ 5. Examples of decompeositions. Suppose first that it
is required to divide the sphere § into three pieces A4, B, €, which
-are congruent. The system of congruences mentioned in the theorem
or § 4 may be taken as

A=~B, A= (.

By taking complements, and using transitivity, we obtain
only the congruences hetween the three sets and their sums in
Ppairs:

A=B=>(, A+BxA+C=2B4-C.
Thus by the theorem, the decomposition is possible.
By taking the given system of comgruences as

Axd, A=A, A=B, A=,

“we see that the pieces can be so chosen that there are two in-
dependent rotations taking 4 into A. Thus there are as many
independent rotations as we please taking each of the sets into
itself. A similar remark applies to all the other examples.

In an exactly similar way, we can decompose S into  congruent
parts A,,...,4,, provided n>2. The decomposition is of course
impossible when n=2.

The next example is of particular interest, sinee it is the one
which we shall use in § 6. We wish to decompose S into four pieces
A,y A,y Ag, A4, such that

A=A, 4, 4, At A, oA, -4,

In other words, we wish to cut the sphere into two pieces,

-each of which can be subdivided into.two pieces congruent to itself:
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TThe congruences obtained from the given ones by taking comple-
ments and transitivity are readily seen to be

Ay dyot Ay Ay A+ Ayt Ay Ay F A, 4,
Ag A oA+ A A 4 A+ A2 4+ A4

Since none of these asserts the congruence of two complementary
portions of the sphere, the decomiposition is possible.

A slight modification of the above example will also be needed.
1t is desived to cut § into five pieces A4,, 4,, 4,4, 4,4 P, of which P
consists of a single point, such that

A A, 4, 4+4,+P,

The possibility of such a decomposition will be shown by
modifying the previous example. We wish to decompose & into
pieces Ay,...,.4,, P, satistying the equations

A=A +4,+P, A, =A,+-A4,,
Agpy =4, +4,+P, Agpy=A45-+-4,

where @, @,, @3, ¢, are independent rotations. On the basis of the
previous example, we know that such a decomposition is possible
with P deleted. Choose a single class of non-fixed points, and only
for this class modify the assignment of points to the various sets.
Take any point « from this class, and assign it to P, thus comple-
‘ting P. Then assign

A=A, =A, 4,

upy? to 4y,

ugpyt to Am
ugy ™ 1'30 Aqy gy 01 Ay
upyl to Ay, 4y, or A,

ug, to 4, or A,
up, t0 Ay or A,
ugps t0 Ay or A,,
up, to A, or A,

The further assignments are made by exactly the same method
:as before. That is, we use the rule given in the proof ot the theorem
of § 3, where the relations Ry, Ry, Rsy By hold in jnst the following

-Cases: )
1R, 1R:2, 2R,1, 2R;2, 3R;3, 3Ryt, 4R,3, 4K 4.

We consider two additional examples. Suppose thab it is ve-
quired to divide S into four pieces A, 4,, 4,5, 44, such that

Ay Ao Ag Ay, A Ay Ay -+ A,
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In this case, we arve led to the congruences
W P I Ao A b Ay Ay Ay Ay Ay,
Agm Ayme Ay 4 Apme Ay A+ Ao Ay - Ayt A
Thus this decomposition is also possible.
As o final example, let it be required to decompose § into
five disjoint pieces 4y,...,4s, sueh that tor all 7, i, &, we have

_Aiz'SAjJ.".Ak.

By taking complements and by transitivity, we obtain only
those congruences which have one or two terms on each side, or
else three or four terms on each side. None of these expresses the
congruence of two complementary portions of the sphere. Hence
we may divide § into five congruent pieces, such that the sum of
any two pieces is also congruent to a single piece.

§ 6. How to make two spheres from one. As shown
in § 5, we may decompose § into four disjoint pieces,

8 :-Al +A2 ’!’As —{-'A4,
Agm A, A A,

such that
A4, =4+ A,

It is clear that A, and 4, may be rotated in such a way as to
exactly tit together to form S, and similarly for 4, and 4, Thus
we may cut § into four pieces, and reassemble them in pairs to
form two copies of S. We cannot use fewer than four pieces, since
we cannot form a copy of S cut of a single piece which is not all
of §. Thus for the surface problem, the minimum number of pieces
in which to eut § is four.

Consider now the decomposition of the solid sphere § defined
by #*+y2-+22<1. We wish to cut S into pieces and reassemble
these to form two solid unit spheres. Choose four independent rota-
tions @q, @y, @s, ¢ Let S(r) denote the surface a2-Ly24e2=12 We
decompose S(r) into disjoint parts, :

B(r) =44(r) - Aa(r) + dg(r) +44(7)
S(1)=4;(1)+45(1) +A4(1) +4 1)+ P,

if 0<<r<ly

where P consists of a single point, such that

A7) =Ap(r)pp =A5(r) +A5(7),
Ag(r)ps=A 4(1)ps=A4(r) +44(7),
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for 6<r<<1, and

Ay(1)pr=A4,(1)p,=4,(1) +4,(1)+ P,
Ay(1)py=A,(1)ps=A43(1) +A,1). .

Ah‘—" 2.“1;3(7‘)

o<r<t

Putting
for k=1,2,3,4,

we bave a decomposition of § irto six disjoint parts,
S=4,+4,+4;,+4,+0 +-P,

where O contains only the center of the sphere, and P also consists
of a single point, such that

Ay =Ayp, =4, +4,+4P,
Aypy= Aypy=A;+4,.

Notice also that
(Ag+O)pg=A;+A4,+0.

Thus we may decompose S into five disjoint pieces,
A4,,4, A,+0,4,, and P, of which 4, and 4;+0 can be fifted
to form one copy of S, and 4,, 4,, and P can be fitted to form
another copy. In the last case, a translation is nsed to take P into O,
but in all other cases only rotations about the origin are used.

Tt is easily seen that we cannot use fewer than five pieces.
In fact, we shall prove the following somewhat stronger result:
It is impossible to decompose 8 into four disjoint pieces,

S=B,+B, +B, +B,,

and to find distance-preserving transformations vy, ¥, ¥s P such
that ’
B By = 8, By +Bgp,=8,
even if the terms of these sums are not required to be disjoint, and
the transformations are not required te be sense-preserving.
Suppose that such a decomposition were possible. Not all of
the transformations vy, ¥, ¥a ¥y could leave the origin fixed, for
then one copy of § would be without a center. Suppose for example
that Oyp,=-0. Notice that §— 8y, includes more than a hemisphere
of the surface of S. Since By, must cover 8—8y,, it will also include
more then a hemisphere of the surface. Now Ow,= O, since other-

-
Fundaments Mathematicae. T. XXXIV. 17
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wise not even Sy,--Sy, would cover 8. Thus B, itself must include
more then & hemisphere of the surface of 8. Consequently, B; and B,
each include less than a hemisphere of the surface, so that By, + By,
cannot cover even the surface of S.

Appendix. The Hausdortf decomposition. Hausdorif
showed how to decompose the surtace § of the unit sphere into
four disjoint sets 4, B, C, D, such that

A>Be(=B40,

and D is denumerable. Indeed, he started with two rotations ¢
and v, such that ¢*=1 and y =1, ¢ and y being otherwise inde-
pendent, and congtructed the sets so as to sabisfy

A‘P:"B’!’C: (B’!"O)(P:Aa D¢:D7

Ap=B, Byp=0C, COp=A4, Dy=D.

Tn this appendix, we shall obtain & sharper form of the Haus-
dorff decomposition. The arguments required are similar to those
used in § 2—§ 4, and will only be sketehed. here.

As in §2, we study the group of rotations generated by ¢ and .
Fach rotation of the group is expressed as a product in which
factors ¢ alternate with factors y&t. The surface § falls into classes
of eguivalent points under the group, each class consisting entirely
of fixed points or entirely of non-fixed points. Each point in & class
of non-fixed points can be expressed uniquely in the form uf, whereu
is some particular point of the class and B is a rotation of the group.
Now consider a class of fixed points. Choose a rotation 6 which
is as short as possible when expressed as a product of factors ¢, i,
and which has a fized point » in the class. The first and last factors
of O cannot be the same or inverse, unless there is but one factor.
If va=v, then a=07 Bach point of the class has a unique repre-
sentation in the form v8, where § does not start with the block 6,
nor with the last factor of 6 or its inverse.

1t is clear that in the Hausdorff decomposition, the set I
cannot be entirely eliminated, since then 4 ~B-+C would represent
a congruence between two complementary portions of the sphere.
It follows trom the preceding paragraph that each set of equivalent
peints is infinite. Hence D must be infinite. Thus we cannot hope
to find a sharper form of the Hausdorft decomposition by reducing
the number ot points in D, unless some other moditication is also
made.
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We now proceed as in § 3 to distribute the points of each class
-among the sets 4, B, € in such a way as to be consistent with the
desired equations

Ap=B+C, (B+Op=A, Ap=B, By=C, Cp=A.

From each clags of non-fixed points, choose a point u at ran-
-dom, and put it in any clags. After ua hag been put in some class
we may then assign uf to a class, if f=ap or f=oayt!, where thej
last factor does not cancel or combine with a faetor of «~. Indeed
under these conditions we proceed as follows: .

If e is in A, put zep in B or €, zap in B, zay!in C.
If #a is in B, put zop in 4, zay in C, aayp~!in A.

If za is in €, put wap in A4, zay in A, wxaeyp~' in B.

The required conditions are satisfied. If all the fixed points
-were put in D, we should have exactly the Hausdorff decompo-
sition. But we shall try to also distribute the fixed points in so far
a8 possi]’:)]e. .

Define relations R, and R, corresponding to ¢ and . That
is, R, shall hold in the cases

1R2, 1R3, 2R1, 3R,

and R, in the cases
1R,2, 3R,3, 3R,l,

and in no others. Express the 6 for any class of fixed points as
a product of factors g, p+l. Let R be defined as the product of the
-corresponding factors R, EF'. Ii this R has a fixed point, then the
points of a certain closed chain can consistently be assigned to the
three sets 4, B, C, and then all other points can be assigned as
before.

We shall show that Ry, Bi', Rs'R,R, and R,R,R;' are the
only products of alternate factors Ry, RF' which have no fixed
points. Indeed, RRi'R, is found toinclude a constant (in the sense
of § 4), so that every product including this block has a fixed point.
We note also that R;Réti, R'Ry, RyR\R,, and Ry 'R.R3 " have fixed
points. Thus only the cases listed above remain.

The corresponding rotations are g, p, y gy, and ypey~t, of "
which only ¢ and y need be cousidered as values for 8. In other
“words, of the infinitely many classes of fixed points, all except the
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four determined by the fixed points of the two original rotations ¢
and v can indeed be perfectly distributed among the sets 4, B, (.

Note that these four classes are distinct. For example, if vp=o,
then all transforms of » can be written uniquely in the form op,
where § does not start with ¢. Ifvf were fixed for vy, then vy when
simplified would give & new representation for the point v8. Thus
1o transform of a fixed point for ¢ is fixed for y. In a similar way,
we see that the two fixed points for ¢ or for y are not transforms
of each other.

" TFor these four classes we proceed as follows. If v ig ome of
the two fixed points for g, write all points of the class in the form vf,
where f is simplified and does not begin with p. We then distribute
the points ©8 as follows: )

Put v and vap in A4, vey in B, vep~ in C.

This is a perfect distribution, except that the point v isin 4,
and its transform by ¢ is also in 4. If v is one of the two fixed points
for p, write all points of the class in the form vf, where f is simpli-
fied and does not begin with p*i. We then distribute the Doints of
as follows: ’

Put vap in 4, vay in B, veyt in 0, v in D.

This is a perfect distribution, except that the point vy isin 4
and its transtorm by ¢ is in D. The set D consists of the two fixed
points of 3. :

If we denote by F the set consisting of the two fixed points
of ¢, then we see that we have a decomposition of § into four dis-
joint sets, ’

S=A+B+C+D,
such that

(A—E)p=B+C+D, (B+0+Dyp=A—E, Ep=E,
Ap=B, By=0, Oy==4, Dy==D.

Thus we have divided § into three congruent parts, with only
two points left over, in such a way that oune piece 4, omitting two
points, is congruent to the complement of A. In a similar way,
each of the sets B and C, with a pair of points omitted, is congruent
to its complementary set, the rotations involved being y'gp
and ppyp—.

University of California and Princeton University.

Sur l'application de la notion d’homotopie au probléme
du nombre algébrique des points invariants?).

Par

Casimir Kuratowski (Warszawa).

1. Soit B un ensemble fermé et borné situé sur le plan eucli-
dien &2, Soit f une transformation continue de E en un sous-en-
semble f(B)CE. Désignons par F et I la frontiere et I'intérieur de E:

© P—E-&—F et I=E—&—F.

Nous supposons dans tout ce qui va suivre que la fonction f
wadmet aucun point snvariant sur la frontitre F de E, c. 4 d. que

{1) f(z)==2 quel que soit « eF;

ou encore: en désignant par Z l'ensemble des points invariants
de la fonection f, on a ZCI.

Dans le cas ott la fonetion 7 est holomorphe & I'intérienr I de B
et ol peZ, c.ad. ol p est un zéro de la fonction

2) (@) =f(z)—,

il est naturel de nommer ordre du point invariant p 1'ordre du point p
considéré comme zéro de la fonction f*. )

Cette notion se préte 2 une extension au cas ot f est continue
(holomorphe on non) et ot p est un point invariant isolé (apparte-
nant & I)?). On se serb & ce but de 1a notion d’indice, gui est défini
commie suit 3). .

1) Présenté & la Soc. Polon. de Math., Section de Wroctaw, le 7. VI. 1946.

2) Voir Alexandroff-Hopf, Topologie I, Berlin, Springer 1935, Chap. X1V,
§2, ot le cas plus général de Pespace 6" & m dimensions est considéré.

3) Voir, par exemple, mon ouvrage Théorémes sur Uhomotopie des fonctions
conitinues de variable complexe et leurs rapporis & la Théorie des fonctions analy-
tiques, Fund. Math. 33 (1945), p: 320 et 351.
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