

6

Les ensembles $F_n(x)$ et les nombres $t_n(x)$ sont ainsi définis par induction pour tout $x \in E$ et n=1,2,..., de façon à remplir la formule (14) et la formule $\Phi_n \in P$ pour n=1,2,...

Posons maintenant

(17)
$$\delta_n(x) = \underbrace{F}_{n} \left[\frac{t_n(x) - 1}{2^{n-1}} \leqslant y \leqslant \frac{t_n(x)}{2^{n-1}} \right]$$
 pour $x \in E$ et $n = 1, 2, ...$

C'est un intervalle fermé de longueur $1/2^{n-1}$, et on a d'après (16)

$$\delta_{n+1}(x) \subset \delta_n(x)$$
 pour $x \in E$ et $n=1,2,...$

Le produit de la suite infinie descendante des intervalles

$$\delta_1(x)\,\delta_2(x)\,\delta_3(x)\dots$$

se réduit donc à un seul point: désignons-le par $f_0(x)$. Il vient

(18)
$$f_0(x) \in \delta_n(x) \qquad \text{pour } n = 1, 2, \dots$$

Soient maintenant: $x_1, x_2, ..., x_m$ un système fini quelconque d'éléments de E, ε un nombre positif et n un indice tel que $1/2^{n-1} < \varepsilon$. Posons

$$H = F_n(x_1)F_n(x_2)...F_n(x_m).$$

Comme $\Phi_n \in \mathbf{P}$ et $F_n(x_i) \in \Phi_n$ pour i=1,2,...,m, on a $\overline{H} \geqslant m$. Or, soit $f \in H$. D'après (14) et (17), nous avons

$$f(x_i) \in \delta_n(x_i)$$
 pour $i=1,2,...,m$.

Donc, $\delta_n(x)$ étant un intervalle de longueur $1/2^{n-1} < \varepsilon$, on trouve d'après (18) les formules (11). La fonction $f_0(x)$ est par conséquent une fonction d'accumulation d'ordre \mathfrak{m} de la famille F_0 , c. q. f. d.

Remarques sur la note de M. Sierpiński »Un théorème sur les familles d'ensembles et ses applications«¹).

Par

Andrzej Mostowski (Varsovie).

Des deux remarques qui suivent la première concerne les théorèmes 1 et 2 de M. Sierpiński et la seconde son théorème 3.

1. Soit E un ensemble quelconque. Toute famille héréditaire et additive (au sens restreint) I de sous ensembles de E s'appelle un idéal dans E^2). Convenons de dire qu'une famille Φ de sousensembles de E jouit de la propriété P_I si aucun produit d'un nombre fini d'ensembles de Φ n'appartient à I.

Or, le théorème 1 de M. Sierpiński reste vrai si l'on y remplace la propriété P par P_I , I étant un idéal quelconque dans E. En raisonnant comme M. Sierpiński au § 2 de sa note, on conclut que, pour tout idéal I, il existe une fonction f(X) définie pour $X \subset E$, n'admettant que les valeurs 0 et 1, ne se réduisant pas à une constante, additive au sens restreint et telle que f(X) = 0 pour $X \in I^3$). La famille des $X \subset E$ pour lesquels on a f(X) = 0 forme un idéal premier I^4 contenant I.

Le raisonnement de M. Sierpiński peut donc être considéré comme une nouvelle démonstration du théorème fondamental de l'arithmétique des idéaux⁵).

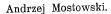
¹⁾ Ce volume, p. 1-6.

²) M. H. Stone, Trans. Amer. Math. Soc. 40 (1936), pp. 37 et suivantes; A. Tarski, Fund. Math. 32 (1939), p. 50.

³⁾ M. H. Stone et J. v. Neumann, Fund. Math. 25 (1935), pp. 353 et suivantes, théorème 14.

⁴⁾ C. à d., si X non ϵJ , alors $E - X \epsilon J$.

⁵⁾ On connait plusieurs démonstrations de ce théorème. Comp. les travaux cités ci-dessus et aussi A. Tarski, Monatshefte f. Math. u. Phys. 37 (1931), pp. 30 et suivantes, théorème 56 (démontré par A. Lindenbaum), K. Gödel, Ergebn. math. Koll., Wien 3 (1931), p. 20.



8

2. Soient: E un ensemble quelconque, T un espace topologique et E^T la famille des fonctions f(x) définies dans E et dont les valeurs appartiennent à T. L'ensemble E^T devient un espace topologique si l'on convient d'appeler entourage d'une fonction $f \in E^T$ tout ensemble de la forme

$$\prod_{i=1}^{m} F[g(x_i) \in G_i]$$

où $x_i \in E$ et où G_i est un sous-ensemble ouvert de T contenant $f(x_i)$ pour i = 1, 2, ..., n.

M. Čech a démontré, que si T est bicompact, E^T l'est aussi 6). Cela veut dire que F_0 étant un sous-ensemble de E^T de puissance $m \ge n_0$, il existe un $f_0 \in E^T$ tel que tout entourage de f_0 contient au moins m éléments de F_0 .

Or, en posant $T = \langle 0, 1 \rangle$, on obtient le théorème 3 de M. Sierpiński.

Sur une suite transfinie d'ensembles de nombres naturels.

Par

Wacław Sierpiński (Warszawa).

 N_1 et N_2 étant deux ensembles infinis de nombres naturels, nous dirons que N_2 est presque contenu dans N_1 et nous écrirons

$$N_2$$
* $\subset N_1$,

si l'ensemble N_2-N_1 est fini (ou vide).

Nous dirons que les ensembles N_1 et N_2 sont essentiellement différents si l'ensemble $(N_1-N_2)+(N_2-N_1)$ est infini.

Le but de cette Note est de démontrer ce

Théorème 1). Il existe une suite transfinie $\{N_{\hat{z}}\}_{\hat{z} < \mathcal{Q}}$ de type Ω d'ensembles infinis de nombres naturels telle que, pour $\alpha < \beta < \Omega$, l'ensemble N_{β} est à la fois presque contenu dans N_{α} et essentiellement différent de N_{α} .

Lemme. E_1, E_2, \ldots étant une suite infinie d'ensembles infinis de nombres naturels telle que de deux ensembles E_k et E_l de cette suite l'un (au moins) est presque contenu dans l'autre, il existe un ensemble E qui est presque contenu dans chacun et essentiellement différent de chacun des ensembles E_1, E_2, \ldots

⁶⁾ E. Čech, Ann. of Math., IIs., 38 (1937), p. 830.

¹⁾ Selon une remarque de M. A. Mostowski, ce théorème peut être exprimé en termes algébriques comme il suit: Si R est un anneau de Boole formé de tous les ensembles de nombres naturels et I est un idéal des ensembles finis, alors R/I contient une suite $\{x_{\underline{k}}\}$ de type Ω telle que, pour $\xi < \eta < \Omega$, x_{η} est un diviseur de $x_{\underline{k}}$.