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On transformations having periodic properties /).
By
W. L. Ayres (Ann Arbor, Mich., U.S.A,).

1, The purpose of this paper is to study the relations between
properties of four types of periodic and semi-periodic transform-
ations. Tt is shown that these types are identical only for quite
special spaces such as linear graphs and dendrites, but that they
give always identical properties relative to the cyclic elements of
a Peano space. These properties are studied in detail. The prineipal
results are that the set of cyclic elements which are invariant in
the large form a non-vacuous Peano space, and that the components
of the space minus this invariant set are permuted among them-
selves in a definite manner.

2. We consider a metric space X and a single-valued trans-
formation (function) f of X into itself, i.e. for each zeX, flryeX
and there is an ®,¢X such that f(x)=x. We denote by fz(w) the
point flf(z)), and by f* the result of repeating f n times.

Property P, f is said to be periodic if there is a positive
integer » such that f"=1I, where I is the identity transformation.

Property P, f is said to be point-wise periodic if for -each
zeX there is a positive integer n=n(x) such that f(z)="2=.

Property P, f is said to be almost periodic if for each >0
there exists a positive integer m=n(e) such that ofs,f"(®)|<e for
every zeX.

Property P, f is said to be point-wise almost periodic if for
each zeX and any >0 there is a positive integer n=n(®,&) such
that ofa,f"(#)) <e. :

1y Presented to the American Mathematical Society Dec. 30, 1936.
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Directly from the definitions we have

9.1. Theorem. If { has Property Py, it has Properties Py,
Py, and P,. If { has Property Py or Py, it has Property P,.

In section 6 we shall show that these are the only relations
between these properties except for special spaces X.

2.2. Theorem. If f has any one of the Properties P; there
ewists an infinite set of imtegers wm satisfying the conditions of P;.

8. Theorem,. If f has Property Py, Py, or P, then f"l, the
inverse of f, is single-valued.

From 2.1 we need consider P, and P, only. Suppose f has
property P, and there exist points x and y such that f(z)=/(y)
and #==y. Then f'(#)=f"(y) for every n. By definition there exist
integers r and s such that f'(z)= and f'(y)=y. But z=/"(z)=f"(y)=y.

Suppose f has Property P, and there exist points x and y
such that f(z)=f(y) and x=y. Then F@)=f"(y) for every n. Let
e=0(#%,y)/3. By definition there exists an integer n such that

olof"(@))<e for every weX. Then
Be=o(wyy) ol (@) + elf"(W)yy)<2e.

3.1. A point-wise almost periodic transformation P, may fail
to have a unique inverse as may be seen in the following

Example. Let X consist of the points {v} and {y;; for all
integers ¢ and all negative infegers j. Now arrange the symbols
{w} and {y;} ({<0, 1<0) in a single infinite sequence 2;, 2y, ... such that

(a) each symbol x, and y; appears infinitely many times,
‘(b) infinitely many of the spaces z; are left blank,
(¢) =2; is not blank.

The points z; and y; for ¢<<0 and j<<0 are subject to no res-
trictions whatever except that they be distinet points. Now let w,
be any point distinet from all the previously defined points such
that o(xy,2)<<1. Place the symbol 2, in the first place 2, which is
blank and in alternate blanks from there on. Then @, appears in
the 2; sequence infinitely many times and still leaves infinitely
many blanks. In general let x, be any point distinet from all pre-
viously defined points that o(2,2,)<1/n and place the symbol z,
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in the first and alternate places still blank in the z; sequence. We
define f as follows:

f@)=auy )=y,  [G-1)=a0.
Then f is point-wise almost periodic, does not have a unique
inverse since f(¥—i)=F(y—1)=u,, and is neither periodie, point-wise
periodic nor almost periodic.

3.2. Due to this example we define

Property P,. f is said to be a point-wise alinost periodic cor-
respondence if f has Property P, and & single-valued inverse.

3.3. Theorem. If X is compact and f is continuous and has
any one of the Properties Py, P, Py, Pi, then | is a homeomorphism.

4. In this section we wish to consider the role of the conti-
nuous transformations f with one of the periodic properties in the
Whyburn c¢yclic element theory?!).” Each of the four properties
P,, P,, P,, P} give precisely the same results here so the proofs
will be carried out with Property Pi and the othér results follow
from 2.1. Hereafter in section 4 we assume X is & compact Peano
space and f is continuous and has Property Pi.

Directly from 3.3 we have

4.1. Theorem. If C is a cyclic element of X, then f(C) is a cy-
clic element of X and there is a cyclic element C' such that f(C')=C.

4.2. Theorem. If C; is a cyclic element of the cyclic chain
Chain (Cy, C;) between the cyclic elements Cy and C,, then f(Cg) is a cy-
clic element of Ghain(f(Cl),f(Cz)),

4.3. Theorem. If C, and C, are imvariant cyclic elements,
under f, then the Chain(Cy, C,) is imvariant under f.-

By invariant cyclic elements we mean fo)=¢C only and in-
dividual points may vary. Similarly by invariant chain 4 we mean
f(4)=A only and individual cyclic elements may vary. However
we shall show later (4.5) that if the end-elements of a chain are
invariant, then every cyclic element of the chain is invariant.

1) We presuppose a knowledge of the cyclic element theory. See C. Ku-
ratowski and G. T, Whyburn, Sur les éléments cycliques et leurs applications,
Fund. Math. 16 (1930), pp. 305-31 and bibliography of earlier papers found
therein. ;

Fundaments Mathematicae. T. XXXIIL 7
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4.4, Theorem. There exists o cyclic element C which 1is m-
variant under f.

Since f is a homeomorphism by 3.3, X contains a cyclic ele-
ment ¢ such that f(0)CC ?). Then f(O)=C by 4.1.

1.4.1. Corollary. If X is o dendrite, then f leaves at least one
point invariant. :

1.3. Theorem, If the cyclic elements Oy and Cy of X are in-
variant under f, then every cyclic element of the Chain(Cy, 0p) is in-
variont under f.

Suppose f(C5)= C,==0;. Then (=00, By 4.2 C, belongs to
Chain(C}, ¢,) and we have the order 0,0,0,C, or ,0,0,0, and we
assume the former ?). Since order is preserved under homeomor-
phisms we haive the order 0,0,0,C;50, where Cs=1(0y), and 0;C,0n 110,
where Cn=jf""%(C,). There is a point y such that X—y=X,+X,,
where X, and X, are mutually separated and X,00,+ C,, X,00,+ 0.
Let z¢C, and let ¢ be any positive number less than o(z, X,). Then
f(®)C X, for n=2 and thus g(m,f"(ao)i)>a for all n>>2.

4.5.1. Corollary. If X is & dendrite and © and y are points
of X which are imvariant under f, then every point of the arc xzy of X
és invariant under f.

4.6. Theorem. The set of invariant cyclic elements under f
forms a Peano space Ip.

By 4.5 I is a connected collection of cyelic elements of X
and it remains to prove that I is closed. Let xel;—I;. From the
cyclic element theory « is & cut point or end point of X, and, in
either case, is a limit point of cut points which are cyclic element
of I;.-Since these cyclic elements are points and invariant, we have x
invariant from the continuity of f.

4.6.1. Corollary. If X is a dendrite, the set of points invariant
under | forms a non-vacuous sub-dendrite.

1y W. L. Ayres, Some generalizations of the Scherrer Fized-point Theorem,
Fund. Math.'16 (1930), p. 333. ‘ :
- ) If O, and C, are distinct cyclic elements of Chain(C,,0,), then either
xCha.in(()l,O,)CCha.in(Ol,C‘) or Chain (€}, 0y) DChain (Cy,0,). The former defines
order 0,0;C,0, and the latter order C,0,0,0,. :
)
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4.7. Theorem. If C, and C, are distinct cyclic elements of X
and f(C;)= C,, then the Chain((,,C,) contains one and only one cyclie
element which is invariant under f.

Since the invariant eyclic elements form a closed set I, ; by 4.6,
there exists an invariant cyclic element ¥ such that the Chain(C,,#)
contains no other invariant cyclic element. By 4.2 Chain((y,F) is
carried by f into a cyeclic chain from f(C,)=C, to f(F)=F. In the
order from F to (, let J, be the last cyclic element these chaing
have in common. If J,=F, the sum of the two chains iz a chain
from C, to C, and our theorem is proved.

We shall show that J,==F leads to a contradiction.
If J,%+=F, then Chain(C;,J,)+ Chain(Jy, F)= Chain(C;, F),
Chain (Cy, J;) 4 Chain(Cy, J,) = Chain(C,, C;), and no two of the
chains Chain (Cy,J;), Chain(C,,J;), Chain(J,F) have any common
point save Jy. By 4.2 f(J,)=J, is a cyclic element of Chain(C,,F),
and J,==J, since J; is not invariant under f. Let C,=f(C,—;) and
Jn=FfJn-1). By 3.3 Chain(Cy,J,), Chain(C,J,), Chain(J,,F) are
three chains such that any two have just J, in common.

Case I. We have the order FJ,J,C, on Chain(F,(,). Then
Chain (J,, F) C Chain(Jy, F), Chain(J,, ;) D Chain(J,, ¢;) and
Chain (0, J,) - Chain(Cy, F) = J,. Further from Chain(J,, F)C
Chain (J4,F), we have Chain(J,,F)C Chain(J,,F) and so on. Then
€y, (3, Cyy ... all belong to distinet components of X —Chain(Jy,F).
Let xeC,. It follows from the local connectivity of X that there
exists a number & such that p(z,y)<<e implies that y belongs to the
component of X —Chain(J,,F) containing C,. Then as #'(z) belongs
to a different component of X —Chain(J,,F) for every », f cannot
be point-wise almost periodie.

Case II. We have the order FJ,J,C, on Chain(F,(C,). Then
Chain (C,, J,) - Chain(F, Cy) = dJ,. Also J, C Chain(Jy, G,) implies
J,C Chain (J,, C;). Continuing this we see that for every n>>2 J, and C,
belong to the component of X—Chain(F,C,) which contains C;.
Ag this component is different from that containing C; we may
show that f is not point-wise almost periodic as in Case I.

We have seen now that Chain(C,, C,) contains one invariant
cyclic element F and Chain (Cy,C,) = Chain (C,, F) 4 Chain (C,, F),
Chain (0, F)-Chain (C,, F)=F. Now suppose that Chain (Cy, C,) con-
tains an invariant cyclic element F'==F. If F'CChain(Cy,F), then

7*
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f(F")CChain (0, F) by 4.2 and fEFEF, 1f [’COha/m(C’g, ), then
f(F") is not contained in Chain (C,,F) and f(F')==F'. This follows
from the fact that by 4.2 each cyclic element of Chain(Cy,F) is
the image of a cyeclic element of Chain(C,,#) under f and could
not also be the image of 7' by 3.3.

4.7.1. Corollary. If X is a dendrite and welX, then the arc
of X from x to f(z) contains one and only one point which is imvariant
wnder f.

4.7.2. C’orol?ary If €, and C, are distinet cyclic elements of
X—1; and f(C)=Cy, then G and C, belong to different components
H, and H, of X—I, f(H,)=H,, and H, and H, have thetr limit points
in the same cyclic element of I; ).

5. From 4.7.2 we see that f produces a certain permutation
among those components of X—I; whose limit points belong to
the same cyclic element of I; From this it might be supposed that
if f were periodic there would be a direct relation between the number
of such components and the period of f. That this is false may be
seen as follows: Let X consist of the intervals from (0,1) to (0,—1),
from (1,1) to (—1,1), and from (1,—1) to (—1,—1). If p is the point
(@,7) let f(p) be defined as the point (z,—y). Also let us define a trans-
formation f as follows: If p is the point (z,y), let f(p) be the point
(—x,—y) if y=0 and (x,—y) if y<<0. Both the tra.nsforma,tions f
and f’ are periodic; and I;=Ir=(0,0) so that the number of com-
ponents of both X—I; and X—1Iy is two. But the period of f is
two and the penod of ' is four. Also X may be modified by adding
more “arms’ at (0,1) and (0, —1) 80 that the number of components
of X— —1I; remains two but the period of f may be made as high as
we please.

6. In section 4 we found that relative to the cyclic elements
all four periodic properties play the same role. In the present section
we wish to see that the fransformations are really different and
fmd condltmns on X under which they are the same.

6.1. There exist almost periodic transformations (and thus
point-wise almost periodic) which are neither periodic nor point-
wise periodic.

P

1) See the' olosely related results of L. Whyburn, Rotation qmups about
@ set of. fiwed. points, Fund. Math. 28 ( (1937), pp. 124-130.
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Let X be a circle and let f be a rotation of X through afl
angle of 7-2z radians, where i is an irrational number. between
0 and 1. The transformation f* is then @ rotation of ni-2x radians
and f is neither periodic nor point-wise periodic. But # is almost
periodic since for any >0 there exist integers m and n so that
jmi—mn|<<e.

6.2. There exist point-wise periodic transformations (and thus
point-wise almost periodic) which are neither periodic nor almost
periodic ).

For each integer n>1 let X, consist- of % triangular 2-cells T,
each having the interval from (1,0,0) to (—1,0,0) as one side and
the third vertex on the ellipse #2+n2y2=1, 2=1/n. Let these vertices
be arranged on the ellipse 5o as to divide the ellipse into arcs of
equal length, so that the vertices are in the order T, Tw2,-..s Tan; Tt
around the ellipse, and so that no triangle of X, intersects a.ny

triangle of X, (m<<n) except in the base-line y=2—0. Let X = 5’ X,

n=2
Let f be defined on each T, as the collineation carrying T,; into Tpiyy
(mod n) and keeping the z-coordinate of each point and the points
of the base-line invariant. Then f is point-wise periodic on X, periodic
of period » on X,; and thus clearly not periodic on X.

Now let » be any positive integer and 0<Ce<(1. Then if z is
the ellipse-vertex of that triangle Th,; (0<<2<(2n) which is nearest
the point (—1,0,0), f*(») will be the ellipse-vertex of that triangle
Tyy,; Which is nearest (1,0,0). Hence ofz, /"(%))>¢ and f is not almost
periodic. :

6.3. Even in case X is a dendrite, the transformations may
not be equivalent if there are an infinite number of non-invariant
end points. For consider the following example: For each integer
n>1 let X, consist of n intervals of length 1/n radiating out from
the point (0,0), dividing the plane into equal angles, and so chosen
that X; and X; have only the point (0,0) in common for i==j. Let
X=3'X, and let f be & rotation of angle 2z/n on each X,. Then
f is point-wise periodic but not periodie.

1) This is a simplification of an example due to my student, Mr. Ralph
Phillips. My earlier example was for a non-Peanian space X and raised the
question of the existence of an example in Peano space, which problem Mr.
Phillips solved. '
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In the above example X has a point of inereasing order and
X—I; has infinitely many components. However the example may
be modified so that X has points of finite order only and XTI
has just two components,

6.4. Theorem. If X is a dendrite,  is a continuous point-wise
almost periodic correspondence, and only a finite number of end points
of X are non-invariant under f, then f is periodic.

Let e1,6s,...,¢, denote the non-invariant end points. For each i
lot &; denote the smallest of the numbers o(e;,¢;), i==j. By hypothesis
there exists an integer m; such that g(e,-,'f"f( ,-))<e, Now: I;CIui
and f"' (e;) is an end point of X by 3.3. Hence f"(¢)=e¢. Then if
m_[] Ny, the transformation ™ Iea.ves all end points of X invariant

i=1

and thus is the identity transformation by 4.5.1.

6.4.1. Corollary. If fis a continuous point-wise almost periodic
correspondence on a set X and xzy is an arc of X such that
fare zy) = arc zy, f(z)=x, and fly)=y, then f(z)==z for every point
2z of the arcwy.

6.5.1. Lemna. If f is a continuous point-wise almost periodic
correspondence on a simple closed curve X, then if f leaves one point
of X invariant it leaves every pomt of X invariant.

Th1s follows. from the fact that order is prcserved on an arc
under a homeomorphism.

6.5.2. Theorem. If X is a finite linear graph coniwining at
least one branch point') and f is a continuous point-wise almost pe-
riodic correspondence on X, then f is periodic on X.

Let {4, be the maximal free arcs of X (we allow the pos-
sibility of the two end points of 4; being identical making A, a simple
closed curve which is & node or end element of X) and {v;} be the
seb of points which are end points of the ares of {4;. As the arcs 4;
are maximal free arcs, the set Yv; is the set of end points and
branch points of X and f(3v)=>wv; since f is a homeomorphism.

N 1) This condition is necessary to prevent X being a simple closed curve.
See example 6.1.
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Let 4; be any one of the free ares which is a simple closed
curve and let v; be its single end point. Since X==4;, »; is a branch
point of X. Let p; be an interior point of 4; and &=pg(p;, X —A4;+v).
Then for the integer = such that o(p,f"(p)) <e;,

(a) f(4)=4,
(b)) fw)=0.

Let n; denote the smallest integer for which f(A;)=A4,. \Tow
for each interior point = of 4; and each » for which fi(@)yed;, we
have f(4)=4; and it follows that » is a multiple of %, so that
f" is a point-wise a.lmost periodie correspondence on 4, As v; is
invariant under 7%, every point of A4; is invariant under " by 6.5.1.

Now consider any 4; which is a true arc and let v, and v,
denote its end points. As above there is an integer n such that,
fd)=A4A; [wstv)=vs+v4 ,a.nd let m; denote the smallest such
integer. Xt follows that fi=f" is a point-wise almost periodic cor-
respondence on A; If f(vs)=vs and fy(v;)=w;, then f, leaves every
point of A4, invariant by 6.4.1 and we put n;=n;.

If fi(vs)=v, and f(v))=v,, there is a point p,; invariant under
f. by 4.4.1. There is a smallest integer n,; (a multiple of #}) such
that f"(arcvsp;)=arcvp;. It follows easily that f™ is a point-wise
almost periodic correspondence on the entire arc A, f"(vs)=wv,
and f*(v;)=v;. Then " leaves every point of A4; invariant by 6.4.1.

For each A; there exists then an integer #; such that f" leaves
every point of 4; invariant. Henee f™, where m==[]n;, leaves every
point of X invariant, i. e. f is periodic on X.

The University of Michigan.
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