2 W. Sierpinski.

Or, je vais montrer qu'il n’existe aucun ensemble linéaire K
de I-e catégorie, pas plus que deux suites infinies croigsantes de
nombres naturels {my} et {ni}, telles qu’on ait

(1) kli% ]‘Z?hk (£)=0 pour wnonekK.

Supposons, en effet, quun tel ensemble K et deux suites
{mz} et {nx} existent. Il existerait donc une décomposition
(2) K=N;+Ny+...
en ensembles N; (i=1,2,3,..) non-denses. On aurait donc, pour
un intervalle (fermé) d;, Pégalité dyNy=0. La suite d’indices {mn}
étant croissante, il existe un nombre naturel %, tel que
(3) 1/ mk1<317

ou d; désigne la longueur de I'intervalle di. La fonction () pre-
nant par définition la valeur 1 dans chacun des mtervalles de
longueur 1/m, il existe d’aprés (3) un nombre ®iedi, tel que
fmkx(ml) =1. La fonection fmkl(w) étant continue, il exigste un inter-

mk1

valle fermé 6:Cdy, tel que f, %(z)>1/2 pour wed;.

Or, I’ensemble N, étant non dense, il existe un intervalle
d:Cd; tel que daNp=0. Comme plus haut, on trouve un entier

ke>Fk tel que 1/mp<<ds, ensuite un zseds tel que ]‘mka (2) =1,
et, enfin, un intervalle §:Cd, tel que fmk :(2)>1/2 pour 0’1‘652

En raisonnant ainsi de suite, nous obtenons une suite infinie
d’intervalles fermés

[CO © @08,08,08,Dd,0...
et une suite infinie croissante d’indices {k;}, telles que &XN;=0
(1=1,2,3,...) et que

(8) fmki(a:)>1/2 pour wed; (i=1,2,...).

D’aprds (4), il existe un point x, tel que z,ed;d pour i=1,2,.
Comme @;N;=0, on aurait donc d’aprés (2) w,noneK ot d’aprés (5)
]‘ i(2)>1/2 pour i=1,2,..., de sorte que la formule (1) ne gerait

pas vraie pour m=u,.

icm

Exceptional Sets.
By
H. Blumberg (Columbus, Ohio).

The following considerations originate from a trivial remark,
called the germ principle, and analogous trivia, and lead by a line
of reasoning that readily suggests itself to a variety of simple pro-
perties, mostly new, of the general set and the general (real) function.
The results of the use of the germ principle are of a comprehensive
scope, have numerous connections with the literature, and unify
various results appearing in the literature as unrelated or remotely
related.

Our considerations will first relate to the linear continuum.
By an interval property P, we understand a property such that
if I is a (closed) interval of the linear continuum, then either I” (I has
property P) or I” (I hasn’t property P, I has the contrary pro-
perty P). Since an interval I=(a,b) has two ends, and the rela-
tions I7, I” are mutually exclusive, it follows that if a is such thai
(a,b)P, then b is not such that (a,b)P. This form of an utter triviality
is the germ of all that follows. i

If P is a given interval property, we shall say that a is a point
of antisymmeiry (with respect to P) if, for all sufficiently small
positive h, (a,a—|—h)P , (a,a+h)" respectively imply (a,a——h)P I
(a,a—h)’. o will be said to be a point of S-antisymmetry if it is
a point of antisymmetry and the relations defining antisymmetry
hold for all h<<§. Let T be a set of positive numbers with 0 as a l-
mit point; and let 8§ be the set of points a of antisymmetry such

1*
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that, for sufficiently small positive h, (a,a+ BF T according
as h belongs or does not belong to T. We classify the points of 8§,
defining 8, for positive, integral n as the set of points of § which
are of 1/n — antisymmetry and such that, for all h<<1/n, we have

(a0 B " F according as h belongs or does not belong to T.
Using the germ principle of the present paper, we note that if a is
a point of 8y, no point at-h belongs to 8, if h<<1/n. S, is therefore
an isolated. set, and hence at most denumerable. It follows that
8 is at most denumerable, and we may state

Theorem 1. If P is an interval property; T a set of positive
numbers with with 0 as a limit point; and S the set of points @ of anti-

symmetry such that, for sufficiently small positive h, (a,a+ h)* ar P

according as h belongs or does mot belong to T, then S is at most de-
numerable. ‘

As an illustration of the use of Theorem I, we employ it to
derive a property of unconditioned real functions. If f(z) is a given
real function — unconditioned, but understood to be finite and
one-valued — let I=(a,b) be said to have property P if ¢(a,b)=
f(b)—1(a) (bg:z (a’)>k, where k is a given real number. Let T of Theorem I
denote the set of positive rational numbers. Theorem I then tells
us that the points « such that, for sufficiently small positive b,
gla,a+-h)>k, gla,a—h)<k if h is rational, and ¢(a,a+h)<E,
g(a,a—h)>k if h is irrational constitute a set which is at most
denumerable. A fortiori, the points e such that, for sufficiently
small positive &, we have the four inequalities just stated with <,
> respectively substituted for <, > constitute an at most denu-
merable set, which we denote by D;. Let D=2XD,, k ranging over
the set of rational numbers; D is then denumerable. Suppose now
that a point a is of the following character: 1) All the curve points
(at-h, flath)), with h positive, rational and sufficiently small,
can be enclosed in a sector of a circle of center (a,f(a)) and angle
less than 1809 (2) all the curve points (a+4h, f(az-h)) with & po-
sitive, irrational and sufficiently small, can be likewise enclosed
in a sector of center (a,f(a)) and angle less than 180%; and (3) these
sectors have no common interior or boundary points except for
(a,f(a)). If a has properties (1), (2) and (3), we shall say, for short,
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that f has a ,,double-way corner” at a. If f has a double-way corner
at a, it is possible to choose a rational number % so as to have a
satisfy the relations imposed upon the elements of D,, or else have a
satisfy the same relations with the inequality signs reversed, and
then a will belong to a set Dj, say, likewise denumerable. We may
therefore conclude that the points at which a given, arbitrary, veal
function has a double-way corner constitute a set which is at most de-
denumerable. This property of an arbitrary function obviously remains
valid if instead of the set of rationals and the set of irrationals
we take any two complementary sets of the real continuum each
symmetric about the origin. In the particular case where one of
these two sets is the null set, the property just obtained reduces
to a known property of unconditioned functions, derived below
by different reasoning.

If in Theorem I we particularize T to be the totality of
positive numbers, we get

Corollary I. If P is an interval property, and S the set of
points a such that, for sufficiently small positive h, (a,a—l—h)P , and
(a,a—h)P, then 8 is at most denumerable.

Let f(I)=f(a,b) be a given (real) interval function; that is
to say, with every interval I=/(a,b) — of the linear continuum or
of a basal interval — there is associated a real number f(I)=f(a,b).
In terms of f and a given real number k, we define the interval
property P, by stipulating that I'* mean f(I)>k. Substituting P
for P in Corollary I, we note that the set of points & such that, for
sufficiently small positive h, f(,&+h)>Fk and f(&&—h)<k is at
most denumerable. Denoting this set by Ds, and letting D=2Dy,
where the summation is extended over all rational %, we conclude
that D is at most denumerable. Now if j+.—:1iix_1)gnf fE E+R)>

lim sup f(&E—h)=f, we can choose a rational number k such
h=>0

that, for all sufficiently small positive &, f(&§, &+ h) >k and f(&,&—h)<k.
& thus belongs to D The points where f,>f therefore constitute
an at most denumerable set. Likewise the points where

' #_=lim inf f(& E—h)>lim sup f(£,+h)=f"
h->0 h->0 .

constitute an at most denumerable set. We conclude that, except


GUEST


6 H. Blumberg:

at the points of an at most denumerable set, we have everywhere
f>f+ and fT=f_. Calling the intervals (f_,/7), (f.,.,]”') the left,
right limit interval of f(I), we may state

Corollary IL 1If f(I) is an interval funciion, then al every
point, with the possible exception of an at most denwmerable set, the
two limit intervals of f(I) overlap or abut.

Corollary II can be utilized to derive a variety of theorems
on general (real) functions. To illustrate, let f(x), then, be a given
#(6)—f(a)

b—a
is an associated interval function. Applying Corollary TI, we
get the result:

(one-valued, real) function. The difference quotient g(«,b)=

For every fumction f(z), the upper right (left) derivate ecxceeds
or equals the lower left (right) derivate at every point with the possible
ewceplion of an at most denumerable setl).

In defining antisymmetry at & we required that the intervals
(& E—N), (&,E+ 1) be differently qualified” — i.e., the one has
property P, the other P — for all sufficiently small positive k. This
type of antisymmetry may be regarded as of absolute character.
‘We may pass to a relative notion by requiring such different qua-
lification only for the h’s of a given set H with reference to which
the relative notion is to be valid. Let H, then, be a given get of
positive numbers having 0 as limit point (the latter restriction
giving the only case of interest). If P is a given interval property,
we shall say that £ is a point of antisymmetry of P relative to H
if for all sufficiently small h belonging to H, the intervals (&, &—D),
(&,6+-h) are differently qualified. If H is the set of positive num-
bers — we then revert to absolute antisymmetry — there cannot
be, according to Corollary I, more than 8, points a of such sym-
metry at which w,,a—{—h)P for sufficiently small k. If H is a given
residual set, — with respect to the totality of positive numbers —
let E be the set of points & such that (&&+h)" and (&&—h). if b
belongs to H and is sufficiently small. Let H,, where » is a positive
integer, be the subset of B consisting of the points & for which &
is small enough if <1/n. It follows from the germ principle that if &

1) Due to W. Sierpifski, Bull. Acad. Se. Cracovie (1912), p. 850, and
G. C. Young, Acta Math. 37 (1914), p. 147. '
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belongs to E,, no point &4k, £—h, with h<<1/n and in H can belong
to B, E, is therefore such that every point of it can be enclosed
in an interval with the part of E, in it an exhaustible set. It follows

that E, is exhaustible, and therefore E=2H, is exhaustible. We
1
thus have the result:

“If P is an interval property, H a set of positive numbers such
that the positive numbers not belonging to H form an ewhawustible set,
and E the set of points & such that there exists an hg with the property
thait if h belongs to H and is less than hg we have (&,&-+ B and (&€ —n),
then B is emhaustible.

By replacing P by P, keeping H the same, we obtain another
associated exhaustible set say H,. If & belongs neither to E nor
to H,, there exists an infinitesimal number hi:"’ (n=1,2,..., o),
belonging to H such that (££4hE) and (£,E—h{") either both
have property P or both have property P, that is, as we may say,
these two intervals are ,identically qualified” (with respect to P);
or alse there exists on infinitesimal number hfs") belonging to H
such that (&&+ha)" " according as n is odd or even. We may
thus state the following theorem.

Theorem I,. If P is an interval property, and H a set of po-
sitive numbers residual with respect to the totality of positive numbers,
then for the points & of a set residual with respect to the linear continuum
we can find on infinitesimal number B (n=1,2,...,00) belonging
to H such that (&E&-+h{) and '(g,s—hg"j) are identically qualified
for all the m, or such that (£, &R P according as m is odd or
even.

Tf H is such that its complement with respect to the totality
of positive numbers is of measure 0, we obtain, by analogous re-
asoning, the following

Theorem I, If P is an interval property, and H a set of positive
numbers whose complement with respect to the totality of positive num-
bers is of measure O, them for the points & of a set whose complement
in the linear continuum is of measure 0, we can find an infinitesimal
number hfg") (n=1,2,...,00) belonging to H such that (E,§+hg’)),
and (E,E——hg‘)) are identically qualified for all the m, or such that
(& R " F according as m is odd or even.
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Theorem I, can be extended so as not to require that the
complement of H, with respect to the totality of positive numbers,
be of measure 0. For suppose H is such that its upper, interior metric
density is positive at 0; that is to say, there exists a sequence of
positive numbers h, with 0 as limit such that the relative interior
measure of H in (0,h,) exceeds a fixed positive number. We can
then prove by means of the germ principle that if £ is a point of H,,
where E, has the readily understood meaning analogous to that
of E, in the argument preceding Theorem I, then the upper,
interior metric dengity of the complement of E, (with respect to
the linear continuum) is positive at £. It follows that E, is of meas-

ure 0, and therefore B=)E, is of measure 0. We thus have the
1

following extension of Theorem I,.

Theorem 1. If P is an interval property, and H « set of po-
sitive numbers which is of positive, upper, interior metric density
at 0, then for the points & of a set whose complement in the linear
continuum is of measure 0, we can find an infinitesimal number

R (n=1,2, ..., 00) belonging to H such that (£,E-+h{) and (&, &—h{)
are identically qualified for all the m, or such that (& &-+h{P)F *F
according as n is odd or even.

Since an interval of the linear continuum may be represented
by means of a point in the plane, an interval property may be
represented by means of a planar point set. Our results on interval
properties may thus be interpreted as giving information about
planar point sets. It will be simpler, in passing from interval pro-
perties 5o planar point sets, to confine ourselves to intervals whoge
end points are positive, as we may, without change in generality.
The linear interval will then be represented by means of the planar
point (x,%); and the totality of intervals under consideration will
be represented by means of the points in the first quadrant boun-
ded by =0, y=x. We denote this half quadrant by R. With
& given interval property P, we asgociate the planar point set S
consisting of the points of R that represent intervals having pro-
perty P. In virtue of this association, we can rewrite Theorems I,
I, I, and I, as theorems on arbitrary point sets in R. Theorem I
thus becomes the following theorem — when we conjoin its vali-
dity for P with its validity when P is replaced by P.

icm
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Theorem I'. If 8 is a subset of R, and T « set of positive num-
bers having 0 as limit point, then, for all real numbers & not belonging
to an ewceptional set which is at most denumerable, either a) there
extsts a sequence hfg”) (n=1,2,...,00) of positive numbers with 0 as
limit such that for every n the two points (£—h, &) and (& &E+h{)
belong either both to S or both to S=R~—8; or b) there exists a sequence
hfg") (n=1,2,...;00) of numbers with limit 0 belonging all to T or
all to T (=complement of T with respect to the set positive numbers )
such that (&,£+ h(g")) belongs to S or 8 aceording as n is odd o+ even;
or ¢) there exists a sequence hi:") of mumbers with limit 0 such that
B belongs to T or T according as n is odd or even, and (£,&--h{)
belongs to S for all m or to S for all n.

Theorem I’ states a relationship between an arbitrary subset 8§
of B and the boundary y=2 of R in terms of the local behavior of §
at a point of this boundary as the point is approached from R in
the directions parallel to the coordinate axes. It is obvious, however, —
ag may be seen, for example, by means of transformation of coor-
dinates — that the relationship in question does not depend on the
fact that the boundaries of E make an angle of 45° with one another,
or that the directions of approach to the general point (£,£) of one
of these boundaries are taken respectively parallel and perpen-
dicular to the other boundary. Theorem I’, stripped of these ob-
viously superfluous conditions, takes the following form.

Theorem IT'. Let 8 be a planar set; 1 a straight line; a and B
two directions of approach to 1 from one of the two half planes into
which T divides the plane; T a set of positive numbers having 0 as
a limit point; and A a positive number ). Then, for all real numbers &
not belonging to an exceptional set which s at most denumerable,
either a) there exists a sequence hg") (n=1,2,...,00) of positive numbers
with 0 as limit such that the two points (5——7»@"’,5) and (&,&+ Ahie"))
belong both to S or both to S for every m; or b) there ewists a se-
quence of numbers hg:") (n=1,2,...,00) with limit 0 belonging all
to T or all to T such that (§,§+Ah(§")) belongs to S or S according
as n is odd or even; or c) there ewists a sequence of numbers hia")
with limit 0 such that hé") belongs to T or T according as n is odd or

even, and (5,5—{—%2")) belongs to 8 for all n or to S for all n.

2) A represents the ratio of the units of length for the transformed axes,
which have the directions « and 3.
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Theorem I readily admits of further generalizations in dif-
ferent directions. But it is not our present purpose to pursue such
extensions.

If in Theorem I"" we let T be the set of all positive numbers,
we obtain as an implication the following simple geometric pro-
perty of the arbitrary point set.

Corollary ILX. If 8 is a point set lying in the plane w5 | o straight
line in w5 amd a,f two directions of approach to 1 from one of the two
half planes into which 1 divides 7, then, except for an at most denu-
merable set, every point of | is approached in both directions either
via 8 or in both directions via S(=mn—8).

Thus, in the sense specified, every point of I, with the exception
of a set which is at most denumerable, bears the same relation,
in respect to 8, to both directions « and p.

‘We omit the statement of the theorems on general point sets
derived from Theorems I, and I, by means of the representation
of an interval property as a planar point set. But we shall state
the theorem on point sets corresponding to theorem I..

Theovem I;. If 8 is a point set lying in the plane =; 1 a straight
line in m; a, f two directions of approach to 1 from one of the two half
planes into which 1 divides m; H a set of positive numbers of positive,
upper, tnterior metric density at 0; and A a positive number; then
for every point A of 1 not belonging to an exceptional set of measure 0,
there exists am infinitesimal element B (n=1,2,...,00) of H such
that the two points A——~h§§’)-a, A—nP-B both belong either to 8 or
to 8 (=n—~8) for all n, or such that A—1P.q belongs to S or 8 according
as n s odd or even; here A—1-6, where A is a point, t & real positive
number, and & a direction, means the point B at distance t from A
such that BA has direction 9.

In Theorem I,, H is a fixed set independent of the point &.
If we permit it to depend on &, — let us denote it in this case by Hs —
it can be shown by means of the continuum hypothesis, that it
is possible to define an interval property P such that eevry point &
is a point of antisymmetry, with (& &-+h)° for sufficiently small 7,
on the understanding that the intervals (¢,&+h), with k not in Hg,
are negligible, where H; is the set of positive numbers minus an at
most denumerable set variable with & The following example shows
this possibility. Let #1,%s,..., Buy..oy Lay..., a<Q, be a normal order
of the continuum of type £, the ordinal initiating »;,. We define
the desired interval property by induction. We first preseribe that
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(%ahf h)P, (wl,wl——h)P for all positive k. Assuming that qualification
relative to P has been made for all intervals with #; as end point
if 1<<e, we require that (z,u.+h)’, (%o Be—h)¥ for all positive h
except such as lead to conflict with previous prescription. If & is
a real number, let H; be the set of i’s such that (& &+n)" and

(&,6—n)F. Since every proper initial segement of the Q order is
at most denumerable, it follows that H; contains every positive
number with x, exceptions at most. Therefore, if denumerable
sets be deemed negligitle, there ewist interval properties P such that
every point & is a_point of antisymmetry (and, indeed, such that
(&,E4+n)", (&,€—n)F forall pogitive h with at most 8, exceptions)3).

We shall now show how, by use of the germ principle, we
are readily led to a theorem on the general segment property, de-
fined for all linear segments in the plane. Let P be such a property;
that is to say, P is unrestricted except that, if I is any linear
segment lying in the plane, either I” or I”. If a and p are two given
different directions in the plane, we let Susn, where L is a positive
number, be the set of points A of the plane such that 1) if B is
a point at distance less than & from A and within the angle (<1809)
of vertex A and a,f as sides, the segment 4B has property P;
and 2) if B, of distance less than 4 from A4, is in the vertically oppo-
site angle, the segment AB has property P. It follows by means
of the germ principle that if A belongs to Swss, no point at distance
<h from A within either of the two vertically opposite angles of
1) and 2) can belong to Segs. BEvery point of Su is therefore
the vertex of a double sector in which there are no points of Susn.
‘We may therefore conclude that S.g, is a set which W. H. Young
called ,ridé“ ¢). We shall use the term sparse in place of ridé. Let

3) It may be readily shown with the aid of normal orders of the set of
real numbers and of the set of perfect sets — without recourse the continuum
hypothesis — that an interval property may be defined for which the set of points
of antisymmetry is inexhaustible and non-measurable.

%) This term has been infroduced by W. H. Young to designate what
he regards as a particularly natural generalization of denumerable to the plane.
See La syméirie de siructure des fonctions de variables réelles, Bull. de Sei. math.
8ér. 2, 52 (1928) pp. 265—280. As will be seen later (paragraph following The-
orem VI), this apparent naturalness is relative to the type of theorem to be ex-
tended from the straight line to the plane, and the manner in which such extension
is envisaged. Thus, for example, the very theorem which W. H. Young takes
as leading naturally to the ridé set as a generalization of the denumerable
set can be extended to the plane (see paragraph and footnote following The-
orem VI) in a manner no less natural without bringing in a new type of set.
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us say that a direction is rational if ity slope is rational. Letting
and p range independently over the set of rational directions, and ,
independently of a and B, over the set of positive rational numbers,
we let S=sum of all Sun obtained by such independent variation
of a,p and h. Since the sum of &, sparse sets is sparse — as follows
immediately from the definition — § is a sparse seb. If now A is
vertex of two vertically opposite (equal) sectors such that if B is

in one of them AB”, and if in the other AB", then 4 is vertex of
two such sectors with rational sides and rational radius. 4 therefore
belongs to S. We thus have the following

Theorem II. If P is a a planar segment property, them all
points A of the plane not belonging to an exceptional sparse set are
such that, for every pair of vertically opposite sectors with veriex A,
there ewist two points B and C, one in each sector, such that either both AB
and AC have property P, or they both have property P.

By means of this theorem, we can obtain a property of the
general planar point set. For let § be a given planar set. Let as say
that the segment AB has property P if A and B either both belong
to S or both belong to § (=complement of § with respect to the
plane), With this meaning for P, Theorem II yields the following

Corollary IV. If 8 is a planar set, then all points A of the
plane not belonging to an ewceptional sparse set are such that for every
pair of vertically opposite sectors having A as vertew there ewist two
poz’ngts, one in each sector, either both belonging to 8 or both belonging
to S.

‘We illustrate the use of Theorem IT by employing it to derive

a Property of the general function as related to (Dini) partial

derivatives. Let f(xz,y) be a given one-valued function. If A= (x,y),

we understand f(4) to mean f(z,y). If 4 and B are two points, we
1(B)—f(4

seb m%:Q(A,B), where 6(A4,B) is the distance from 4 to B.

We define as follows the segment property P, in terms of f and

the real number k: AB"* if Q(4,B)>F. According to Theorem IT,
there is associated with P, an exceptional sparse set By Liet E=IHE;
as k ranges over the set of rational numbers; F is a sparse set. Let A
be a point of the plane, vertex of the angle af (<180°) with sides
the half lines of directions a, 8. If h> 0, let € be the sector of vertex 4,
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angle of, and radius h; and let l.gn, uesn Tespectively represent

the greatest lower, least upper bound of the numbers @(4,B) as B

ranges in C. Let lus, %ep= Lim logn, 1im uapn respectively. The
h>0 >0

numbers lug, teg May be regarded as the extreme partial derivatives
of f at A within angle af. We call these respectively the lower,
upper derivate of f at 4 in angle af. If ap denotes the angle vertically
opposite af, and leg>uap, let 7 be a rational number between uzg
and le. Tt is then possible to find an & so small that the sectors ¢,0
of vertex A4, radius h, and angles af, ap respectively are such that
if B is a point of C,C we respectively have Q(4,B)>r, @(4,B)<r;
accordingly A belongs to E, and we may state the following pro-
perty of the general function.

Corollary V. If f(A)=f(z,y), where A=(2,y), 15 & one-valued
function, all points A mnot belonging to an ewceptional, sparse set are
such that for every pair of vertically opposite angles with vertex A
the lower derivate of | at A in each of the amgles is less than or equal
to the upper derivate of f in the other.

The argument made in deriving Corollary V shows that in
the definition of P it is not essential for @(4,B) to signify diffe-
rence quotient. The same argument applies just as well to every
(real) segment function. Let, then, Q(4,B) stand for any given
(real) segment function whatsoever, i.e., if AB is a segment (in
the plane), @Q(4B) is a real number. If a point 4 of the plane is vertex
of the angle af, we understand by Qe Qo — in analogy with the
definitions for lu, %e — the lower, upper limit of @ at 4 in the
angle «f. We may then state the following generalization of Co-
rollary V.

Corollary VI. If Q(AB) is a given real segment function (in
the plame), all poinis A mot belonging to an exceptional, sparse set
are such that jor every pair of vertically opposite angles with vertex A
the Tower limit of @ at A in each of these angles is less than or equal
to the upper limit of Q in the other.

Examples of the application of Corollary VI are:

a) Q(4,B)=saltus of a given function f(z,y) on the seg-
ment AB.

Qop , Qup represent, we may say, the limit inferior, ILimit
superior, for rectilinear approach, of the saltus of f at 4 in angle af.
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b) @(4,B)=saltus of f on AB if sets of a given type are re-
garded as negligible, as when denumerable sets, (linear) exhaustible
sets, or (linear) sets of measure 0 are taken ag negligible.

¢) Q(A4,B)=relative measure of § on 4B, § being a given
planar set. ‘

We shall now use (a variant of) the germ principle to derive
certain properties of the general point set by. reasoning from set
character rather than segment property. Let §, then, be any planar
set whatsoever, and 4 a point of the plane. We shall demand
from A4 a certain double character, and it is this double character
which, in virtue of the germ principle, will render 4 exceptional.
We shall, namely, suppose first that 4 is vertex of an acate angle
of sides o, — we designate the respective directions of the sides
also by @, — and that within this angle there is an open, simple
arc terminating in 4, consisting exclusively of points of 8, and
containing a point at distance >h from A, where % is a given po-
sitive number ?). We suppose secondly that 4 is vertex of another,
non-overlapping acute angle of sides y,d so related to a,f that by
shifting the vertex of the second angle an arbitrarily small amount,
keeping the direction of its sides unchanged, we can bring both
of its sides into intersection with hoth « and B; moreover, within
angle ¢ there is an open, simple arc terminating in 4, consisting
exclusively of points of S, and containing a point at distance >h
from A. The set constituted by the points having the double character
just described we designate by Eugen. 1t A and B are two distinet
points of Fagyn, the connected set for 4 in aff has no points in
common with the connected set for B in yd. Therefore, if 4 is
@ point of Hugus, there exists a sector with vertex 4 containing
no points of Hugss. It follows that Bogysn is a sparse set.
Let E=XFE.gs as the five subseripts range independently over
all possible admissible rational numbers, a direction, as before,
being, regarded as rational if it is of rational slope. ¥ also ig there-
fore a sparse set. Suppose now that the point 4, whether or not
- ‘belonging to §, is such that there exists an open simple arc 0,

terminating at 4 and of determinate direction at A, consisting

5) A more general curve than simple arc can be here employed, but our
Present considerations lend no particular interest to such generalization.
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exclusively of points of S; and that there exists another open
simple are €, terminating at 4 and of determinate direction at A,
different from and not opposite to that of ¢, consisting exclusively
of points of S. If 4 has such a double character, we can choose
a,8,7,0,h rational so as to have A4 belong to Eogysn; hence A
belongs to E. We may therefore state the following

Theorem II1. If 8 is a planar set, let B be the set of poinis A
for which there are two open simple arcs with A as common end point,
having determinate directions at A which are neither the same nor
opposite, and consisting the one ewclusively of points of S, and the
other ewclusively of points of 8. Then E is a sparse set.

In other words, if A does not belong to E, and ¢, ¢, are
two open simple arcs with 4 as common end point and of deter-
minate directions at 4 which are neither the same nor opposite,
then € and C, both contain points of § or they both contain points
of S. Therefore, if 8 is a planar set, a point 4 of the plane, in re-
lation to 8, is necessarily of one or the other (or both) of the fol-
lowing types a) and b) -— sparse sets being regarded as negligible:
a) Every open simple arc terminating at 4 and of determinate
direction at .4 contains points of S, exception being made of arcs
having one particular direction 64 at A — variable with 4 — or
its opposite; b) every simple arc admissible in a) contains points
of 8. Let us call the (entire) straight line through A — where it
exists — of the particular direction 84 the S-singular line through 4;
and the corresponding line for b) the S-singular line through 4.
If 4, then, is of type a), it is approachable via S along every simple
arc having a determinate direction at 4 not tangent to the S-gin-
gular line at A (if the latter exists); and if A is of type b), the same
kind of approach is possible with S substituted for S.

‘We may therefore state the following variant of Theorem ITI,
which attests a remarkable symmetry in the structure of every
planar set.

Theorem III'. If 8 is a planar set, every point A not belonging.
to an exceptional sparse set is approachable via 8 along every simple
are of determinate direction at A not tangent to a singular line at A
(which may or may mot ewist), or else A is similarly approachable
vig S. ‘
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In regard to converse questions relating to Theorem III,
we define, with the aid of the continuum hypothesis, a planar set 8
sueh that at every point of a set which is not sparse we have
approach exclusively wia § along one direction and exclusively
via § along the opposite direction. For convenience, we confine
ourselves to the unit square Q. Let Ai,Adg ..., daoy.eydo..., a<<Q,
be a normal order of type 2 of the points of ¢, where & is the ordinal
initiating &,; and let Hy, Hsy...; Hoyoooy Hay..., a<<@, be a normal
order of the perfect subsets of @ of positive measure. Let B, be
the firgt 4. in Hy=H'. Let H" be the first H, not containing B,
and B, the first 4, in H. of abscissa different from that of B,.
Assuming that B; has been defined for A< g, let H® be the first H,
containing no B, for A<f, and B® the first 4, in H® of abscissa
different from all the abscissas of the B, A<(f. Since there are
at most 8, A’'s less than ﬂ,H(ﬂ) exists; and since H ® i of pogitive
measure, it necessarily contains a point of abscissa different trom
that of B, for every A<p, so that B® exists. Let B be the set of
points B(ﬁ’, g ranging over the totality of ordinals <. F contains
at least one point from every H., a<@Q, and is therefore not of
measure zero. We may now define the set S as follows, adjoining
to the unit square @ the square @, of vertices (0, 0), (1,0), (1,—1), (0,—1)
and the square ¢, of vertices (0,1),(1,1),(1,2),(0,2), and letting
R=0Q+@:1+Q,: S consists of the points of B vertically above the
points of E; and S=R—§8. It follows that if 4 is a point of B, it
is approachable from above exclusively via S, from below exclu-
sively via §. Since a sparse set is necessarily of measure 0, and B
is not of measure 0, we have an example of a set § such that at
all the points of a set which is not sparse we have exclugive approach

via 8 (via §) along the negative (positive) direction of the Y-axis.

When we compare Theorem II with Corollary ITI, we note
that the latter is of a less general character, in that it restricts the,
approach to two fixed directions. But by following a line of reasoning
substantially like that for the derivation of Theorem III, we can
secure & theorem similar to Theorem IIT and relating to the approach
of a set to a straight line. If § is a given planar get, and I a given
straight line, we consider, as before, the set of points A of I which
have a certain double character, analogous to that described in
the argument for Theorem ITI. We demand, namely, firgt that A
be vertex of an acute angle of gides o f — and in conformity with
the hypothesis of Corollary .ITT stipulate that the half lines «,p
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both lie on the same side of I — and that within this angle there

is an open, simple arc terminating at 4, of diameter greater than
& given positive number h, and consisting exclusively of points
of 8. Secondly, 4 is to be vertex of a second acute angle yé lying
on the same side of I as af, and so related to af that if the vertex
of »d is shifted on I to the appropriate side of 4, its sides remaining
unchanged in direction, the new sides will both intersect both «
and f; moreover, within angle y6 there is an open, simple arc ter-
minating at 4, of diameter >h, and consisting exclusively of points
of S. The set of points on I having the double character just de-
seribed we denote by Hegen. If A belongs to Eagen, there are
no points on ! belonging to this set for a certain distance from
A on one side of it. Therefore E.ss, is at most denumerable.
Let E=2XFEuun, the subscripts ranging independently over
rational values admissible according to the defined double cha-
racter of the points of Hugyen; hereby we may regard the side of an
angle as rational if the angle it makes with 7 is a rational number
of radians. E is then denumerable. Suppose now A4 is common
terminal point of two open, simple arcs of determinate and distinet
directions at A4, composed, the one exclusively of points of §, the
other exclusively of points of S. 4 then belongs to some Fagon,
with subscripts all rational, and therefore to I. If A is not in E,
and threre exists a simple, open arc C with determinate direction
at A consisting exclusively of points of 8, then A is necessarily
approachable vig § along every simple arc of determinate direction
at A different from that of €. Similarly if C consists exclusively of
.points of 8. We thus have the following

Theorem IV. If 1 is a given straighi line in the plane; m— re-
garded as not including 1— one of the half planes into which 1 divides
the plane; and S o point set in =, then every point A of 1, with the
exceplion of an at most denumerable number, is such that every simple
arc in m with determinate direction at A — with the possible emception
of arcs having one particular direction 04, variable with A — coniains
points of S, or every such arc, with similar exception, contains points
of m—A~. '

If we confine ourselves to recgj}iﬂc{wr approach, we have the
following corollary of Theorem IV,

Fundamenta Mathematicae, T. XXXII,
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Corvollary VI, If lis a given straight line, = one of the (open )

half planes into which 1 divides the plane, and 8 a point set in m, then.

every point A of 1 not belonging to an exceptional, at most denumerable
set is approachable via § in every direction of approach to it from m,
or A is so approachable vie m=—S8.

It f(z,y) is a given real function, and % a given real number,
let T, be the set of points (z,y) such that flz,y)>k. 1f [ is a given
straight line, and = one of the (open) half planes into which I divides
the plane, let T,z=_8;. Let E, be the exceptional, at most denu-
merable set of Corollary VII when 8 of this corollary is identified
with Sy, and let E=2XF,, k ranging over the set of rational numbers..
If A is a point of 1 not belonging to F, it belongs to no E, for ra-
tional %, and therefore either every segment in = terminating in A
containg points of S, or every such segment containg points of

7—8,. Hence either limsup>k on every straight line in = ter-
A . . npd
minating in 4, or liminf<{k on every such line.

lim in} Consequently
there is no pair of segments in = terminating in 4 such that
lim sup f(z,y)<k as (w,y) approaches 4 along the one, and
lim inf f(#,y)>% as (#,y) approaches A along the other, Since this
holds for every rational %, it must be that for every pair of segments
in & terminating in A4, lim sup f along the one is equal to or greater
than liminf f along the other. We thus obtain the following corol-
lary, a result derived by Mabel Schmeiser®) in a different way.

_ Corollary VIIL If f(z,y) is a given function, | a given straight
line, and = one of the half plames into which 1 divides the plane, then
for every point A of 1 not belonging to an exceptional, at most denu-
merable set, and every pair of half lines in n terminating in A,
lim sup f(x,y} as (@,y) approaches A alongf one of these half lines

equals or exceeds liminff(x,y) as (z,y) approaches A along the other
half line. :

‘We now return to the use of the germ principle for the purpose
of deriving additional theorems for the plane. We shall first derive
a reswt for planar regions analogous to Corollary I for intervals
O'f the linear continuum. Let P he a given property of planar,
simply-connected, polygonal regions, i.e., simply-connected regions
‘pounded by straight lines. We call such regions p-regions. Con-

%) Fund. Math. 22 (1934) p. 72.
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forming to our procedure for applying the germ principle, we shall
consider those points of the plane which have a certain double
character with respect to P. Let e, and y,6 be 2 pairs of directions;
af the angle made by the first pair as a rotates counterclockwise
to f; and yd the corresponding angle for the second pair of directions.
We furthermore suppose that there is a direction (4=« and 4p)
assumed by a as it rotates to B which is opposite to a direction
(v and =4) assumed by y as it rotates to 6. In such a case, we
say af and y8 ,contain opposite directions”. If P is a given pro-
perty of p-regions, and af, yd two angles containing opposite di-
rections, let B be the set of points A of the following double
character: a) P is valid for all p-regions of diameter <hs — & po-
sitive number depending on A4 — having vertex 4, of as the angle
at 4, and lying wholly within of; and b) P is valid for all p-regions
of diameter h4, with vertex 4, yé as angle at 4, and lying wholly
within y6. Let E, be the subset of B consisting of the points A for
which hs can be taken equal to the fixed positive number 7. Tt
is seen that if A belongs to E, there exists a sector of a circle with
vertex A containing no points of E.. It follows that E. is a sparse
set. By employing a procedure utilized earlier, we can extend the
argument for proving E sparse to show that the sum of all the E’s
obtained by taking af and yd freely variable — in accordance with
the specified restrictions — is still sparse. To this end, suppose that
ayfy and y,8, are two angles — each less than 366° and generated
counterclockwise — containing opposite directions; and oyfs, y10s
(G, By P13 1= g, Boy Vs O3 Tespectively) two angles — less than 360°,
generated counterclockwise — respectively containing ayfs, 7505,
Let A be a point of the following double character: a) There exists
an angle af containing a,f, and contained in of, guch that P is
valid for all p-regions of sufficiently small diameter with vertex A
and af as angle at 4 and lying wholly within af; b) there exists
an angle 8 containing y,6, and contained in 0, such that P is
valid for all p-regions of sufficiently small diameter with vertex A
and y6 as angle at A and lying wholly within y8. We denote by
Boas, payndin- the set of points A just described for which the
respective validity of P and P applies to the p-regions as cha-
racterized which have diameter <7, where 7 is a fixed, positive
number. It is seen that if A belongs t0 Feappymssr, there is a
gector of a circle with vertex A containing no points of this set,

9%
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which is consequently sparse. Therefore the sum of all Fu e,p,paypéd,r
for the admissible rational values of the 9 subscripts is likewige
sparse. We call this sum F, discarding the earlier meaning of this
letter. Suppose now A is a point for which there exist two angles af
and yd containing opposite directions such that P is valid for all
p-regions with vertex 4, af angle at 4, and lying wholly within af,
and P similarly valid for yd. It is then possible to choose rational
atyy Oy B1y Bas Y1y P2y 015 03y T 80 that A belongs to Beeppynddr. 4 18
therefore element of E, and we may conclude that the totality
of points 4 for which there exist two angles «,f and y,6 of the
described character is a sparse set. We may therefore state the
following

Theorem V. If P is a property p-regions (i.e., simply-
connecied, polygonal, planar regions), every point A of the plane not
belonging to am exceptional, sparse sei is such that, for every pair of
angles afi and yd with vertew A containing opposite dirvections, cither
there is a p-region having property P of infinitesimal diameter with
vertes A, angle of at A, and lying wholly within af, and also such
a p-region for yd, or else there ewist two such p-regions having pro-
perty P.

If, in particular, we let y6=pfa we obtain the following

Corollary IX. If P is a p-region property, every point A of
the plame not belonging to an emceptional sparse set is such that, for
every angle af with vertex A, either there are two p-regions of infini-
tesimal diameter of property P with vertex A, the one having angle af
at A and lying wholly within af and the other having angle Pa at A
and lying wholly within fa, or else there are two such p-regions of
property P. ‘

Commonly a region property P is ascending or descending;
that is to say, if B; and R, are two p-regions, B, has property P,
and R,CR, R,DR, respectively, then R, has property P. For
example, if § i3 & given planar point set, and R” (R has property P)
means that RS is at most denumerable, or non-dense, or exhaustible,
or .of: measure 0, P is descending. If P is descending, ascending,
P is respectively ascending, descending — the two properties are
thus reducible the one to the other. Let P be a given descending
p-region property, « and # two directions such that angle af <1809,
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and r a given positive number. Let E. be the set of points 4 of the
following double character: Every p-region of diameter <r with A
as vertex and af as angle at 4 lying wholly within «48 has pro-
perty P, whereas every p-region so related to fa has property P.
Since P is descending, every p-region lying in fAa whose points
are all at distance <7 from A has property P, and therefore no
point within f4a at distance <r from A belongs to E,. Moreover,
if B is in af or on its boundary and at distance < from A4, there
exists a p-region R, of diameter <, with vertex B and angle fa
at B which lies within fBa and contains 4 as interior point. Since P
is descending, and there are p-regions of infinitesimal diameter
with A as vertex having property P, every p-region containing A4
in its interior has property P. R therefore has property P, s0 B
cannot belong to E,. The set E, has thus been proven isolated,
and it is therefore denumerable. It follows that if E=XE,, r ranging
over the set of positive rational numbers, E also is denumerable.
By availing ourselves of a type of argument already employed
a number of times, we can extend this result and show that the
sum of all the E’s obtained for variable «, and r — and r no longer
restricted to be rational — is likewise denumerable. We are thus
led to the following

Theorem VL. If P is a descending p-region properly, A a point
of the plane not belonging to an exceptional denumerable set, and of
an angle <180°, then there is either a p-region of infinitesimal dia-
meter, vertex A, angle aAp, and lying in aAp which has property P,
or else a p-region of infinitesimal diameter, vertex A, angle fAa and
lying in BAa which has property P.

Suppose § is a given planar set, and we call a point 4 of the
plane a ,,corner point” if there is a sector of a circle with vertex A
and angle af>180° containing no points of §, whereas every circle
sector of vertex A and angle fo contains in its interior points of &.

‘Let the p-region property P be defined by the property that the

p-region R has property P when and only when R contains no points
of § its interior. Since P is descending, we may apply Theorem VI,
and we obtain the result that the set of corner points associated
with a planar set is at most denumerable. This well known result,
whose origin, as it seems, is not subsumed in the literature under
simpler, more general considerations, appears here as a ready
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consequence of the application of our germ principle. Our deri-
vation, t00, removes the apparent mystery of the condition af> 1800,
It is the descending character of P which explaing the non-symmetry.
Theorem VI, together with its implication for functions?), may
be regarded as an extension to the plane of properties of the straight
line whose extension to the plane seemed to W. H. Young to
require the introduction of the sparse set §. But it is only one type
of extension which suggests this introduetion; another type, as
represented by Theorem VI, permits the property of denumera-
bility to go over unchanged from stralght line to plane, without
recourse to a new notion.

We add some remarks about the genesis of descending pro-
perties. We have employed the p-region as a convenient type of
set, but in relation to the remarks we are now ahout to make it
will be better to discard the p-region and take in its place the
geuneral open set, with which we shall use the word ,,region” ag
synonymous. Let @ be a given region property. With @ we associate
the region property P defined as follows: G¢° when and only when @
contains no sub-region of property @. It follows that P ig dcbcending
00nverse1y, if P is a given descending region property, let Q=P.
Then @° when and only when @ contains no sub-region of pro-
perty .

With every region property we have thus associated a descending
vegion property, the defined association. being such that every descen-
ding region property is the associated property of some region Property.

This association indicates the scope of applicability of The-
orem VI. We shall mention & number of examples of descending
region properties P thus associated with properties ¢. With re-
ference to a given planar set S:

) Let 6% if @S is non-denumerable; G° then means that G:§
consists of at' most a denumerable number of points.

b) @°% it § is dense in @; G° then means that & is nowhere
dense in @.

v oA
¢) G° if @8 is of measure 0; @" means that § is of positive
exterior measure in every sub-region of (.

") See Theorem VIII. §1.c., p. 276 £,
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These illustrative properties P, as all descending region pro-
perties, yield, according to Theorem VI, properties of the general
point set in terms of its manner of approach to points of the plane.

With reference to a given function f(z,y):
) @9 if 7 is of one sign (4, —or 0) in G; e if f is double-
signed in every sub-region of @.

b) G° if f is non-measurable in G; G" if fis measurable
in G.

Every descending region property, like a) and b) yields a pro-
perty of the general function.

Examples of descending region properfie.s may also be readily
given for sequences of sets and for sequences of functions.

In reference to the scope of application of Theorem VI, it
may be noted, too, that the number of descending region properties
is the same as the number of region properties altogether, namely 2°,
That there are in all 2° region properties follows from the fact that
there are in all ¢ regions and that a region property is determined
when and only when it is determined for every region whether it
has or hasn’t the property. ‘That the number of descending region
‘properties is at least 2° can be seen as follows. Let T be a set of ¢
distinet regions such that no region of T contains another region
of T. To define the region property P, let us invest each element
of T, arbitrarily and independently, with the property P or P;
and if @ is not an element of T, let ¢~ or G” according as @ does
not contain or contains as sub-region an element of T of property P.
P is desecending, and since there are 2° possible distributions of P
and P among the elements of T, there are 2° distinct properties P
as defined.

It may be of interest to note that if @ is a point (instead of
Tegion) property, and the region property P is defined by the re-
quirement that @" mean that @ contains no points of property @,
then P is not only descending but also additive, the latter term
signifying that sums of regions of property P are also of property P.
Conversely, suppose P is a descending, additive region property.
Tf @ is a region of property P, it must contain a point 4 such that
every region containing A has property P. For if this were not
80, we could enclose every point of G in a region of property P.
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On account of the additivity of P, the sum of such. enclosing
regions would be of property P, and therefore, because P ig
descending, @ itself would be of property P. Let § be the set of
points A4 of the plane such that every region containing a point
of A has property P. Let us say that the points of § have pro-
perty @, the points of S, property Q. @ is then a point property
such that if @ contains a point of property @ we have Gﬁ, an_d
every region of property P contains a point of property . We
may therefore state the following theorem, whose converse is
obvious. ‘

Theorem VII. With every descending, additive, region pro-
perty P, we may associate a point set S such that the region @ is of
p;ogerty P or P according as G countains or does mot contain a point
of 8.

If 8 is a given set, and P the (descending, additive) region
property such that @& or ¢© according as G contains or does not
contain points of §, we may adjoin to 8 any number of its limit
points without thereby changing the property P thus associated
Wit.h 8. Since, according to Theorem VII, all descending, additive
region properties are obtainable by means of such association.
th(?re are no more descending, additive region properties than elosed’
point sets. Since two different closed point sets § yield two different
aassociated region properties P, we conclude that there are in all ¢
desamdiny, additive region properties 8).

We have so far dealt mainly with properties of sets, but have
& number of times derived from these set properties — or from
interval properties — various results for the general function. The
theorems on l.fegion properties can similarly yield properties of the.
general function. The procedure suggested for passing from the
types of theorem on the general set treated in the present paper
to the«.:)rems on the general function can be readily describelcjl 18361:
stel?la,tleaﬂy. We shall do so for (real) functions f(z,y) of Jéwo (reaﬁ)
variables. Let 7, 7, (r,<r,) be a pair of rational nuﬁlbers and §
the set of points (,y) such that 11 <flz,y) <r,. ’ "

) 8) If wesay that P is denumerably
‘ﬁedly) additive —when the sum of N
it follows that every denumerably a,t;
additive, since the sum of any num
denumerably infinite number of them.

addi'tive — as distinguished from (unquali-
regions of property P is of property P,
ditive region property is (unqualifiedly)
ber of regions is the sum of a selected
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The theorems of the present paper on the general set §
associate with § an exceptional set E, which from one point
of view or another t{cardinal number, density, measure) may
be regarded as meager in elements. 4 theorem T on the
general set of the kind dealt with permits wus, then, to
associate with &8, an exceptional set Hp. Let us call the
particular type of exceptional set referred to in the formulation
of T a v-set. The r-sets we have considered in the present paper
have all been such that the sum of 8, 7-sets is again a 7-set — we
may, indeed. deem this property as requisite for duly registering the
meagerness of a t-set. If this property is assumed, the set E=2Err,ry
and r, (r,<7.) ranging independently over the set of rational num-
bers, is a z-set. Again; the 7’s of the present paper have been such
that no r-set is identical with the entire plane of points, and this
property, too, would be naturally included in an abstract postula-
tional definition of a z-set. If this second property of v-sets is pre-
supposed, we have E==0. If 4 is a point of E, then for every pair
of rationals ry, 75 (r;<<rs) the relationship of Sy, to A4 is ,,regular”
in the sense that A4 is not in the exceptional set E,, associated
with 8,.. It accords with the character of the z-set to assume
that a subset of a r-set is a 7-set, and that therefore if the relation-
ship of § to A is regular, the relationship to A of every superset
of 8 is also regular. With such an additional assumption for z, we
may conclude that if the relationship of &, to 4 is regular for
every pair of rationals ry, 7, (r;<<rs), then the relationship of Sw
to A is regular for every pair of real numbers k,l(k <l). We shall
say that the approach of the surface z=j(z,y) is “regular” at the
point (£,7,2) if 8, is regular at (£, 3) for every paiv of real numbers &, !
for which k<<l Under the assumptions we have made for T,
we may deduce from a theorem T for the general set the following
property of the general function: If (£, 9,{) is a point of space such
that (&%) does not belong to an exceptional z-set, the approach
of the surface z=f(x,y) is regular at (& n,0). Summarizing, we
formulate this result in the following

Theorem VIIL Let T be a type of (planar) set such that
a) the entire plane of poinis is not a 7-set;

b) a subset of a t-set is a T-set;

¢) the sum of %, T-sets is a z-set.
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Let T be a theorem which asserts that for every planar set S there
ewists a v-set B such that if A is a point of the plane not belonging
to E the set § is “o-reqular” at A°). Then T implies the following
property of the gemeral function f(x,y): For all points (§,7) of the plane
not belonging to an execeptional v-set, and for every real number £,
the approach of the surface z={f(x,y) is o-reqular at (&,7,{), in the
sense that if & and 1 are two real numbers such that k<<{<l, the set
Sp=Skcpw et 18 o-regular at (&n). If T’ is a theorem asserting
the same as T exwcept that in its formulation A is restricted to belong
to 8, then T’ implies the property of the general function which is the
same as the one implied by I exceptihat (£,7,() isto be restricted 1o belong
to the surface z=f(z,y).

The proof of the last part of Theorem VILI, which refers to I,
is parallel to that referring to T. As remarked, conditions a), h)
and c) are valid for all the types of exceptional set we have dealt
with. Following are examples of the application of Theorem VIII,

1. Let T be Theorem IIT'. In this case, Theorem VIIL per-
mwits us to conclude that if f(x,y) is a given function, there exists
a sparse set F such that if B: (§,#,{) is a point of space and 4: (&,7)
is not in E, the surface z==f(x,y) is p-regular at B in the sense
that for every pair of real numbers %,l, with k<({<l, the set
Bu=8(k<f(z,y)<l) is g-regular at (£, 7); and this latter regularity
means that either (a) for every simple are ¢ of the wy-plane through 4
with a determinate direction at 4 which is different from each
of two opposite (singular) directions, 4 is approachable wig O8u,
or else (b) for every curve (' of type described in (a), 4 is approachable
via OSy. Now if a) holds for every k and l, the gingular directions

must stay the same as k and I vary, because SyyC8y if b<<h <l'<I,

In this case, there is consequently at most one singular pair of
opposite directions, and if C is a simple arc in the zy-plane through A4
with a determinate direction at A different from the singular di-
rections, the point (&,7,() is approachable by the surface z=j(z,y)
vig C. If a) does not'hold for all k,1, there exists a pair of numbers %,
such that if ¢ is a simple are through 4 with a determinate direction
at 4 different from each of the two opposite singular directions,
there is a sequence of points (#,,y,) on ¢ with 4 as limit such that
for every n, f(@n,y.) <k or >I. Hence every pair of numbers %',7

°) That is to say, S has a specified relationship to 4, which, in view of the
applications of Theorem VIII is termed ¢-regularity.
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such that k<K <V'<l also has the property just stated for k1.
If a) does not hold for all k,l — a) and b) may, of course, hold si-
multaneously -— we shall accordingly say that the point (&,9,0)
is approached by the (space) complement of the surface z={f(z,y)
via every simplearc C of the ay-plane through A which has a de-
terminate direction at A different from each of two opposite sin-
gular directions. By means of Theorem VIII, we have thus been
led from Theorem III' to a property of the general function. It will
be observed that the argument we have used to arrive at this con-
clugion is essentially valid for the case where f(a,y) is not restricted
to be one-valued; moreover, the functional values of f need not
be defined outside an arbitrarily chosen planar set. The greater
freedom thus accorded the functions f(z,y) by the removal of these
restrictions especially conforms to the nature of the conclusion
we have reached for f(x,y), a conclusion which pertains rather to
a spatial point set than to a “surface” z=f(z,y). We may, then
state the following

Theorem IX, Let f(«,y) be a real function defined at the points
of an arbitrarily chosen planar point set, and assuming, at the poinis
where it is defined, one or more values — the number of these values
ranging independently of (x,y) from 1 to ¢. Then for all points B: (&,7,{)
of space such that A: (&,n) does mot belong to an exceptional sparse
set of the (z,y) plane, either B is approached by the “surface” z={f(z,y)
via every stmple are C of the xy-plane through A which has a determinate
dirvection at A different from each of two opposite singular directions —
which, however, need mot exist — or else B is approached via every
such curve C by the space complement of the surface z={f(x,y).

Similarly, we derive, for example, from Corollary VII the fol-
lowing theorem on the general function, where again we drop t.he.
restrictions on f(x,y) that it be one-valued and defined for the entire
plane.

Theorem X. Let f(x,y) be a one- or many-valued, real function
defined in a arbitrary point set, | a straight line, ao?d 7 ome of the% half
planes into which 1 divides the plane. Then there ewists an ea?ceptwnal,
at most denumerable subset B of 1 such that if B:(&,n,0) is a space
point with A: (£&7) in 1 but not in E, either B is approached by the
surface z=f(w,y) via every direction of approach to A rrom m, or B
is so approached by the space complement of 2=[(x,y).
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Without stopping to formulate the theorems on the general
function derivable, by means of Theorem VIII, from other results
we have obfained, we shall mention some examples of such the-
orems on the general function derivable, by means of Theorem VIII,
from theorems we have as yet not alluded to. If § is a planar set,
let us say that A is ewhaustibly approachable by S if there exists
an open set @ with 4 as houndary point such that @8 is exhaustible.
If A is exhaustibly approachable by S, every neighborhood of A
contains an open subset whose common part with § is exhaustible.
It follows that the points of § which are exhaustibly approachable
by § constitute an exhaustible set. From this property of the
general set, we can obtain, by means of Theorem VIII, a property
of the general function. If f(z,y) is a given function, we shall say
that the point (£,4,¢) is a point of symmertic inexhaustible approach
of the surface e=f(»,y) if for every pair of real numbers k, 1 such
that k<{<! and every open gset G of the ay-plane having (£, 7)
as boundary point, the set @Sy is inexhaustible. We may then
state the following

Theorem X1. All the surface points (&, m, (&, 7)) of the surface
z=f(z,y), where f(z,y) is a real, one — or many — valued function
defined for an arbitrary point set of the wzy-plane, are points of
symmetrical, ineshaustible approach of the surface, with the exception
of those for which (£,m) belonys to a fimed exhaustible set19),

It § is a planar set, we have seen that the points of § which
are exhaustibly approachable by S constitute an exhaustible set.
Analogous to this descriptive property iz the metric property that
the points 4 of § at which the lower (exterior) metric density of §
is less than 1 constitute a set of measure 0. If a point 4 of 8 iy of
the sort just described, we shall say that it is a point of deficient
metric clustering of 8. We can then say that the points of deficient
metric clustering of 8 which are exhaustibly approachable by 8 constitute
an evhaustible set of measure 0. We gshall say 1) that the surface
2=f(z,y) is quasi-continous at the point (£,%) of the (@,9) plane
if for every pair k,1 of real numbers such that k<f(Z,7)<l the
set Sy has (exterior) metric density 1 at (£ 7). With the aid of
Theorem VIII, we may then gtate the following

10) This theorem, stated for one-valued funetions, is contained in the author

paper, New properties of all real functions, Trans. Am. Math. Soc. 24, (1922)«
Theorem II.

) Cf. L. e.,p. 126.
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Theorem XII. Let f(z,y) be a real, one- or many-valued
function defined on an arbitrary point set of the xy-plane. Then if 'th‘e
points (&,m) of the my-plane belonging to an emceptional, ewhau.st'zble
set of measure 0 are excluded, every poini (&,n) is either a point of
quasi-continwity of | — for all values of f(w,n) — or it is such th.at
(&,my f(&m)) — for all values of f(&n) — is a point of symmetric,
inewhaustible approach- of the surface z=f(x,y). .

Similar results are obtainable by means of considerations
of cardinal number. If the descriptive part is dropped fron} The‘-
orem XII, we obtain the result that every function is quasz-coa‘m*
nuous almost everywhere*?). This implies that a measqrable fu.nctlon
is metrically continous (=approximately continous, aecordmg to
Denjoy) almost everywhere. This latter result may also be obtained
by the use of Theorem VIII if it is suitably modified — as may
bé done in an obvious way — to make it applicable to the passage
from the general measurable set to the general measurable function,
instead of that from the general set to the general function. Also
such modification of Theorem VIII can be generalized. .

By bringing in the idea of the negligible set, we can derive

additional results. If § is a given planar set, let us cons1de.r, for
example, thoge points A of the plane which are such that if BA
is an open segment of a straight line of sufficiently smsixll length
and of the given direction o, it consists exclusively of pomt‘s'of S,
whereas if BA is an open, straight line segment of sufflclel'ltly
small length and of given direction f, _it consists, except po§s1bly
for &, points, exclusively of points of 8. Let? E be the totah?y of
such points 4 associated with 8§, a and g being rz.agarded as lef%d;
and let H, be the subset of F consisting of the pomts'A for Wh.w.h
{the positive number) r is sufficient as 1ength. of Bf:l in the defini-
tional requirements for A. It follows that if A is a point o‘f E,, there
exists a parallelogram, with 4 as vertex, no point of which belongs
to H,, exception being taken to an at most denumerable number
of straight lines parallel to one of the sides of the paralle‘logram.
E. is therefore sparse, and consequently E ('=Z‘Er for rational 7)
is also sparse. We may thus state the following result:

12) 1. ¢., Theorem IX.
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If 8 is a planar set, and o and p two given directions, the points
of the plane approachable in direction a exclusively via S, and in di-
rection B, if denwmerable sets are regarded as negligible,  exclusively
via S constitute a sparse set.

By means of the argument for Theorem III, we were able
to remove the restriction of approach along two fixed directions.
But a similar argument would fail when applied to the result just
obtained pertaining to the negligible denumerable set.

Tn a manner similar to that employed for deriving this latter
result, we may obtain an analogous result by taking a set of exterior
metric density 0 as negligible. If § is a planar set, let . be the set
of points A4 of the plane such that if we approach 4 in the given
direction « we eventually have just points of 8, wheras if we
approach A along the straight line I of given direction f we eventually
have just points of S provided a set on I of (linear) exterior metric
density 0 at 4 may be neglected. Let B, be the subset of points A4
of B such that if B (=4) is a point at distance < from A with B4
of direction a, B belongs to 8. It follows that if 4 belongs to #,,
there exists a parallelogram ABCD such that if exception be made
of the points on a set of lines parallel to 4D which intersect 4B
in a point set of exterior metric density 0 at 4, no point of the
interior of the parallelogram ABCD is an element of H,.. Conse-
quently . B, i3 of measure 0, and therefore E=2XH, for (positive)
rational 7 is of measure 0. We thus have the following result:

If 8 is a planar set, and a and B two directions, the set of points A4
of the plane approachable in direction o exclusively via S, amd in
direction f, provided o linear set of ewterior metric densily 0 at A may
be neglected, exclusively via 8 is of measure 0.

Analogous results are obtainable in case exhaustible sets or
sets of other types are regarded as negligible.

o By applying the idea of the negligible set, we may obtain
S}unlar regults on the approach of a given set to a given straight
line. But we shall enter into no further such details.

It is obvious, too, that the results of the present paper lend
themselves, in the main, to extension to n-dimensional gpace. We
shall ]:_lOt attempt a comprehensive dicsussion of such possible
extension, but shall give one illustration. Let S be a given set in

3-dimensional space. Let 4 be a poi e 0 i
point of space of the follo
double character: i ! the folloving
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a) The points within an (open) planar angle adf of vertex 4
which are sufficiently near A all belong to 8;

b) the points sufficiently near A on an open half line of di-
rection y not contained in of (i.e., not contained in a plane
containing « and B) all belong to S.

Let E be the set of points 4 having properties a) and b). It
may be shown by means of an analogue of the germ principle that
if A is a point of B, a, and y remaining fixed, such that properties
a) and b) hold for all the points in question whose distance from 4
is less than a fixed positive number % there is a triangular pyramid
of vertex 4 no interior point of which belongs to E. E is therefore
a (spatial) sparse set 3). Moreover, by an argument like that already
employed a number of times, it may be shown — with the aid of
rational directions — that the result that E is sparse remains true
if @, and y are permitted to vary in accordance with the condition
that af does not contain y. In this way we arrive at the following
property of the general, spatial point set.

Theorem XIII. If 8 is a spatial point set, every point A
of space mot belonging to an exceptional sparse set is appoachable
via S along every linear direction, or it is approachable via S along
the interior of every plamar angle of vertew A, exception being made
of planar amgles lying in the planes of an axial pencil with a fized
line through A as awis.

The considerations and results of the present paper are also
largely extensible to point transformations. We add a few details.
Suppose, for concreteness, we have a general point transformation
from the xy-plane to the wv-plane; that is to say, with every point A:
(xyy) of the my-plane there is associated a point B: (u,v) of the
wv-plane, the function B=f(4) expressing the transformation being
conditioned only in that every point 4 of the zy-plane has one and
only one mate B of the uv-plane. In analogy with the sets Spcpx<:
which we have employed in reference to a function y=f(z) of a

single variable, we may now employ the sets Su<ncu=Su, uv.0
0, <0< s

constituted by the A’s of the zy-plane such that the corresponding

1) It may be readily shown that a set, such as E, having a pyramidal void
at each of its points is the sum of ¥, sets En each of which has the property that
on every straight line parallel to a fixed line ln the points of En are at least at
distance kn apart, where kn is a fixed number for fixed n. The use of the term
sparse is thus justified for K.
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B’s have coordinates satysfying the inequalities u; <u <<#g, ;<0 <<v,.
To the set Sy ugv,un, We may apply the theorems on general sets
which we have proved, and may thus conclude that, except for
the points of a certain, say v-exceptional set Eu,u;v,n, the set
Sy, u;m, 0 18 In & certain specific sense ‘‘regular”, say, at every poing
of Sy ugo,v. Letting u,u,,v,v, vary independently over the set
of rational numbers, we obtain 8, sets FHu, u;v,,, Whose sum E
is again r-exceptional. The points A of the xy-plane not belonging
to E will be such that every Sy, u;v,., containing 4, with wuy, w,,vy,v,
all rational, will show a certain regular character at 4; and on account
of the nature of the exceptional sets employed, this property will
remain valid when the condition that wug,u,,v,,v, be rational ig
dropped. A will thus be a point of a certain specific regularity with
reference to the point transformation B=f(4). An example of
a theorem obtainable by means of the indicated line of reasoning
is the following: If B=f(4), where A= (z,y) and B==(u,v), i8 a point
transformation subject only to the condition that to every 4 there
corresponds one and only one B, every point 4 of the ay-plane,
with the exception of a sparse set, is such that either (a) every
straight line through A contains a sequence of points A, having 4
as limit such that limf(4,)=B; or (b) there exists a positive
constant k£ such that every straight line through A contains a se-
quence of points A4, having A as limit and the property that the
distance between f(4,) and B is more than k for every .

An analogous result can be proved for point transformations
from m-space to n-space. It may be shown, too, that the condition
that f(4) be unique is not essential in the argument.
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Uber projektive Funktionen?).
Von
Hans Fried (Wien).

1. Mit P, und O, werden die Borelschen Mengen, mit P, (wo
n immer eine natiirliche Zahl bedeutet) die stetigen Bilder der Men-
gen (,—yund mit ¢, die Komplemente der Mengen P, bezeichnet.
Mit B, werden die Mengen bezeichnet, die sowohl Mengen P, als
auch Mengen (, sind.

Es werden reelle Funktionen betrachtet, die in dem Baire-
schen Nullraum definiert sind und auch die Werte + oo und —oo
annehmen kénnen.

Eine Funktion F(x) wird als eine Funktion P, (bzw. C,, bzw. B,,)
bezeichnet, wenn die Menge E[F(s)>¢] fir jedes ¢ eine Menge P,
(bzw. Cn, bzw. B,) ist. *

Eine Funktion F(x), fiir die es eine Darstellung

(1) P(o)=Yup ple— (@)

gibt, bei der r=g(?) eine stetige Abbildung des Baireschen Null-
ravmes auf sich und y(f) eine Bairesche Funktion ist, wird als Funk-
tion g* bezeichnet; eine Funktion F(z), tiir die es eine Darstellung

(2) F(z)=inf{yp[¢~"(x)]}

gibt, bei der w=g(t) eine stetige Abbildung des Baireschen Null-
raumes auf sich und y(#) eine Bairesche Funktion ist, wird als
Funktion ¢, bezeichnet. Die Funktionen y" und g, werden durch
vollstindige Induktion definiert. Mit g7 wird eine Funktion F(z)
bezeichnet, fiir die es eine Darstellung (1) gibt, bei der z= (i)
eine stetige Abbhildung des Baireschen Nullraumes auf sich und

1) Die Ergebnisse dieser Arbeit habe ich auf dem III. Polnischen Mathe-
matischen Kongress in Warschau 1937 (vgl. Annales Soc. Polon. Ma.th 16,
1938, 8. 191) mitgeteilt.
Fundamenta Mathematicae, T. XXXIIL. 3
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