Gillespie measure.
By
Anthony P. Morse and John F. Randolph (Ithaca, U.S.A.).

1. Remarks. One aim of the theory of measure ag intro-
Auced by Lebesgue was to furnish a tool for handling questions
of length for curves and area for surfaces. While this theory was
successful as far as curve length is concerned, the notion of area
for surfaces was left in an unsatisfactory state. The fact that some
of the properties of lengths for curves have not been successfully
-extended to areas for surfaces may suggest that our present notion
of length for curves is perhaps of too special a nature. In fact even
before Lebesgue had given his definition of the measure of a point
et on a straight line, Minkowski [9]1) in 1909 had already con-
sidered the question of generalizing curve length by assigning (in
the spirit of Peano-Jordan content) & linear measure to point
sets lying in the plane.

This notion of assigning a linear measure to point sets not lying
-on @ line has been considered in different ways since Minkowski
with varying degrees of success. Among such definitions are those
of Young 1905 [13], Janzen 1907 [7], Carathéodory 1914 [3],
and Gross 1918 [5]. The Minkowski measure inherits all the
faults of Peano-Jordan content. Young himself found inconsis-
tencies for his own measure. Gross measure has the anomaly as
shown by Saks [11] of assigning the measure zero to a particular
set and a positive (even infinite) measure to the trangform of thig
set by a projective transformation of the plane. Janzen measure
is not independent of the coordinate system, e. g. the set constracted
by Gross ([5], p.185) has Janzen measure unity for the axes

used in the construction and measure zero when the axes are
rotated 45°.

1) Numbers in brackets refer to the bibliography at the end (see p. 154).
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To the present Carathéodory measure has received prac-—
tically no adverse criticism in the literature [8, 10] and seems to
have been accepted as an’adequate generalization of the notion
of length. However, we give incidentally (§ 6) a set for which even
this measure is quite inconsistent with our inherent concept of length.

2. Introduction. In this paper we propose still another-
definition of linear measure for point sets not necessarily lying
on a line. For a point set 4 we shall represent this measure by
G*(A) and call it Gillespie linear measure after the late Professor-
D. C. Gillespie who suggested to us individually definitions similar-
to the one we have adopted.

Gillespie outer linear measure is defined (§ 3) in such a way
that Carathéodory’s postulational theory of measure may be used.

It will be obvious that Carathéodory linear measure is.
never greater than Gillespie linear measure:

L (4)<G*(4)

and it is easily shown that G*(4)<<=L*(4). We prove, however
in § 8 that:

A<

This relation is the best possible since there are sets for which
each equality holds.

In § 6 we establish a relation which seems indispensable to
a generalization of euclidean length; namely, if |P;| and |P,| are
the outer Lebesgue measures of the projections of a plane set 4.
on two perpendicular lines of the plane, then

G A) 2V | PP+ | Pyl

The analogous relation for Carathéodory measure is not
satisfied. In fact there is a set, see §5, with IL*(4)=|P|=|Py=1.

Also (§7) if a simple Jordan arc has length in the ordinary
sense, then the set of all points of this arc has its Gillespie linear
meagure equal to the length of the arc.

Gillespie linear measure G(4) is extended (§9) to Gillespie
area measure GP(B) for sets B not necessarily lying in a plane.
We prove that if 4 is a set in the (z,y)-plane and B is the set of
all points (z,%,2) with (,y) a point of A and 0<e<h, i. e,

B=F(z,y)ed, 0<z<h],

(x.1,2)
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then G®(B)=h@(4). This relation between ,arvea” and ,length“
fundamental and simple as it seems, has not been proved [10] foe
any of the other measures mentioned above. .

3. Definition of G*(4). In this section 4 will designatr
a plane point set.

If U is a plane convex set with inner points then by ¢(TU)
we mean the length of the simple closed curve which is its boundary;
if U is a segment then ¢(U) is twice the distance between its end
points.

With g an arbitrary positive number let Uy, Us,... be a sequence
of convex sets lying in the plane each with diameter <o whose
union contains 4, and consider the series of semi-circumferences

Designate the greatest lower bound (which may be infinite)
-of all such numbers by G,(4). As o decreases, Go(4) does not
decrease. Thus as ¢—0 the function @,(4) approaches a limit
(finite or infinite) which is represented by

G*(4)
and called the Gillespie outer linear measure of A.

It qis a convex set, its closure U is also convex and moreover
¢(U)=c(U). Thus in the definition of G*(4) we could have restricted
the sets Uy, U,,... t0 be closed convex sets. Also if only open convex
sets U, Usy... are used the same number G*(4) is obtained. For
with ¢>0 arbitrary we may include U, in an open convex set V,

with c(Uk)gc(Vk)go(Uk)_}_Eei.

One will see that Gillespie outer linear measure possesses
jﬁhe first four properties demanded of an outer measure function
in Carathéodory’s postulational development of the theory of
measure [3, 4]. Thus accepting Carathéodory’s general definition
of measurability!) it follows that the complements of measurable
sets are measurable, the intersection of a sequence of measurable
sets is measurable, and that open sets are meagurable. In particular
Gs’s, F's, etc. are meagurable. If o get A is measurable, its meagure
G(4) is defined by the equation G(A)=@G*(4) '

) i. e. a set 4 is Gillespie linearly measurable if tor every set W wi |
» ¢ 1 with G*(W,
finite the equality GH (W)= G AW)+ GYW—AW) holds. Y )
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Gillespie linear measure also satisfies Carathéodory’s fifth
axiom and, in addition, the following modification given by Hahn
([6], D 444):

For each set A there is a set B which is a G containing 4 such
that G(B)=G*(4). )

For, with ¢, 0,... & decreasing sequence of numbers approa-
ching zero, let Uy, Uy, ... be open convex sets (just shown to exist)
each with diameter < g, whose union contains 4 and such that

S1e(U, )<G*(4)+ ¢, The set By= U+ Up+... is then open so

ﬂ:i
B=RB,-B,... is a @;. Moreover BD A so G(B)=6G*(4). On the
other hand BCUy+ Up+... and the diameter of Uj, is <<g, soO

G, (B)<I4e(U,, ) SG*(4)+ g, and thus 6(B)<G(4)
k n n

The inner measure G.(4) of a set 4 is defined as the upper
limit of the measures. of all measurable subsets of A. From this
definition and the above modification of the fifth axiom, Hahn
{[6], p. 445) proves a theorem equivalent to the following statement:

If A has G,(A) finite, then this inner linear measure is the upper
Timit of the linear measures G(K) of all closed subsets K of A. '

Thus since a set with outer measure finite is measurable if
and only if its outer and inner measures are the same ([4], p. 263)
-one will see

Theorem 1. If G*(d)<co, then a mecessary and sufficient
condition that A be Gillespie linearly measurable is that >0 imply
the ewistence of o closed subset K of A with G*(A—K)<e.

4. Relation of I*(4) and G*(4). The definition in §3
of G*(4) is patterned closely after Carathéo dory’s definition [3]
of the outer linear measure L*(4). In fact in Carathéodory’s
definition we have merely substituted the semi-circumference
4¢(U,) where he has the diameter d(Uy) of Uxl).

Thus, since d(Ux)<ic(U:) and since 1e(Un) <nd(U;) (because
Uy may be included in a circle of radius d(Uz)) it follows that

(1) IHA)<GHA)al*(4).
Consequently a set 4 has L*(4) and G*(4) both finite or
both infinite and if either is zero the other is also.

1) Carathéodery did not actually require the sets Uy, Uy, ... to be convex,
but showed that L*(4) is not altered if they are so restricted.
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Hahn’s modification of Carathéodory’s fifth axiom is also
satisfied by L*(4) as one may see by follwing arguments similar
to those used for G*(4). Thus the analogue of theorem 1 holds for
L*(4). Consequently

Theoremn 2. If A has G*(4) (or L*(A)) finite, then a necessary
and sufficient condition for A to be Gillespie linearly measurable is
that A be Carathéodory linearly measurable.

For, from (1) a closed subset K of A exists with G*(4A—K)
arbitrarily small if and only if L*(A—K) is arbitrarily small.

5. A particular set. It might appear, from the similarity
of the results in §4 for Gillespie and Carathéodory linear
measures, that the difference between these two measures is so
slight as to be of no significance. However, in this section we
construct a set 4 whose projection on the z-axis is the closed
segment FT0<z<1,y=0] and whose projection on the y-axis

(x.g) .
is E[m=0,6<y<1}, but nevertheless (instead of having L*(4) at
(€2)]

least |/2) hag L*(4)=1. In the next section we show that for G*(4)
- this irregularity cannot occur.

Toward constructing this set 4 we first define an operation
of order n on a circle ('1) of radius 7 and with respect to a funda-
mental coordinate system.

Circumscribe a square about ¢ with sides parallel to the axes.
Draw a chord of ¢ from the upper to the right hand point of tan-
gency and another chord from the left hand to the lower point of
tangency. Divide the square into (2n)* equal squares with sides
parallel to the axes. Of the smaller squares thus formed consider
only those which have a diagonal lying along one of the chords
just drawn. From these squares select those which are subsets of (;
those which are not entirely subsets of ¢ redivide into m? equal
squares. Of these still smaller squares which lie along either of the
above chords, select those which are subsets of ¢ and those which
are not entirely gubsets of O redivide into #® equal squares ete.
The selected squares are then infinite in number, no two overlap,
each is a subset of 0, and their union contains all except the end
points of the two chords of ¢ indicated above. Tn each of these
squares inscribe a circle. The infinite set of circles thus obtained
is to be considered the result of the operation of order m on ¢.

) i. e. all points whose distance from a fixed point is < .
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Notice in particular that for any n:
(1) The sum of the diameters of the circles obtained is 2r.

(2) The union of the circles obtained may be included in two
rectangles each of length 7J/2 and width #/n.

Start with a circle of diameter unity tangent to both exes
in the first quadrant and perform the operation of order 3. Call
the union of the circles thus obtained I'y. Then the closure Iy is Iy
together with the four points (0,%), (4,0), (1,4) and (4,1). On each
circle of I'y perform the operation of order 4 and call the union of
all circles thus obtained I',. Then I'; contains only a countable seb
of points more than I',. In general, on each circle of I,y we per-
form the operation of order # and obtain & set I,CI,_y, and note
I—1TI', is countable.

The set A we shall tonsider is the intersection

A=faf4fn=hmfn.
. n-yco

Thus 4 is a closed (and even perfect) set and is thus measurable.

For any non-negative constant ¢<(1, the line z=a (and also
the line y=a) intersects I, in a non-empty closed set so this line
containg a point of 4. Thus the projection of A on either axis is
the unit interval [0,1].

Since the diameter of any set U is greater than or equal to
the diameter of the projection of U on a line one will see that

- L(4)>1, On the other hand T, is clearly covered by a countable

number of convex gets, each with diameter < 1/, such that the

sum of the diameters is unity, so L(4)<{1. Hence L(4)=1.

For later use in connection with the Gillespie linear measure
of this particular set A we make a further observation. From pro-
perty (2) above, the subset of 4 in any one circle of I, may be
included in two rectangles the sum of whose semi-circumferences
is (V§+ l/n) multiplied by the diameter (which is <{1/2n) of that
circle. Thus since A— AT, is countable we may include all of A
in a countable number of convex sets each with diameter less than
1/n, such that the sum of the semi-circumferences is not greater
than (J24-1/n) multiplied by the sum (which is unity) of the dia-
meters of the circles of I,. Thus

2
>
N

V2.

Fundamenta Mathematicae. T. XXXIIL 2
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6. Projection properties. Let P be a closed polyg.on with
&(P)=81+ ...+, Where s, is the distance between consequtlYe ver-
tices of P, and let a, be the distance hetween the. ]:JI‘O_]thIOIJS of
these two verfices on the w-axis and b, on the y-axis. Let |PY| be
the distance between the end points of the projection of P on the
w-axis and |PY| for the y-axis. One will see that

o(P)=3Va+ 0, =V (Ta, +(Sh ) = V[P + 2P
k=1
Thus if U is any convex set
) o() =2V [0+ [0
We now prove the following theorem, th: analogue of which

is seen, by the example of § 5, not to hold for Carathéodory measure.

Theorem 3. If A is any plane set, m*(A*) and m*(4") the
outer Lebesgue measures of the projections of A on the x- and y-axes
respectively, then .

G*(4) = Vim* (@4 (AP ).
For let Uy, U,,... be a covering of A by convex sets such that
GHA)Fe> C—(-Qq’—) From (1) this sum is >2|"|U?,'|"—I—IK7ZTZ which

from Minkowski’s inequalityis 21/(2|U'f.\)2+ (_):'|UZ]72. But M Uiisa
covering of A™ so J|Ui| = m*(4") and we seé the desired result.
The set A constructed in §5 was seen to have

A= 0<o<l, y=0] and A'=F [0=0,0<y<1]
(x,) )
and thus from theorem 3 to have G(4) >V§. But at the end of § 5
we saw that G(4) <2 so for this, particular set we have the exact
relations

m(A")=m(d")=L(4)=1, G(4)=)2.

1) For Janzen measure J*(4) one will sometimes see the relation

Ty o (45T T (47)P
e. g. ([12], p. 5). However, Janzen measure is defined with respect to, and
may not be independent of, the coordinate system, so in this relation it is manda.-
tory that the » and y refer to the coordinate system with respect to which J *(4)
is defined. On the other hand G*(4) is independent of the coordinate system.
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7. Length of a curve. Let ¥ be a curve without double
points, i. e. & unique image of the cloged interval 0<t<<1 by con-
tinuous functions ¢ and y such that @(t)=¢(t') and p(t)=wp(t') implies
t=1". We shall let (y) represent the set of points on the curve y.
The set (y) is then closed and thus Gillespie linearly measurable.

In this section we shall prove the

Theorem 4. The Gillespie linear measure G(y) of the set (y) is
the upper limit A of numbers of the form

w 2Vt =9tF + ot —vtt T

where 0=ty<ly<<..<1,=1, i.e. G(y) is the length of the curve .

It 0=t<..<t,=1 and ¥, is the part of y corresponding to
the open interval (f.;,t), then by theorem 3

@*(r) =Violt_)—)T + [0, — pt)T

for 4=1,2,...,n; hence

G*(y) 21.3;1' G*(y,) 2}%} V lp(t, )=o) + [w(t,_)—v(t))
and
(2) G*(y) = A
We now prove the reverse inequality.

Since 1 is the upper limit of numbers of the form (1) we have,
for 08, <1, ’

Vo (0)—ptto)T + [p(0)—plto)T + Viglto)— p(1)F + [p(tg—p(T < 4

i.e. the set (y) is included in an ellipse with one axis of length y
and (using d for the digtance between the end points of y) the other
axis of length VA& we may thug include the set (y) in a rectangle
with dimensions 2 and VZ2—d

Let ¢>0 Dbe an arbitrary number. Choose 0=1)< ;< ...<t,=1
such that if d; is the distance between the points (p(tr1),p(tis))
and ((p(t,),y)(t,)) and 4 is the length of the arc y, of y joining these
two points, then ’

no

and [22— (2'011) ] <ae.

=1

n<?

Al
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Now enclose (y,) in a rectangle U of dimensions 4 and (A— —d*
as we have just shown is possible. The rectangle U; has diagonal

<p and is a convex set, 50 we have
n 11
o(U) _ 12 1 ( )2] <Jto.
<§ 1_21'/14—1#21';/1 —a)"< /1+[ % | St
Since o is arbitrary we thus have
<A
the inequality reverse from.(2).
8. G*(A)Q?L*(A) From the fact that a point set of diameter d
may be 1ncluded in a circle of diameter 2d, i.e. semi-circumfe-

rence nd, we have already seen that G*(A)<nL* (4). A theorem
by Young ([1], p. 463) states that a set of diameter d may be

included in a circle of diameter V(l and thus the sharper inequality

—;:L*(A) may be obtained. In this section we prove still
3

more; we prove
Theorem 5. If A is an arbitrary plane point set, then

()<

G*(A)ggL*(A).

With >0, let Uy, U,,... be a covering of A by convex sets
such that the diameter d(U)<e and 2 d(U)<I*(A)--o. Then

GQ(A)<2i%7L). But, (see [2], p.6b) a plane convex set U of

diameter d has ¢(U)<<nd. Thus Go(4

arbitrary we have the desired result.

Furthermore, this result is the best possible for there are sets
for which the equality holds. A set constructed for a different pur-
pose by Besicoviteh ([1], p. 431) is one such set, but the proof will
not be given.

)<§[L’f(A)+9] and since g is

') This inequality follows since 0<Ca,<<b, implies

30— "< ()"~ (o) T"

n
and because DA< 4.
I==1
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9. Gillespie area measure. Let 4 be g point set in 3-di-
mensional space.

The surface area s(U) of a convex set U in 3-dimensional
space is defined as inf H where H is the set of real numbers deter-
mined by: p e H if there exist an open convex set P and closed
triangles 4, 4s,..., 4, for which

n

boundary of PC Y4, p=2
J=1

UCP, (area of 4;).

The definition of Gillespie outer area measure G¥(A) is
-obtained from the definition of Gillespie outer linear measure (§ 3)
by replacing the words ‘“the plane” by “3-dimensional space’’ and
o(Ux) by s(U).

Furthermore the statements made in § 3 about Gillespie linear
measure all have analogues for Gillespie area measure.

10. Relation between Gillespie linear and area mea-
sures. In the Lebesgue theory of integration if M is a bounded
Lebesgue measurable set on the z-axis and * is a non-negative
bounded Lebesgue meagurable function on M, then the plane
set Ny=F[we M,0<<y<f(x)] is Lebesgue plane measurable and

(vp)
M@ N )= f f(x) dw. This relation is equivalent to the fact that if f

M
is a constant % then the set N,is Lebesgue plane measurable with
(1) m®(Ny) = km(M).

To each of the linear measures mentioned in the introduction

-corresponds an analogues area measure for sets not mnecessarily

lying in the plane. It has not been shown that any of these measures
preserve, as does Lebesgue, the euclidean relation that area is

‘the product of length by length.

In this section we show, however, that if A is a set in the

{x,y)-plane and B is the cylindrical set

B=F#y) 4,0 <z<h]
y,2)

then the Gillespie area of B is the Gillespie length of A multi-
plied by &.

Throughout this section A and B will be used to designate
the sets given here.

We first prove, using |U| for the Lebesgue 2-dimensional
measure of the plane convex set U,
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Lemma 1. If G*(4) is finite, 0> 0,> .00, and U, U ...
a sequence of coverings of A by plane convex sels with A(U,)<e,
stch that lim Fye(Un)=G*(4), then 1_i+m k2|U,,,,|=0.
nyoe k 00

For U, may be included in a circle of radius d(U)., and thus.
30, < 3nd(U,, ) < =g, SAU,,)<mq, J40(U,,) which approaches.
k k 3

zero with 1/n.
‘We now obtain an inequality for outer measures.

Theorem 6, G*®(B)<hG*(4). _
Given ¢>0, take N an integer so large that h/N< g//2. Then
from the lemma we may cover A by convex sets U, Us,... with
A(U)<e/(2V2), Z1e(Un)<G*(4)+o/h and 3|UJ < o/N. Now let
Vie=FE[(@,9) e Unynh/N <2< (n+1)h/N].

(g2

N

Then d(Vi)<po and. X 3ViDB. Thus

k n=0

N
ool 2N|U)) h1
@PB)< D D 55V < 2—»'2—’|+N AN <

k n=0

SN (o/N)+ WG (A)+ ofh]=hG*(4)+ 2.

Therefore since ¢ is arbitrary the theorem holds.
In particular

Corollary. If A is Gillespie linearly measurable with G(A)<co,.

then B is Gillespie area measurable and G@)(_B)ghG(A).

For, from theorem 1, >0 implies a closed subset K of A
exists with G(A—K)<<e. Thus the set

H=FEl(#y)eK, 0<e<h]

*:2)

is & closed subset of B such that, from (2), *®(B—H) <he. Thus.
B is Gillespie area measurable since, as one will see, the area.

analogue of theorem 1 holds.

If A is a set in 3-dimensional space we use the notation
A*=Fl(z,y,2) e A]

(€30}
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Lemma 2. If A is a closed triangle in 3-dimensional space,

then

_/.G(Az) dz<Carea of A.

Lemma 3. If W is a bounded convex. set in 3-dimensional
space, then .

./Q?C(W")dz <s(W).

—0a

Let ¢>0 be arbitrary, and let P be an open convex set with
boundary P* such that

(i) P ig contained in W.
(if) There exists closed triangles Ay,4s,..,4, for which

n

2(area of 4)<s(W)te.

=1

P*CR4;,
=1
Now W* and P® are convex, W*CP® and the boundary of P*
is contained in 347 so we have?)
=
(W) < o(P?) %%,’G(A})_

Hence, using the previous lemma, we obtain

fc(W’)dng fG(A,’)dng (area of A;)<s(W)+te.
% 2=1 —c0 j=1

The proof is complete.

Theorem 7. GO(B)=hG,(4). .

First let K be a closed subset of 4 with G(K)<<co. Then the
set H=F[(x,y) e K,0<<e<<h] is a closet subset of B with, from

(%,y.2)
theorem 6, G@O(H)<oco.

From the definition of Gillespie outer linear measure, cor-
responding to an >0 there exists a ¢>0 such that G(K)—e< 3'5e(Tx)
if Uy, Uy, ... is a covering of K by plane convex sets with d(Ux)<e.
‘We then choose a covering W,,Wy,...,W, of H by three dimensional
open convex sets with d(W;)<<g such that

1) [2], p. 47,
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G ) +e> ) 35(W);

k=1
the numbers of the covering reduced to being finite in number
since H is closed. Then Wj; is convex with diameter <<p and,
n
for 0<{e<Ch, the union }'W; contains the plane set H* which is

h=1
the gset K. Thus

S3e(W>E)—, o<t

k=1

But, from lemma 3,
S(W)> [o(Wi)da>> [ o(Wi) de.
—c0 0

Also since we have a finite number of terms
n hl h n 1
> f Se(Widz = f [ S5ewi]ae.
k=10 0 k=1
h
Thus GO(H)+e> f [6(K)—e]de, and since e iy arbitrary
(1}

(@) @O(H)>hHK).

Now since BOH we have 62(B)>G"(H). If G*(4) is finite,
then G(K) may be taken arbitrarily close to it so in this case the
desired result GP(B)>h@,(4) holds. On the other hand if G,(4)
is infinite then &(K) and consequently ¢®(H) may be taken arbi-
trarily larg_e 80 the desired relation holds.

From the corcllary to theorem 6 and theorem 7 we have

Corollary 1. If A is Gillespie linearly measurable with G(A)
finite, then B is Gillespie arealy measurable and GP(B)==hG(4).

‘We may now prove

Theorem 8. If A is an arbitrary plane set, then

GYB)=hG,(A) and G*D(B)=hG*4A).

For the first relation, we have already seen that if @,(d) is
infinite, then G¥'(B) is also infinite. With @,(d)<co, let H be
a bounded closed subset of B with 6%(B)—e<GP(H), such a st

icm

Gillespie measure 25

exigting from the definition of inner measure and the analogue
for area measure of theorem 2. Being bounded and closed, the set

K=F\(2,9,2) e H] is also closed. Thus the set
(5. ~

H=F(z,y) ¢ K, 0<<z<<h]

(x5,17:2)

contains H so G(H)<G®(H) and since H is measurable (closed)

~

G®(H)=h&(K) from corollary 1. But HCB so KCA and G(K)<G.(4)
But ¢ is arbitrary so ~

GD(B)<h6,(4)
which with theorem 7 gives the desired equality for inner measure.

For outer measures, if ¢*(4)<oco let A be a meagurable set
-containing 4 with @(4)<<co. Then (see [4] p. 262, theorem 4)

G(A)=6*(4)+ 6, (A—A4).
Then multiplying by % and using the corollary 1 and the first
-equality of the corollary under proof we have
GP(B)=he*(4)+ ¢P(B—B)
where B=J[(2,y) ¢ 4,0<z<h]. But GP(B)<oo. and
T aB)= 6Byt a2 B)
80 we have the desired equality
G*®(B)=hG*(4)
when G*(A)<oo. If G*(A) is infinite, G*®(B) is also infinite so
we have the desired result.

In 3-dimensional space a set which is arealy measurable need
not project orthogonally on a plane into a linearly measurable set.
However, with 4 and B the related sets of this section, the con-
verse of corollary 1 holds, i.e.

Corollary 3. If B is a Gillespie arealy measurable set with
GO(B) finite, then A is Gillespie linearly measurable with

G?(B)=hG(A).

For G*(2>(B)=G{f)(B) so from theorem 8, G*(4)=6G,(4) and
moreover the desired equality holds.
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On Characteristic Functions of Families of Sets.
By
M. H. Stone (Cambridge, Mass., U. S. A.).

In an interesting paper?) Szpilrajn has employed the cha-
racteristic funetion to develop a certain method of dealing with
the algebraic structure of sequences of sets; and has established
with the aid of this method a variety of specific theorems and
equivalences in the domain of set-theoretical topology. He attri-
butes to Kuratowski the first use of the characteristic function
of a sequence of sets.

In the present note, I ghall trace certain connections between
the content of Szpilrajn’s paper and the general theory of abstract
Boolean algebras which I have developed in two memoirs publighed
elsewhere ?). In doing so, I deem my chief purpose to be that of
reconciling two independent points of view which prove, upon
examination, to present a considerable analogy so far as the theory
of the algebraic structure of sequences of sets is concerned.

As I shall point out below, an obvious but theoretically de-
sirable generalization of Szpilrajn’s work leads to the introduction
of the characteristio function of an arbitrary transfinite sequence,
or well-ordered family, of sets. It seems to me of more importance,
perhaps, to observe that the réle of order, which is essential to
the definition of the characteristic function, appears to be artificial

1) E. Szpilrajn, The characteristic function of a sequence of sets and
some of ils applications, Fundam. Math. 31 (1938), p. 207-233; see also Fundam..
Math. 26 (1935), p. 302.

?) M. H. Stone, The Theory of Representations for Boolean Algebras,
Trans. Amer. Math. Soc. 40 (1936), pp. 37-111 (cited here by the letter R);
and Applications of the Theory of Boolean Rings to General Topology, ibidem
41 (1937), pp. 375-481 (cited here by the letter A).
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