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For any natural number m we use according to Mostowski
the symbol [1n]! as an abbreviation of the eonjuction [11&[2]&...&[m)].
Tt u is a natural number >1, we denote by p(n) the number p
determined by two following conditions:
(i) there is a decomposition of n inte a sum of primes in which p
is the smallest term;
(ii) there is no decomposition of # into a sum of primes greater
than p.
From theorem 1 we obtain now immediately the following

Corollary 3. If m and n are natural numbers such that mz p(n),
then the implication [m]'—[n] is true.

Mostowski has shown that also the converse theorem iy
true 7). The inequality m>p{n) is not only sufficient but also neces-
sary for the derivability ot the implication [m]!—[n]. Mostowski
derived further from the.corollary 3 a sufficient condition for the
truth ot the implication [m]!—[»1! and proved that this condition
is at the same time necessary ).

We conclude with the remark that conditions given in theorem 1
and 2 are by no means necessary for the derivability of the impli-
cation [ M]—[n]. For instance the implication [(3,7)]-[9] is true?)
but neither the assumptions of theorem 1 nor that of theorem 2
are satisfied.

) Ree M, p. 162,
8) M, theorvems VIIT,
o) M, theorem IX.
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The celebrated paper of K. Godel on undecidable statements?)
had (among others) the effeet that several writers began to analyze
the notion of functions of natural argument taking on infeger va-
Tues ag well as related with them sets of positive integers. The chief
purpose of these endeavours was to formulate an exact definition
of what may be called ..calculable function®, i. e. guch fonetion f(n)
that there cxists a method permitting to caleulate the value of f(n)
for any given n in a finite number of steps. For sets we have the
corresponding notion of .calculable sets™ for which there is a finite
method permitting to decide whether any given integer is in set or
not. The solution of this problem given by Herbrand, Godel,
Church, Kleene and Turing?) suggested still other types of sets
and of functions. Soe. g. Rosser and Kleene found an interesting
clags of sets which they called ,recursively enumerable” %),

The aim of this paper is to show that the two above mentioned
classes of sets (and of funetions) form the beginning of an infinite
gequence of classes whose properties closely resemble those of pro-
jeetive sets?). Tor convenience of readers not acquainted with
papers referred to in footnotes?) and 3) I shall develop the theory
without using the notion of general vecursivity (the final section 6
is the only exception).

#) See note on the page 112.

1y (¢odel [3]. Numbers in brackets refer to hibliograply given at the end
of this paper.

2) (+odel [4], [5], Chureh [2], Kleene [9], Turing [21]. It is now custo-
mary to eall calculable functions and sets ,.general recursive”. An excellent
exposition of the theory of these functions is to be found in Hilbert-Ber-
nays [8], Supplement II, 392-421.

3) Kleene[9], Rosser [14]. Further development will be found in Post[12],

4) I shall refer to the exposition of the theory of these sets given by Ku-
ratowski[10].

Fundamenta Mathematicae, T. XXXIV. 6
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It is difficult to predict at present whether the classes of sets

and of functions dealt with in this paper will gain the same ,right
of citizenship™” in metamathematics as the class of general recursive
sets or functions. I have therefore not so much developed the
theory of these classes themselves as tried rather to give some appli-
cations and to detect relations between the new classes and notions
already known in this field. This explains why proofs of several
known theorems are given in this paper (see 4.21, 4.41, 4.43, 5.51,
5.61). I think that owing to the use of methods familiar in the
theory of projective sets I obtained not only considerable simplifi-
cations of the proofs but also some slight generalisations of the
results themselves.
‘ It seems to be possible to develop very extensively the theory
of the new classes on the pattern of the theory of projective sets.
Trom this kind of problems only one will be discussed here, to wib
the analogue of Souslin’s theorem3), i. e. the theorem that a re-
cursively enumerable set whose complement is. also recursively
enumerable must be general recursive &). The utility resulting from
the analogy with projective sets is thus I think demonstrated.

§ 1. Classes P, and Q,. .

1.1. Preliminary remarks. Terminology. Metamathe-
matical concepts occuring below (e. g. propositional function, formal
proof ete.) refer to a fixed self-consistent logical system S in which
the theory of addition and of multiplieation of positive integers
can be built up. Hence for § may be taken e.g. the system of
Prineipia Mathematica of course reformulated so as to render the
system more exact?). As the subsequent investigations arve in high
degree independent from the particular choice of the system §
I shall give a mere sketch of its structure instead of a detailed de-
seription.

In the system S occur variables .4, .y",... of the type of po-
sitive integers®) as well as signs denoting the numbers 1,2,3,...
"5 Kuratowski[10], p. 251, Corollaire 1. :

) After having finished the first draft of this paper I became acquainted
with the paper Post [12] from which I see that this result has been obtained
Ty E. L. Post already in 1944, From letters I understand that. A, Tarski has
also fonnd the same theorem.

7) Buch exact reformulations are given in Godel [3] and Tarski (7.

8) § ean contain also other types of variahles.
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Propositional functions with one, two,...,k variables of the type
of positive integers will be denoted by symbols such as (=),
Jw(z,y) ete. and general ,p(x)%, the German letter ,.x“ standing
for the finite sequence xy,a,,...,z; of k variables.

Among the propositional functions oceur the arithmetical ones:

{1) =y, o<y, w=yY+2, T=Y-z, L=y

with their usual meaning.

. If we substitute in a propositional function, e.g. in ¢(z,y),
for , 2 the sign denoting the number k and for ,y“ the sign denoting
the number | we get a sentence which will be denoted by ..e(k,1)".

The implication and the conjunction of two propositional
functions ¢ and p will be written as g—y and ¢-yp, the negation
of g as ¢'. For quantifiers we use letters ,, /7~ and ,.2* with a variable
written below. )

‘We admit that the ordinary rules of inference and the ordinary
arithmetical axioms are valid in §. The formula —¢ means that ¢
is a valid sentence, i.e. that there exists a formal proof of ¢.

It will be admitted that it is possible to put variables, propo-
sitional functions and formal proofs of the system S in one-to-one
correspondence with positive integers®). These integers will be called
the Godel-numbers of variables or of propositional functions or
of proofs. The correspondence is supposed to be not arbitrary
but to fulfill some conditions which will be formulated in 3.1 10y,

In the simplest case 8 contains no other variables than those
of the type of positive integers and no other propositional functions
than those which can be built up from the propositional funetions (1).
with the help of quantifiers and logical connectives o=y - and "%
In this case & will be spoken of as the system of elemenfary arith-
metic and denoted by . .

The logical symbols: negation ..’ implication ,—", equi-
valence =%, conjunction ., alternative .-~ and quantifiers
occur also (and more frequently) as synonyma of words f,not“,
Jif..., then..” ete. They are then used not as signs (primitive or
defined) of the formal system & but as words of our ordinary language
in which we are speaking about the system &. Using Carnap’s

oy Giodel [3], p. 179, - . . . o
10) They represent a generalization of the three conditions of recursivity

formulated in Hilbert-Bernays [8], . 393-394.


GUEST


84 A. Mostowski:

terminology we could say that we use the same symbols in objeet
langunage as in syntax-language™). I do not think that this double
meaning could eause any misunderstanding 2).

Positive integers will be denoted by letters m,n,h,k,... even-
tually with subscripts. For any n we put

n =22 g,(n)—1].

Ordered k-ads of positive integers will be called points of
k-dimensional space R, and denoted sometimes by a single German
letter m,u,... For ,.g(ng,ny,...,1,)~ we write then shortly ,.g(m)". ’

The set-theoretical notation and terminology is that of Kura-
towski [10].

1.2. Decidable functioms. A propositional function ¢(x)
with % free variables will be called decidable, if for any neR,
either (—¢(n) or |-¢'(n). Jn symbols

] [=gtn) +—g'(n)].
neky

Here the logical symbols except the negation-sign ,'“ are
taken meta-mathematically.

E. g. the propositional functions (1) are decidable.

1.21. The negation of a decidable propositional function and the

logical product of two sueh functions is again o decidable pro-

positional function.

For negation the proposition is obvious. Suppose now that
@(x) and w(y) are decidable propositional functions with %k and
free variables and let meR,, neR;. If |-g(m) and +-y(n), then
@(m)-p(n). If either non -g¢(m) or non —y(n), then F-g'(m) or
—v'(n) since @(z) and y(y) are both decidable and it follows by the
rules of propositional caleulus [p(m)-p(n)]. Hence g¢(x)-p(y) is
decidable.

1.22. If ¢(x,y) is a decidable propositional function with k-1

free variables, then the propositional functions '

1;1[(1/<w)—>¢(x,y)] and  N[(y<z) ¢(xy)]
g

are also decidable'3).

1) Carnap [1]. p. 4.

#) Omne could avoid this duality introducing other symbols in the formal
system & and other in the meta-system. This is done e. g in Godel [3].

By xodel[3], Satz IV, p. 180.
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The proof is obvious.
According to 1.21 and 1.22 the commectives of propositional
calenlus as well as the Jlimited quantifiers” J][(y<<a)—(...)] and
]
Sly<w)- ()] it applied to décidable propositional functions yield

;gain decidable functions. It will be seen later (in 4.21) that the
wmlimited quantifiers /7 and X may give undecidable propositional
functions.
1.23. Let p(t,1) and p(x,1) be two decidable propositional funections
awith m-k and 14k free variables. Let p(x,9) Fulfill the conditions:

2) l;] 11T {Tw(x,) - w(%,3)]-(=3)} “);

V3

(3) For any me R, there is ne Ry such that ‘pqp(m,.n).
Under these assumgptions the propositional function

(’l) E [!P(‘t, I)) 7/’(3:71))-[
?

is decidable.

Proof. Let us denote by #(t,x) the propositional funetion (4)
and suppose that me Ry, peRm. Assume that non —9(p,m) and
denote by m a point of Ry such that w(m,mn). Hence it cannot
be —@(p,n), since we would then have —9(p,m) against our assump-
tion. Therefore |—¢'(p,n) and hence

(8) - [p(m, 1) =o' (p, )]
The formmula [—yp(m,n) yields together with (2)
1T Ly =) —y(m,9)]
D

and hence by the ordinary rules of propositional ealculus

T {(y =1 —Tp(m,9)—>¢ ()1}
»

Jombining this with (5) we geb }—n[ip(m,t))—)m'(p,l))], i.e.
D
—9(p,m). This proves that #(t,%) i8 decidable.

¥ 5 = ans the conjunc-
1) TE = (Y, Yoot ARG 3= (Fprgenny)y Then D=3 wioan !

tion (y;==2y)" (Yp="%5)... (yp="2)
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1.24. Under the assumptions of 1.23
'r{;)? [o(t,)-(x,9) ][] [9(x,3)>0(t,3)]1}-
3
Proof. From (2) we obtain

H{ot ) -9(x)-9(x,3)>(0=3)-0(1,9)}
and therefore

F{w(t,9) -v(z,)-v(x .
This yields { ,0)-9(x,3)—~>0(1,3)}

= {lo(t: ) p(x,9)]->p(x,3)>0(t,3)]}.

5 we now adq the general quantifier in the second term and
the particular one in the first, we obtain immediately the desired
result.

1.25. The propoesitional functions x(#,¥,2), x(

defined as m_a('/) and yy(x, )

2

=902
x=2%(2z+1), > xlx,y,2), 3 ule,y,2)
z [

are decidable and fulfill the formulae:

=0y y,2) - 2,y 2 ) > (y =y') - (e =2")],
=Lale,y)- ml@, ') —(y =y)],
HLra,2) solor,2") (2= 27)].

1.3. Definition of classes P% @
_ ) » and QY. A set ACR
will be said to belong to the class P{" if there is andeeidable pro of
sitional funetion ¢(z) with %k free variables such that P

Ne d=—g(n)
for any neR,. We say that i ]

3 . y that ¢(x) defineg 4. For reasc ot
we shall denote the class P§® also by QP wons of spmmetry
) L)d: us now suppose that 23>0 and that classes P® and oW
(k=1,2,3,...) have already been defined. We then say that a sgf

ACR; belongs to the class P, if there is a sot B ¢ Q*+Y

that for any ne R, + n such

ned=3(n,p)eB.
p

A set ACR, belongs to QB if B,—4 « PY,.
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The analogy with the theory of projective sets needs not to
be emphasised.

The class PP =0 plays in our theory the same role as
the class of Borel-subsets of k-dimensional space plays in the theory
of projective sets.

We see from the definition that the rules of inference admitted
in the system S permibt to decide whether any given ,point™ n
belongs to any given set A of the class P® or not. Hence PP is
the class of general recursive sets mentioned in the introdwetion.
This will be proved formally in 6.31.

From classes PP and QP with #>1 only one as far as T see
is kmown in the literature. It is the class P{" which was called
by Kleene the class of recurgively enumerable sets?®). It will be
shown later that 4 ¢ P{® if and only if A is the set of values of
a general recursive function (see 5.61 and 6.23).

The whole sum Y [P®+QP] may be characterized as the

class of sets ACE, Which are definable within the elementary
arithmetic. The word ,definable” is here used in the following
sense 16): a set ACR; is definable within %[ if there is in 9 a propo-
sitional function g(x) with % free variables such that ned if and
only if u fulfills ¢(x). The proof of the above theorem presents no
difficulty for any one who knows the notion of fulfillness??). As
its exach definition is rather intricate, we shall omit this proof and
content ourselves with the remark that the definability of sets
belonging to PP results from theorem 6.31 given below.

The classes PP and QP such ag they were defined depend
a priori from the logical system & taken as basis and should pro-
perly be denoted by symbols PH(8) and OP(8). As a matter of
fact they are independent from the system & provided that this
system satisfies some very general conditions as will be shown in 6.3.

§ 2. Elementary properties of classes PP and OF.

2.1. Sums, common parts and cartesian products.
The most important theorems we intend to establish in this section
may be stated as follows: the classes PP and Q¥ are rings of sets
for any n (2.17); the property to helong to P, (0r Q) is invariant

15) Kleene [9], theorem XI, p. 739.

1) Tarski [18] p. 312.

17) Tarski [18].
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under the cartesian multiplication by an axis (2.14); the sum (or
the common part) of an enumerable sequence of sets belonging
to PP (or to QP) Dbelongs under certain assumptions to the same
clags (2.16). The remaining theorems are lemmas.

2.11. If Ae PP and Be PP, then A+B, 4-B and Ry—A
belong to PP.

This proposition which follows immediately trem 1.21 states
PP s a ficld of sets.

212 If 4 e PP, then Ry—A e QP and conversely.

This follows direct from definition.

2.13. (Change of axes). If =(1),a(2),...,7(k) is any permutation
of 1,2,..,k and if we denote for any ACR, by A, the set of
Al (Rayy Wayy ooy Nay)  fOr which  (ng, Ny ..y ny) e 4, then
AePP=4, ¢ ng) and A e QS,II)EA,, € Qf,k}.

. The easy proof proceeding by induction on' n will not be given
Lere,

that

2.14. (Cartesian products). If 4 eP® (or AReQ®), then

AXE e P8 (o 4 e QF),

Proof. Suppose first that n=0 and let p(z) be a decidable
propositional function which defines A. The propogitional function
¢(x)- (w=a) is of course decidable and defines A4 xXR,. Hence
A %Ry e P,

Suppose now that 2.14 holds for n<<m and let 4 « PP

) L e BY
definition there is a set B e Q%Y such that

ned = Yn,q)eB. :
q

The set B, = F
(m.p.g]
the two last axes and therefore B, e

obviously

g(n,q) € B} arises from B x R, by interchanging

(+2)

m—1 by 2.13. Since we have

(n,p) e A xRy = ¥ (1,p,¢) ¢ By,
q

we infer from the definition that 4 xR, e P#+D,
Suppose now that 4de QP i.e. Ry—d e PP, If we repeat
the above reasoning taking R,—4 ingtead of 4, we obtain

(Ry—A) X By e PYT™ or passing to complements and using 2.12
Ry —(RBp—A) xRy e Q.

The left side is identical with 4 xR, what completes the
proof.
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Let us put for any ACR,.,
Ar=F10n(p)salp)) € A
U
2.15. A e PUV=4%c PUY und 4 e Q¥=4%e¢ Q¥.

Proof by induction on n. Suppose first that #=0 and that
A e P, Let ¢{t,n,0) be a decidable propositicnal function with,
k42 free varinbles which defines 4 and consider the propositional
function
3 Sty u, ) a2, 1) 20(25 ),
u o
where z,(z,u) and 7,(z,v) have the meaning defined in 1.25. It is
obvious that this funetion defines 4* It iy in addition decidable
because it hag the form considered 1.23 with ,,(u,r)" instead of ,p”
and with ,,x,(s,)- xa(2,v)" instead of ,p(x,9)" The assumption (2)
of 1.23 iy satistied in virtue of 1.25 whereas (3) is obvious. This
proves that A*e I, .
Suppose now conversely that A* e PEY and that g{t,w) is
a decidable propositional function which defines A*. By 1.23
and 1.25 the propositional funetion
Zf/*(tﬂl?) 4w, u,7)
s ) A {k-+2)
is decidable and defines A. Therefore 4 e Py
The theovem is thus proved for n=0.
now that m >0 and that the theorem holds for n<m.

Suppose the
Let 4 ¢ P, Hence there is a set Be 0% such that
(1171774)54 EE(ﬂ,p,q,h)eB.

I3
The set ‘
By= [ [(n,8(1),5:(1), 1) € B]
(nLi

consequently

arises from B* by interchanging the two Tast axes;
see that

¥ e QFY py 2.13 and the inductive assumption. Now we

(1) € A*= (11,8,(1),55(1)) e A= >

£
t

(11, 5,(1),85(1), 1) € B= _1\7 (m,l,h) e BY
{4

" 2 (1),

according to the definition 1.3 that A¥e Pp -

Ui+
€ Pm . .
* ¢ Ui e, that there is a set Be

which proves
Hence 4 e PETP—A*

Suppose now that A
such that

m—

(12}
1

(n,1) e A* =

Ll

(L h) e B.
h
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Let By, B, and B; be defined by the equivalences
(n, k1) € B, = (m,1,h) e B,
(n,h,p,¢) € By = (11,7,27(2¢+1)) € By,
(1,9,4¢,1) € By = (n,h,p,q) e B,.

Obviously Bf=B,. Since B, ¢ Q%) by 2.13, we obtain from
the induective a.ssumptmn Bye Q81D and again by 213 Bye QUtD,
Now observe that ’

(1, € A = (1,220 +1) € 4* = 3 (1,224 +1),1) ¢ B
= 3 (m,h,2r(2¢+-1)) 5B1= '\1(71’717?7({) eB,= v(“a?’;g:h) B,.
7

This equivalence proves that 4 ¢ P¥*? and hence
A e PED < 4> pEHY,

Passing to complements and observing that
(Brpo—A)* =Ry, —A*,

we obtain immediately

de QUtD = 4x

The theorem 2.13 is thus proved completely.

We put for any ACRuy,

A= E[“ 1,4) e 4],

()
€ QUTD,

Ap=F ] (n,q) e A].
n g
2.16. (Infinite sums and products). If n>1, then
Ade Pf,k+])—+x1 s € 1),({‘3 Ae Qﬁ,k'HL-)-.AP € ng).

Proof. Suppose first that 4« PF, For a suitable Be QD
we have the equivalence

("719)611 EE(“??;Q) e B.
q

and

" Remembering the definition of the set B* we obtain

TLEASE_E(TL:?)5AESE(“:I’19)EBEE(n;h)eB*y
Py h

for putting h=9"(2¢-+1) we have (n,9,9) e B=(n,h) e B*. Since
B*e Q¥4Y, the above equivalence proves that 4,e P®. TIn order
to obtain the second result stated in the theorem it is now suf-
ficient to observe that

RBy— A, =(R,—A4),.
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2.17. (The ring property). If 4 and B belongio PP (or QF),

then A+ B and 4-B belong to the same class.

Proof. In view of 2.11 we may suppose that n>1 and that
the theorem holds for lower values of n. Trom 4eP® and Be PP
we infer that there are sets ¢ and D ‘belonging both to QUHY
guch that

ned=3mp)eC, neB=3(m,p)eD.
14 P

From these equivalences we immediately obtain
ned+B=3mp)eC+D
P
and hence A-+BepP®
assumption
Consider now the cartesian products ¢ x R, and D X R, and
denote by D the set arising from D xR, by interchanging the
two last axes. Putting for symmetry O=( % R;, we have
(n,p,49) € = (,p) e g,
(n,p,4) eD= (mq)eD
and 0, De Qf,”’) in virtwe of 2.13 and 2.14. By the induective
agsumption we infer that C-De QYD and sinee
n,p)e C1-[ >“:(n,-q) € D]=
Sm,p )en] [(n,q) eD]= Y (n,p,q) ¢-D,
¢

since C+De Q%Y by the inductive

ned -B= [S‘

=3
)
we infer from 2.16 that A-BeP.

Passing to complements and applymg 2.12 we obtain the
further result that if 4 and B are in Q%, then 4 -+Band 4-B
are both in ()ﬁ,"). The theorem 2.17 is thus proved.

Tt will be proved in 3.32 that neither P{¥ nor @ is a fjeld
of sets for n331, 1. e., that the difference of two sets of the class P,”
(or O®) does not, in general, belong to this class. From 2.17
and 2.12 we obtain however

9.18. The common part P QY is a field of sets for any nz0.

The sense of this proposition is that the class PP- QL is
closed under the three operations 4+ B, 4-B and 4A—B.
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2.2. The Kuratowski-Tarski method. This well known
method permits to evaluate the Borel clags or the projective class
of any set provided that its definition has been written down in
logical symbols8). The methed is baged on propositions of exactly
the same form as our theorems 2.11-2.15 and 2.17 1), Hence imitating
ﬂ.li.'s‘ method we may from the mere form of the definition of any
given set ACR, evaluate a n for which 4eP® or 4 ¢ oW,
This illustrates the importance of theorems established in 2.1.M1

pw

2.8. Inclusions. Between the clasges P,(,k), 1y Qﬁ,") and

O® | hold following inclusions:
231 PPCPYE- O and QP C P, QW
Proof. Suppose that A e P{¥ and put 4, =4 x R,. Kvidently
ned=[](n,p)e 4;=[T(0,p) ¢ Rpy1—4;); since Ry;—4, e QFH
P P * "

by 212 and 2.14, we infer direct from the definition 1.3 that
de QE.’Z_’.L Hence ‘

" 0] (3

(©) PYC O,
Passing to complements, we obtain

- (B) —~ gyl

(7) oPcrp®,

} T%sis gives for n=0 the inclusions QPCQOP and PP CP®. Sup-
pose now that 2 >0 and that the inclusicns
Qy - k) & . (
() pPCPl,  QPc o,
are valid n<m. It @ .
are valid for a<m. If A< PP, then, for a suitable Be QD we

Vv =V B whic R, .
have e A=13(n,p) ¢ B which proves that 4 e P¥,, since Be Qi+

. ,‘. .
by the inductive assumption. Hence the first inclusion (8) ix true
for m=m and passing to coniplements we obtain the same result
for the second one. (8) is thuy true for any n. The theorem results
now from (6), (7) and ().

18y Knrs cxki-Tarcld D4s 'Y

19) 'I:umtnw.‘lufl arskilll], v. 242, Kuratowski [101 . 168 and 243
) There ave, however, no rules in our theory which would correspond

to theorems concerning infinite sums or products of Borel (or projective)

sets.
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§ 3. Existence theorems.

3.1. Condition C,. 1t iy now an appropriate place to for-
mulate the conditions imposéd upon the enumeration of variables,
propositional functions and formal proofs of the system 8. We
chall consider the following sets: ’

I'v= | Tthere is a propusilional function ¢(x) with k free
®a pariables such that p is the Godel-number of ¢lx)
and ¢ that of ¢(n)],
A= [ [q is the Godel-number of a formal proof of the sentence
@n  phose Godel-number is nl,
E= [ [q is the Godel-number of a formal proofl,
4

q
H= [ [p is the Godel-number of a propositional junction and ¢
D that of its negation].

The condition ¢/, requires that these sets should belong to
clagses P, with suitable upper indices:

(¢ Toe ¥, 4 P®,  BePP, HepPP ).

Most systems fulfill the simplest condition Cy; namely all
those in which a formal proof consists on performing step by step
some well defined finitary rules of inference. Thus e. g. the system P
considered by Godel fulfills the condition U, as is proved in details
in Godel [3] pp.179-186. Systems with non-finitary rules of infe-
rence fulfill, in general, the condition €/, for some s>0 but not the
condition (. For examples of such systems see e. g. Rosser [13].

3.2, Universal functions. We proceed to establish, for
systems S which fulfill the condition (,, the existence of sets be-
longing to any given class P or Qi but not to preceding ones.
The proof is based as in the theory of Borel-sets or projective sets
on the concept of universal functions®).

Let X be any class of sets. A universal function for X is any
function F(1) defined for h=1,2,3,... such that

AeX=YA=TF(h)
h

20) The agsumyption EEPS) ig irrelevant for our present purposes but we

shall need it in 5.61.
21y Kuratowski [10], p. 172 and 241
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3.21. If 8 fulfills the condition Oy, them there is a wuniversal
function FP(R) for the class PP such that the set
MP = [ e FO(h)]
(n,h)
belongs to Qﬁ,’f’g".
Proof. 22). An integer & is the Gddel-number of a decidable
propositional function with % free variables if and only if -
HE_?,S{U[:Z:“) EI;'(l:m*) € H'[(le') € A+(q’m) € A]}'
n q m
Hence denoting with @, the set of these numbers we infer
by the Kuratowski-Tarski method that

%) Ore Qs ).
We put now F§P(h)=0 for h none ©®, and

FP ()= F13 Y (hp,n) e Ty (g,p) € 4]
' m opgq

for he@, The get MP belongs then to ’fofﬁ;”
its definition

as we easily see from

(7)) e MP = (R e@k)gg[(h,pm) e Iy (¢,p) € 4]
q .

using (9), 2.31 and the Kuratowski-Tarski evaluation method.

It remaing to prove that Fy°(k) is a universal function for
the class PP,

Let us suppose that 4 ¢ PP and that p(z) defines 4. If & is
the Godel-number of ¢(z), then 7 e®,. Let ned and let P be the
Goédel-number of ¢(n). Then (k,p,n)el%. Since o), there is
a formal proof of p(n). Denoting with ¢ its Godel-number, we have
(g,p)ed. Now from he@,, (h,p,m)el, and (¢,p)e 4 we obtain
ne FP(h). If, conversely, me F§®(h), then there are P, ¢ such that
(hyp,m) e Iy and (g,p) e 4. Hence p is the Gidel-number of o(n)
and ¢ is the Godel-number of a formal proof of p(n). Hence there
is at least one formal proof of g(n) which proves that f—p(n) i e.
Ted; therefore 4 =P (k) which proves that

Ae I)ék) s ZAZFJM(”)‘
h
22) This proof is essentially due to Kleene [91, theorem IV, p. 736;

*) More exactly: for =0 Gpe QP and for s>0 Gpe g)“j{ . The for-
nwla (9) includes bothk cases. et
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Suppose, conversely, that A =F(h). If & non e O, then 4 =0
and therefore A e P, If he®,, let p(x) be the decidable propo-
sitional function whose Gddel-number is h. We prove similar as
above that e d=}—gp(n) and therefore 4 ¢ P . Hence

Y A=FPM) -4 PP
h
This completes the proof of 3.21.

3.22 If S julfills the condition C,, then there are functions F& (h)
and GP(h) universal for classes PP and QF and such that the

sets
MP= [ meFPHh)] and FP=Fne GPM)]
() . (n,71)
belong respectively to PETY, or to QUL if n>0 and to QEED
if n=0.

Proof. The theorem was proved in 3.21 for n=0. Suppose
that >0 and the theorem is true for this value of n and for
k=1,2,... Put

FE () = F 1Y (n,p) € GO (R)],
nop

"B (h).

G 1 (h) = Ry—

If 1 is any integer, then F2,(h)e Py, since

e F®(h)= N[(n,p) e G (1))
p

and Q) e QU by the inductive assumption. Suppose,
conversely, that 4 e P&y, i.e.

ned=N{m,p)eB
'a

tor a suitable Be Q¥ The function G¥0(h) being universal
for QYD there is an h such that Be G¥TP(h) and therefore
A=TF*(1), Hence FU,(h) is a universal function for P¥,. Pas-
ging to complements we immediately see that &% (k) is universal
for Q.

It remains to consider the sets HM4%, and
their definitions we have

7 (%)

1. According to

3 . Ylaw)
(1) € MB =11 e P&, (h)= 3 (n,p) ¢ GoT(h)= S(mp,h) e N§Y
F)


GUEST


icm

96 : -A. Mostowski:

s s (k1 et 4
and this proves that M®, e PYEY;, since NED QE ) by the
inductive assumption. Further we have

7)) e N® =ne @R, (h)=nnone T ()= (1,h) € Ry —ME,

and therefore N¥, e Q¥H1,. The theorem is thus proved completely.

3.3. Existence-theorems. They follow now easily by the
well-known Cantor’s diagonal-theorem ).

3.31. If N fulfills the condition (s, ihen l’,(f’)zl:l),ﬁﬁ)_l and
QP for any n=0 and kz1.

Wn-+1

Proof. Let us suppose that S fulfills the econdition ¢ and
that P® =P, for some &k and n. We shall show by induction

n+1

on m that then
(10) Pﬁf’:p,ﬁf':g‘n‘:’ for mzn.

This holds for m=n since we have Qg‘)C_I’,(,'_“)_1=.P,(Ik) which
implics PPCO® and therefore PP =0QF. Now suppose that (10)
holds for an integer m>n. Obviously P,(,")CP,(,},‘.)H. If Ael’,(,ﬂ_l,
then there is a set Be Q¥ such that

e d= N(mp)eB.
P

Let us write (ng,7y,...,7;) instead of n and consider the set
(see 2.15)
Br== [ [(HyyeeyPat;55(0),52(4)) € B

(y,... np—1®)

Since B* e OF, we have B*¢ PP in virtue of the inductive
assumption and the equivalence

e d= Y (5(q) =np) [(nyy...,Np—1,q) € B¥]
q

proves that 4 « PH, —=P®. Hence PF,~PP. Passing to comple-

ments we obtain Q¥ =Q® =P®. The formula (10) is thus proved.
Consider now the universal function F®(h) defined in 3.22
and put )
A= F )[(nl,...,'nk,l,h) non e FY(h)].

[T TR )

24y Kuratowski [10], p. 175,
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This set does not belong to PP because otherwise there would
be an integer hy such that 4=F(h,) which is impossible since
we would then have

(s higy---r o) € A& = (R, Rgy ..y hg) DO € FP (Ry) = (710,710?...,710) noned.

Observe now that

(Rgy ey Bpm1y k) € A= (g =h) [(g,-..,; 70 _1,¢) DON € F:(zk,(k)]E
q

E;’(!] =R) [y ey Mpsgy 4y 1) € Rk-&-i‘—vfzm]
q

which proves according to 3.22 that 4 ¢ P¥,., and consequently
A PP according to (10). The assumption’ PP =P%, leads thus
to a contradiction.

The inequality QP =Q%, will now result if we pass to com-
w_,

plements on both sides of PP=P®,.
3.32. I 8 fulfills the condition C, and if 0. >0, then P non CQP
and QP non C PP,

Proof. From PPCQ® we obtain QPCPY and hence
(11) PP =00
(k1)

Let us first suppose that k>1 and 4 e P,y . For a suitable
Be QP we have

ned=3Nmp)eB.
P

B heing in QW it is also in P in virtue of (11) and hence
4 ¢ PV by 2.16. We obtain thus PEVCPY™ against 3.31.
Suppose now that k=1. If Ade PP or 4eQP, then the set
A= [[2"(2g+1)e A] belongs to PP or QP since Af=4
()
(comp. 2.15). It is obvious that every sebt of PP or Qf) may, for

a suitable Ae PP or 4eQP, be represented as 4;. Hence
PO=0Q% would lead to the equality Pf):QS?’ which we al-
ready know to be impossible.

We have thus proved that P¥ pon CQ},") for any % and n>0.
Passing to complements we obtain 0% non CPS,"), q. e. d.
Fundamenta Mathematicee. T. XXXIV. 7
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We note ab last the following result concerning the existence
of sets not definable within arithmetic 1i.e. belonging to no
class Py ). .

3.33. The function Fom(sy(n)) is universal for the class I;‘,) P

and the set

—Ao = E [(n‘b '":'nkAlyn) non e Fa(,'?n)(sz(n))]
(Rgyenesity — 1510
does not belong to the sum Z’ PO,
Proof. The first part of the theorem results from the equi-
valence

AT PP=3 \“ AePP= ) }j A =FP(h)= L =FH ) (s5(n)).
=0
The second parb is a partlcular case of the ,diagonal theo-
rem® referred to in the foot-note *4).

§ 4. Applications to theorems of Godel and Rosser.

4.1. w-consistency. Let us recall the following definition due
to G6del®8): A logical system & is called o-comsistent if, for any
propositional function p(w) with one free variable, the followmg
implication holds:

(12) [] + @(n) —non - 3¢'(y).
n 7

We could, of eourse, replace this implication by
=3 oly) = 3 = eln).
g n

It is important to observe that the quantifier »2 “ iy taken

meta-mathematically whereas ,, ‘le(l/)“ represents a sentenee of the

¥
formal system 8.

4.2, Gddel’s theorem. It states

4.21. If the system S is w-consistent and fulfills the condiiton Cs,
then there is o senience ¢ such thai neither ~9& mor |—9'.

25) The existence of not definable isets has been stated by Tarski [19],
p.221. Bee also Carnap [1} p. 89,
28) (r6del [3], p. 187,
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Proof. According to 3.31 the class P{"— P{ is non-empty.
Let A by any set of this class and let Be PP be a set such that
n e A=3(n,p) e B. Denoting by ¢(z,y) any decidable propositional
P
function which defines B we have

{13) ne A=Y —p(n,p):
P
Write w(z) instead of Yo(w,y), The formula (13) gives then
g

ned —1-ypn)
since }-p(n,p) —*r—Z, @(n,y). If nnoned, then Hnon i~e(n,p) and
therefore H - ('n,p) because of the demdablhty of g@(x,y).
Tsing (12 ) we obtain non !—Zzp(fn,q i.e. non |—y{n). Hence
7 non € 4 — non + y(n) and we see that
(14) ned="yn).

This equivalence would prove that 4 e P§? if y(x) were deci-
dable. Since A mnone P, y(x) cannot be decidable, i.e. there is
an integer n, such that neither y(n,) nor —vy'(n,). Denoting y(ng)
by 9 we obtain the desired result.

4.3, Remarks. 4.31. Theorem 4.21 was first established by Gddel for
a concrete fofmal system called P 27). Rosser %) generalised this result
showing that it holds for any system § in which the G-6del-numbers of valid sen-
tences form a recursively enumerable set. This is essentially the same assump-
tion as our condition C,. Our proof of 4.21 shows that the theorem holds even
under the weaker condition Cs. Hence the Godel’s theorem is valid for all such

_systems & in which the set of Godel-numbers of valid sentences is definable in

elementary arithmetic.,

4.32. If § satisfies the stronger condition O, then as shown by Ros
ser®) the assumption of w-consistency can by replaced by the (weaker)
assumption of ordinary- self-consistency of §. This is in general impossible for
systems satisfying the wealwr condition Cs (s> 0) sinee theére exists a logical
system § such that its valid sentences form a self- consistent and eomplete3?)
class whereas the set of theirs Godel-number is definable within U (i.e. be

27) Godel[8], Satz VL.

28) Rosser [14], Theorem I A, p. 89,

) Rosser [14], Theorem II, p. 89.

) I, e, for any & either & or & is volid.

T*
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longs to one of elasses .PS)). Henee S fultills the condition Cs for an s>q
and there are no undecidable propositions in 8. In order fo get such a system 1t
i sufficient to apply to system P the procedure with the help of which Lin-
denbaum has shown that there are complete and self-consistent enlargements
of any self-consistent class of sentences®).

4.33. It follows from 4.21 that any complete and self-consistent class ¢
of sentences (e.g. of the system P or, more general, of any system which fulfills
our condition Cs for an s> 0) must be e-inconsistent if the set of Gadel-num-
bers of sentences of thiz class is definable within the elementavy arithmetic

oo
(i. e. belongs to 21’}]1)). It has been stated already by Tarski®) that under
n=0

these conditions ¢ must contain false statements. The o-inconsistency of ¢ seems
to be a new result %),

4.34. The proof of 4.21 remains still valid if we modify the definition 4.1
restricting (12) to decidable propositional functions. The question remains
open whether there is an e-inconsistent system § satisfying this modified defi-
nition of w-consistency.

4.35. Remarlke 4.31 makes desirable examples of formal systems satis-
fying Cs for some >0 but not 0. One such example will be treated in 4.4
and 4.5 in connection with the so called rule of infinite induction. Another
example may be suggested here: Suppose that § containg variables X,Y,Z,... of
the type of classes of positive integers and enlarge the system adding to its rules
the following one: if p(4) is valid in 8 for any set 4 definable within S, then
n @(X) is valid in the enlarged system. The enlarged system is probably self-
x

consistent' and fulfills Cs for some s> 0 hut not for e= 0,

4.4. Rule of infinite induction ®). This rule states that
[1#(@) may be admitted as proved if [] - o(p).
x P

4.41. Under the assumptions of 4.21 the system S is not closed
under the rule of infinite induction 3%).

1) Bee Tarski[16], Satz I. 56, p.394. The same result iz to he found
in Godel [6], pp. 20-21. The theorem in question is also known in the theory
of Boolean algebras as the ,fundamental theorem of ideal-theory®. See e. g.
my paper in the previous volume of these Fundamenta, pp. 7-8, footnote ).

32y Tarski[18], p. 378.

323) This result has been also found independently hy A. Tarskiin 1942,

) This rule has been introduced by Hilbert [7] which ascribed it a fini-
tary character. The rule was further studied hy Tarski [18], pp. 383-387, Carnap
[1], p. 26 and Rosser [13], pp. 129-133. This last author calls it »Carnap rule®.

#) Tarski says: S is o-incomplete. See[17], p. 105. The theorém 4.41 has
been proved by Gdodel [3], p. 190 and wenemhbed afterward by Rosser [14],
p. 89. Comp. remark 4.31.
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Proof. Glancing at the proof of 4.21 we see that the number Ny
which has been defined there does not belong to 4 since otherwise

we would obbain [~yp(ng) in vivtue of (14). Hence (13) gives H — @ (g, p)
whereas non — y'(n,) yields non | = ]’](p NG, &').

We introduce now the concept of an n-valid sentence (in sym-
bols }-n9) ). For n=0 we define !—o¢ as ~¢. Suppose now that
n >0 and that the class of n —1-valid sentences has already been
defined. We shall write ~,¢ (read: ¢ is an n-valid sentence) if ¢
belongs’ to every class ¢ satisfying three following conditions:

If t—neayp, then y is in ()
U is closed under the rules of inference of S;
If [] b ne1w(p), then []v(x) is in C.

P x

Speaking less formally, we could say that j-pp holds if and only if ¢
can be obtained from the axioms of § with the help of rules of inference admitted
in § and with the help of the rule of infinite induction, this last rule Deing uszed
but n times. )

A propositional function ¢(x) with % free variables will be said

to be n-decidable if for any ne R, either —,g(n) or —,¢'(n).

4.42. If the class of n-valid sentences is selj-consistent and if
A e PP +-QP, then there is an n-decidable propositional func-
tion @(x) with k free variables such that

ned=l,¢n
Jor any 1 e Ry.

Proof by induction on n. For n=0 the theorem is obvious.
Let us mppose that it holds for an integer #>0 and for k=1,2,...

I A e P, then for a suitable Be Q¥ we have
ned=Ymp)eB

for any ne R,. If n-1-valid sentences form a self-consistent class,
the same holds true for n-valid sentences and the inductive assumption
yields the existence of an n-decidable propositional funetion ¢(x,¥)
with k41 free variables such that

(,p) € B = |-a9(1,p).

%) Rosser [13], pp. 129-130.
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Let (x) denote the propositional function Z’tp(x,y). From two
last equivalences we obtain immediately neA—»y]-—,,zp(n) and hence
(15} ned > pyn).

If nnoned, then H non |- ,p(,;p) and hence H = n@' ()
which proves accordingly to the definition of n—H-vahd sentences
that - ,q9'(n). Therefore
(16) nnon e A — - 9’ (n).

Aésmm'ng that the n-1-valid sentences form a self-consistent
class, we obtain mow mnnone4d-—non i ,p(n) and finally in
virtue of -(15)

e d =, pn).

It remaing to prove that yp(x) is n-+1-decidable. We have in
fact for any ne R,

either neA or munoned,

i.’e. with respeet to (15) and (16)
either |- yyp(n)  or - ,q9'(n).

i The theorem is thus proved for 4 e P(f,),l. In order to prove
it for 4 e Q¥ it is sufficient to observe that (15) and (16) yield the
equivalence

Nelp—d = - p'(n)
and that the propositional function y'(x) is n+ L-deeidable.

4.43. (Rosser’s theorems). If N fulfills the condition O, (for
an s>=0) and if the n-valid sentences form an w-consistent class,
then: 1° this class is not closed under the rule of infinite in-
duction; 20 there is a & such that neither —,9 nor |- ,9'36).

To obtain the proof of 2° we repeat the proof of 4.21 taking

a8’ 4 any set from P¥,—PP and replacing ,—% throughout by
»i—n . 1° follows then as in 4.41.

) Rosser [14], theorem VI, p.132. Bimilar remarks as in 4.31 apply
here.
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§ 5. Functions of classes P and

5.1. Definitions. We denote by Rf* the class of functions
mapping B, on & subset of R;37). A function fe Rf% is said to be
of -class P& or Q¥D if the ,curve®

If:(nE“) [m=f(m]
belongs to PF or Q).

Remark. In order to maintain the analogy with the theory of Borel-
functions it would be perhaps better to define P‘“) or Q(“) as the elass of
functions f such that for any 4de F([) the counter-image 71(4) is of class Pg')
or fo) 238), It will he proved in 5.8 that classes P}Ik”) and (_)g‘”J defined above
possess this property. The couverse theorem seems. however, to be false. The
analogy with the theory of Borel-sets is here breaking down.

5.2. Images. We put for fe Rf* and ACR,
= B3 (ne 4)- (m={(m)]
and call f(4) the image of 4. Obviously
mef(d) =Y (ne ) (m=f(n))
from what the following theorem immediately results by the Kura-
towski-Tarski evaluation method:
5.21. If AeP® and fe Q&) (n0), then f(4)e Py and
if Ae PP and fe PE (n321), then f(A)e PY.
5.3. Counter-images. If feRFtand A CR,, then the counter-
image of 4 iy defined as
FHA) = Flim e 4]
Evidently
17) mef '(A4)=F[(m=f(n) (med)]= g[(m:ﬂn))*ﬂm e A)].
Tn virtue of 2.16 we obtain from these equivalences the follo-
wing theorems:
5.31. If AeP® and fePH (nz1), then Fid)e PP,
5.32. If Ae QP and fe P® (nz21), then 7 (4) ¢ Q¥.

#7) Kuratowski [10], p. 199,
38) Knratowski[10], p. 177.
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The evaluation in case n =0 is given in the following theorem:
5.33. If A e P{ and fe P, then 7' (4) e P{P.

Proof. The assumptions Ade P and fe,l’f,k”) gecure the
existence of two decidable propositional funetions ¢(p) and u(x,1n)
with 1 and %k--1 free variables such that
(18) med=r—gm) and [m=fn)]=i-pl,m).

Here y symbolizes a sequence of I vaviables ¥y,%p, ..y, Tt
ns denote by p<i the following propositional funetion

(<g)+n=7) Wa<Fo)F -+ @1 =T o W =TFr—1) - (1< 7).
m<< i says that m preceeds m in the lexicographical ordering of R,
Considér now the propositional funection y*(x,y) defined as
w(x,9) I] (D<) =~y (9]

»*(n,m) says that m is the .rst point of R, (with respect to
lexicographical ordering) such that p(n,m). If |-¢*(n,m), then m=f(n)
in virtue of (18). If, conversely, m=f(n), then p==f(n) for any p
which preceeds m in the lexicographical ordering of R; and we obtain
easily —y*(n,m). Hence
(19) [m=fn)]= |- y*n,m).

Farther it is plain that

‘—Hﬂmw (#1)p*(x3) > (9 =3)}
D3

Tsing 1.22 we see that the propositional function ¢*(x,p)
iy decidable. From ~ p(n,f(n)) we infer at last that for any ne R,
there is an me R; such that [-y*(n,m). Hence all assumptions of 1.23

are fulfilled and we obtain the result that the propositional fune-
tion 9(z) defined as
Zv ()

is decidable. Denoting by I(z) the propositional function

H['w* (x,9) >¢(0)],

we infer from 1.24 that
(20) ‘ i~ 9(x) >L(x).
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The first equivalence (17) yields now (with respect to (18)
and (19)) the implication:

nefH(4) > o (med)-(m =) = X' g(m) -p*(n,m)

== Mo(®) - p*(n,) = —9(n)
2

whereas the second yields
nnonef () —>l‘ (mnon e 4)-(m=Fn)) —

> 3 )yl = Sl0)- () ()

ie. with respect to (20) nnonef '(4)—> — ¥'(n} — non - #(n).
Henee 1tef (d)= —d(n) and therefore j7'(4)e P§?, q.e. d.

5.4. The function m;n [(n,p) e A]. Let us suppose that A
is a subset of 7 “k+1 such that [[V (n,p)e 4 and denote by p,(n)
the smallest integer p such that ( ,pled:

[p=pam)]={(n,p) e 4- H[ ¢z=p)+(n,g)nonedj}.

The Kuratowski-Tarski methed leads immediately to the
following theorem:

541 If Ae QWY then pye Q8 and if Ae P (nx1),

then fiqe P,(llf;_ll) (#}

For n=0 we have the sharper evaluation:
5.42. If A e P{Y, then € PEO.

Proof. Denote by ¢(x,.r) any decidable propositional fanetion
which defines 4 and by wp(x,2) the propositional function

(IJ X, H['/ K «->r7h 171/”

w(x,e) iy decidable by 1.22 and it is obvious that it defines
the set [ [p =wa(n)]. Hence pqe PEY, goe. d
m,p)
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5.5. Post’s theorem. This theorem is an exact analogue of
ﬂ]e well-known Souslin’s theorem concerning sets which are analy-
tical together with their complements. It can be stated as follows:

5.51. 1)(k) Q )(k) 39).

Proof. In virtue of 2.31 we have only to show that if 4 e‘,l’l(k)
and R,—AeP®, then 4 ¢ PP, Let B, and B, be two sets of Py
such that

ned =Y (mp)eB,, e By—A = Y(n,p)eB,.
r

P

Since [n][n ed)+(meR,—A4)], we have [[N[(,p)eB;+ B,

. p

which proves accordingly to 5.42 that /!BI+32€.P3H1’I), the sum 13’1-{—1?2

being of class P by 2.17. Now define a function feR% putting

for any ne Ry: i )
) = (1, g, 4.,(10)).

We have fe P, since

[(m,p) =f()] = [(m=1)- (p = p1p,45,(N))]-

Evidently
nef (B = (% )[ m,p) =f(m)]-[(m,p) e B] —
—-»(MBP)(m =n)-[(m,p) e Bl =3 (1,p) e B, —>1e A.
., P

If, convurs.ely, ned, then (w,upyg(n))eB,, since otherwise
 we would obtain (n,up.s(n))eB, and therefore 3 (m,p)eB, or

v
e I?k_l‘A Hence f(n)eB;, and nef '(B,). This proves that
A=f""(B,) and the theorem 3.33 yields the desired result 4 e P,

From 5.51 we obtain two important corollaries:

¢ ( ] m,
5.02. If fe P and g e PP, then the nompounded function
flg(m)) is of clms P,

Proof. We have

[H=Hgm))]= ¥ (n= J(m))I ftm) =[] [(n=g(m)) — (L =f(n))]-

%) Post {12], p. 200. See footnote ¢} on page 82.
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The first ‘equivalence shows that the set r [I=7(gm)] is of

clags P and the second that itis of class Q‘"‘“‘) Hence by 5.5
it is of class PR,

5.53. A set ACR, isin PP.QP if and only if its characteristic
function ¢y s in PEY. QEO,

Proof. From
[eam)=pl=[(med)-(p=1)+(neRp—4)-(p=0)]

we infer easily that if ) AePP. OB, then cy4e PP QP
Suppose now that ese PH0- QY. From

(e d)= _} [(p=1) - (ea(m) =p)] = [] [(p=1) — (caln) =p)]
P

we see that if »3>1, then 4 PP.QP. For n=0 these equiva-
lences yield A el’(k) O and hence AePP®-QF in virtue
of 5.51.

Tt is interesting to observe that if A e P’ a,nd je P&, then
the set f(4) does not necessarily belong to PP, even lf fis
one-to-one. We see here another diserepance between our theory
and the theory of Borel-sets.

It can be shown, however, tha,t if f is an increasing function,
i.e., if n<fi—f(n)< j(w), then f(4 PP (< represents here the
lexicographical ordering of k-ads or l-ads of integers) %0).

5.6. Sets of the class P as values of functions Pi"".
The theorem 5.51 enables us to give a simple proof of the following
theorem which discloses the relationship between the concept of
the class, P® and that of recursively enumerable sets:

5.61. If & fulfills the condition Cy, then the necessary and sufficient
condition Jor a non-empty set A be in PP s that there is a fune-
tion fe PP whose set of values is A.

) This theorem has been proved hy Kleene, S8ee Kleene [9], theorem
VI, p. 737, Rosger [14], Corollary I, p. 88, Post [121, p. 281,
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Prootf#), Sufficiency rvesults at once from™5.21. Suppose
now that 4 ¢ P and nye4. Let g(x,2) be a decidable propositional
function with k-1 free variables such that

ned=>opmnp)
for any 1ne R,. !

We shall denote by s(n) the sequence of % integers s;(s(n)),
(5908189 (n)))s +oey 84(83.0-(84(n))...). An easy induction on % shows
that for any neR, and p,ge R, there is an integer h such that
n=s(h), p=s(h) and q=s,(h). ‘

Let I, be the Godel-number of ¢(x,).

Define now the function f(n) as follows: if sy(n) iy the Godel-
number of a formal proof of ¢(s(n), sy(n)), then f(n) =s(n); if not,
then f(n)=n, :

It is obvious that f(n)e A for any n. Conversely, if ned, then,
for a suitable p, —¢(n,p). Denoting by ¢ the Gidel-number of
a formal proof of p(m,p) and by h the integer for which s()=mn,
$y(k) =q, so{h)=p, we obtain f(h)=mn. Hence 4 is the set of values
of 7.

It remains to evaluate the class of /. Remembering the defi-
nitions of sets 4, B and I given in 8.1 we see that

[m=f{n)]={(m=g(n))-[(1(n) e B)- X (5,(n},q) e A4
P PN g
“(loy 55 (1),82(1)) € Tpat] + (M=115) - [(8,(n) nom € B) +
TN (s1(n), ) € A- Ly, 4,5 (n),59(n)) NCR € PATRIR
q
This proves the set [ [m=f(n)] to be of class P, Remem-
bering further that if s,(n)e®, then there is exactly one ¢ such that

(81(n),q) € 4, we can rewrite the above equivalence in the following
form:

[m=f(n)] =
= (fm=s(m)]- {{s30n) € B)- [T [(5(7), ) € A~ (L 4,5 (1), 55(0) € e} +
q

+(m=a1) - {(sy(w) nowe E)4[J[(s1(n), 4) € A—>(lo, 4,5(n), 55(n)) nonie Ly11}).
q

The set “{L' [m=f(n)] is thus of class O¥Y and henee by 5.561

n
it is of elass PV, q. e, d.

1) This proot is essentially due to Kleene [9], theorem 111, p. 736.
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§ 6. Relations with the theory of gemeral-
recursive functions *¥.

6.1. Recursivity conditions. We shall suppose that the
system & fulfills the following two conditions:

(R,) Primitive recursive subsels of Ry belong to PiP;

(Ry) If @ is any propositional funclion with & free variables,
then the relation ¢B,n which holds between q and n if and
only if ¢ is the Godel-number of a formal proof of g(n) is
primitioe recursive.

That these both conditions ave fulfilled e. g. for the system F

has been proved hy Godel?d),

6.2. Functions of class P{*” as general recursive
functions.

6.21. If S fulfills the condition Ry, then any general recursive

fundtion f(n) is of class P

Proof. If f(n) is general recursive, then there are: a primitive
recursive function i e R and a primitive recursive relation R(m,p)
such that [1) R(n,p) and

e f(n) =" (min R (n,p)-
I3

According to (R,) the set A= E)[R(n,p)] belongs to P&
p
and the funetion & to P, The function g is of class PV }}ai;)y
5.4%2 and hence the compounded function h(u(n)) is of class P,
This compounded function is equal to f{n) since u4(n)= min R(n,p)-
14

and hence fe P{*".

6.22, If 8 fulfills the conditions (Ry) and (B,) aend if jeRf‘
is a function for which there is a propositional funciion ¢ ()
with &1 free variables such that for any.n eR; and nek;

(1) [n = f(n)] =~ g(n,n),

. . (k1) aa
then f(n) is « general recursive function and hence fe Py ).

42) Tu this section we suppose the reader to be aequainted with the theory
of general-recursive functions. See footnote?®).

%) GGidel [3], p. 186.
4%) This theorem has been found hy ¢-odel [5], p. 24. See also Rosser [15],

final remark, Kleene [9], theorem VIII, p. 738.
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Proof. For any 1t there is an integer g such that s,(¢)By(n,s5(q)),
hence by (R,) the function

g(n) :5‘2{113111 [51(4) By (m,52{9))1}

is general recursive #5). Thus it is sufficient to prove that f(n)=g(n).
To show this put g,=min [s,(q)By(1,52(¢))]. Then s;(ge) is the Go-
q

del-number of a formal proof of ¢(m,8x(g,)) Which implies the exis-
tence of at least one formal proof of g(n,sx(q)), i.e. |- e(1n,s(q,))
and therefore f(n)=s,(gy) by (21). On the other hand g(n)=s,(g,)
in virtue of the definition of g(n) and hence f(n)=g(n), q. e. d.

In order to explain the significance of 6.22 it is well to point out that
in virtue of this theorem the existence of any propositional function ¢(%,)
with the property (21) implies the existence of (possibly another) decidadle pro-
positional function w(¥,2) with the same property. A simple example will elu-
cidate this state of affairs. Let & be any undecidable sentence, ¢(x,7) and (x,y)
the propoxitional functions

(y=20)+(y=22+1)-9 and y=2

Then (m=2n)=|-p(m,n)==v(m,n), p(x,y) is undecidable and y(z,y)

decidable.
It is remarkable that no theorem analogous to 6.22 holds for sets. We
have seen in the proof of 4.21 (formula (14)) that the equivalence

ned=l-ypn)

may hold for auy n though 4 does not belong to Pél). It is 'to remark that 4
must then belong to P{” since

ne d= Z (gByn).
q

From 6.21 and 6.22 we obtain the following corollary:

6.23. If 8 fulfills the conditions (B,) and (R,), then P&V s
the class of general recursive functions with & arguments.

6.3. Independence of classes P and 0% from 8.
Subsets of R, whose characteristic functions are general recursive

may be called general recursive %-adic relations. From 6.23 and 5.53
we obtain therefore:

6.31. If 8 julfills the conditions (R,) and (R,), then P is the
class of general recursive k-adic relations.

43) Bee e. g, Hilbert-Bernays [8], p. 402.
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This theorem is important because it shows that the class
P though defined in 1.3 with the help of notions dependent from
the logical system § taken as basis is in reality independent from S,
at least if we limit ourselves to consideration of systems which

" fulfill the recursivity conditions (R,) and (R.). In fact, it is known

that the clags of general recursive relations can be defined without
any reference to formalized logical systems4€). The independence
of P from § implies of course the independence of other classes
P and QP from §47).

We note at last the following corollary from 6.31 and 5.61:

9. If S fulfills the conditions (Cp), (By) and (R,), then P{
is the class of recursively enumerable sets.
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A considerable part of the theory developed above is to be found in the
Kleene’s paper. It seems me, however, that some of my results are new (e.z.
remarks 4.3) and that my presentation of the theory hased on anulbgies with
the theory of projective sets may be of some interest for a mathematical reader.

Professor A..Tarski informed me that he also found already in 1942
regults very similar to mines.
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Démonstration de I'égalité 2m—m=2m pour les nombres
cardinaux transfinis.

Par

Wacltaw Sierpifdski (Warszawa).

m et n étant deux nombres cardinaux, on dit que m—m=p
§i p est le seul nombre cardinal tel que m=n-+p.

En 1926 M. A. Tarski a énoncél) ce

Théoréme: On peut démontrer sans utiliser Uaxiome du choiz
que, lorsque wu est un nombre cardinal transfini (c. . d. >=¥y), on a

L oM _m=2m2),

M. Tarski n'a pas publié la démonstration de ce théoréme.
11 a seulement indiqué (1. c.) qu’elle s’appuie sur les lemmes 4, 6
et 58 énoncés également sans démonstration (1. ¢., p. 301 et p. 308).

La démonstration du théoreme et des lemmes de M. Tarski
m'est inconnue. Dans cette Note je vais démontrer le lemme 5 de
M. Tarski et j’en déduirai son théoréme (sans utiliser les lemmes 4
et 58).

Lemme I (de M. Tarski). On peut démontrer sams utiliser
Paxiome du choiz que si A ef B sont deuw ensembles tels que A~B,
il existe des ensembles Cy, Cy, Dy et D, remplissant les condittons:

A~B=C+C, B—A=D,+D,  (10=0=DDy,
0¢,~D,,  C,+AB~AB~D,+AB.

1) Comptes rendus des séances de la Soc. des Sciences et des Lettres de
Varsovie 19 (1926), Classe ITI, p. 307, Th. 56. Aussi: Ann. Soc. Polonaise de
Math. 5 (1926), p. 101. )

2) 11 régulte du théorpme de Zermelo sur le bon ordre quon a n—n=n
pour tout nombre eardinal transfini n et tout nombre cardinal m<n, d?nc, en
particulier, que 2m— m=2m pour tout nomhre cardinal transfini m; voir p.e.

* mes Legons sur les nombres iransfinis, Paris 1928, p. 233.
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