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On Well-ordered Subsets of any Set.
By
Alfred Tarski (Warszawa).

In § 1 of this paper 1 shall give, without the help of the axiom
of choice (i. e. multiplicative axiom), certain results which are closely
connected with two celebrated theorems of the general theory of
sets: namely, the theorem of Cantor, according to which the
gystem of all subsets of any sebt is of greater potency (i, e. cardinal
number) than the set itself; and the theorem, also formulated by
Cantor and rigorously proved by Zermelo (with the help of the
axiom of choice), according to which every set can be well-ordered ).
On the basis of the results given in § 1 and in connexion with certain
congiderations presented in my earlier publications, I shall give
in § 2 two new equivalent formulations of the axiom of choice and
some observations concerning the axiomatic introduction of inacces-
sible cardinal numbers.

I should like to mention that Corollary 9 in § 1 being chrono-
logically the first among the results which will be given here was
obtained and was kindly communicated to me by 8. Lesniewski
ag early as 1929,

The present work is based upon the axiom-system of Zer-

melo, excluding the axiom of choice and Fraenkel’'s axiom of

replacement (,Ersetzungsaxiom®)?). The results can however be
carried over mutatis mutandis to other systems of the theory of
sets, e.g. to the theory of classes of the Principia Mathematica
of Whitehead and Russell 3). The customary notation and
terminology of set theory will be employed.

1) For these two theorems compare e.g. A. Schoenflies, HEntwicklung
der Mengenlehre und ihre Anwendungen, Leipzig and Berlin 1913, p. 63 seq. and
170 seqq.; and F. Hausdorff, Grundziige der Mengenlehre, Leipzig 1917, p. 56
and 133 seqq.

%) See, for example, A. Fraenkel, Hinleilung in die Mengenlelre, Berlin
1928, p. 268 seqq.

3) 2nd edif., Cambridge 1925-1927.
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§ 1. A system of sets S is, as usual, called hereditary if all the
subsets of every set X belonging to § also belong to S ).

Theorem 1. Let M be any set and S an hereditary system of
subsets of M. If there is a function f which correlates in one-oné
fashion every set X eS with an element f(X)eM, then there is also
a function g which correlates (not necessarily in one-one fashion)
every set X eS8 with one element. g(X)e M —X.

The proof depends on the same idea as the proof of the above
mentioned theorem of Cantor on the system of all subsets of & set.
If, namely, f is & one-one transformation of the system S into a geb
NC M and if the transformation inverse to f is, as usual, denoted
by ', we put:

=1 wex-v—"wn)

for every set X ¢S and then show {by an indirect proof) that the
function g thus defined has the properties required by theorem 1.

From this, if we pass to the complementary sets, we obtain
at once:

Corollary 2. Let M be any set and S a system of subsets of
this set which contains as elements for every set X ¢S also every set ¥
such that XCYCM. If S has the same potency as a subset of M, then
there ewists o selective function in S, i. e. a function h which correlates
every set X eS with one and only one element h(X)eX.

Theorem 3, Let M be any set and S an hereditary system of
subsets of M. If there is a function g which correlates one element
9(X)ye M —X with every set X eS, then there also exists a subset N
of M which can be well-ordered and does not belong to S.

The proof follows the same lines as the (second) Zermelo’s
proof of the theorem on the well-ordering. For if g is a function
with the properties given in Theorem 2, we denote by K the
product of all systems of sets X which satisfy the following con-
ditions:

(i) #f YeX.S, then Y1-{g(Y)}eX;

(ii) if YCX, then 2]z eX.

ZeX

1) See, for example, my paper in Fund. Math. 16 (1930), p. 227.
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Tuarther we define N as the sum of all sets ZeJL. It can be
easily shown that this set N has the required properties; in parti-
cular, N is well-ordered by the relation ~2 which subsisty botwe«m
two elements # and y of N if, and only if, there is u set ZeK
such that weZ and ynoneZ. '

Corollary 4. Let M be any set and S an hereditary system
of subsets of M. In order that there should be a subset N of M which
can be well-ordered and does mot belong to S, it is necessary and suf-
ficient that there exists a function g which correlates one and only one
element g(X)e M —X with every set X eS.

To prove this, it is only necessary to show how the existence
of the function g can be inferred from the existence of the set N
(since the inverse implication has already been established in The-
orem 3). For this purpose it suffices to consider a particular well-
-ordering of the elements of N and to correlate with every set X' ¢S
a3 g(X) the first element (in the given order) yeN which does not
belong to X: were there no such element y, then N would be a sub-
get of X and must therefore belong to S, since S i3 hereditary.

If we apply Corollary 4 to the system S of all proper subsets
of a set M and then pass to the complementary sets, we reach the
conclusion that the possibility of well-ordering any set M is equi-
valent to the existence of a selective function in the system of non-
~void subsets of M. This well-known theorem (which, in its essentials,
is contained in Zermelo’s proof of the theorem on the well-ordering)*)
thus represents a sgpecial case of Corollary 4.

From Theorems 1 and 3 we obtain at once:

Theorem 5. Let M be any set and S an hereditary system of
subsets of M. If S has the same potency as a subset of M, then there
18 a subset N of M which can be well-ordered and does not belong to S.

Corollary 6. Let M be any set, n any cardinal number and S
the system of sets XCM for which:

(i) :—an, or (ii) f<n, or (iii) fnon}n, or (iv) Azfnon>n.

If M and S have the same potency, then there is o subset N of M
which- can be well-ordered and is such that:

(I) Nnon<n, or () Nuon<n, or (III) Nzn, or (IV) N>n.

) Compare A. Fraenkel, op. cit., p. 299 seq.
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This corollary is an immediate consequence of Theorem 5.

Corollary 7. Let M be any set and S the system of sets XCM

with the potency J=f<ﬁ . If M and S have the same potency, then they
can both -be well-ordered.

In order to prove this we apply Corollary 6 in the case (ii), (IT)
replacing n by M. According to the corollary fthere’ exists a set
NCM which can be well-ordered, the potency of which is not less
than that of M. The sets M and N thus have the same potency;
consequently M (and also S) can be well-ordered. Q. E. D.

It is to be noted that the proof of Corollary 7 (in contrast to
the proofs of theorems and corollaries 1 to 6) is not “‘effective’:
even if a one-one transformation of M into S is known, we can in
general see no possibility of defining & relation by which the well-
-ordering of M is established.

Closely related to Corollary 6 is the following:

Theorem 8. Let M be a non-void set, n any cardinal number

=8, and S the system of sets X C M with the potency X =n. If M and §
are of equal potency then there emists a subset N of M which can be
well-ordered and is such that Nnon<n.

The proof of this theorem will not be given here. It is more
complicated than the proof of Corollary 6 (and than that of the
proceding theorems) and is based on certain results of mine on
the arithmetic of the cardinal numbers which have so far only been
published in part 1).

Putting in Theorem 8 or in Corollary 6 (i), (I) n=y, we obtain
at once:

Corollary 9. If the system S of all denumerable (or of all
at most denumerable) “sets of real nwmbers has the potency §:2“’“,
then there is a set N of real numbers with the potency N =N

In conclusion of this paragraph we give:

Theorem 10. If M is any set and S the system of all sub-
sets of M which can be well-ordered, then M has a smaller potency
than S.

1) See the joint report by A. Lindenbanm and myself, C. R. Soc. Se.
Vars. 19 (1926), p. 299 seqq.
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We must in fact have M <S, since M is of equal potency with
certain sub-systems of S, e.g. with the system of those XC .M which
consist of exactly one element On the other hand S is evidently
bereditary; for if it were the case that S<M then by Theorem 5
there would be a set NCM which would be Well orcered but did
not belong to S, and this would confradict the hypothems of the
corollary. Consequently we must have 73 <8. Q. E.

Theorem 10 can be regarded as a strengthening of the theorem
of Cantor mentioned at the beginning.

§ 2. With the help of the results reached in §1 we shall now
show that the axiom of choice is equivalent to each of the following
two statements A, and A,:

A,. If m is any infinite cardinal number, w a cardinal number
such that n<m, M is a set with the potency m and S the system of sets

XCM such that X non >n, then S has the potency m".

‘A,. For every set N there ewists a set M which has the sume
potency as the system S of all those sets X C M “which contain no subset
that has the same potency as N.

The proof consists of three parts:
(1) The axiom of choice implies HA,.

In order to show this, it will be remembhered that the theorem
of comparability of cardinal numbers is o consequence of the axiom
of, choice. The system S of A, is accordingly identical with the
system of sets XC M whose potencies are <(n; but with the help
of the axiom of choice it can be proved without difficulty that
the latter system has the potency m™?). In this way A, is
obtained.

2) A, implies A,

Let N be any set, and let n denote the potency of N. Dis-
regarding the frivial case when n<{1 (in this case it suffices to
put M=2XN in order to fulfill the conditions of HA,) we let =™

1) See W. Sierpinski, Zarys teorii mnogoéei (Fundamentals of Set-theory,

polish), I’ Part, 3% edit.,, Warszawa 1928, p. 251 seqq.; A. Tarski, Fund. Math.
16 (1930), p. 195 seq.
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and consider any set M with the potency m. The system 7' of the
gets X C.M which contain no subset of the same potency as N is

evidently a part of the system S= E [XCM (md X non >1] and

therefore has, according to A, a potency <m"; moreover we

have m"= (2" = o _9n™ 1 On the other hand there
certainly exist sub-systems of 7' which have the potency m, for

example the system U= E [XCM and 1_1] Consequently, we have

m< < =T, Whence l‘—-m The set M is thus of equal potency
with 7' and consequently satisfies the conditions of HA,.

(3) A, implies the axiom of choice.

Again we consider any set N. According to A, there exists
a set M which has the same potency as the system 7' of sets XCM

such that X non = > N. We now apply Corollary 6 in the case (iii), (TII)

replacing n by ¥ and S by T. In accordance with this corollary
there exists a subset N; of M which can be well-ordered and has

the potency >N; hence the set N can also be well-ordered.
‘Wehave therefore deduced the theorem on the well-ordering from A,;
and from this theorem, as is well known, the axiom of choice can
eagily be derived?).

By (1), (2) and (3) the axiom of choice is equivalent to each
of the statements A, and A,.

This result represents an advance on an analogous result
which was given in my paper: Hine dguivalente Formulierung des
Auswahlazioms 2). For there I have shown that this axiom is equi-
valent to a statement & which is closely connected with HA,, and
which states that for every set N there exists a set M which is not
merely of the same potency as, but is identical with, the system
of sets S described in A, & is logically stronger than HA,. Whilst
the derivation of the statement A, from the axiom of choice can
be carried out wholly within the framework of Zermelo’s axiom-
-system, in the derivation of the statement & Fraenkel’s axiom of
replacement is used, and it can be shown that the use of this axiom

1) Cf. A. Fraenkel, op. cit., p. 299 seq.
%) Fund. Math. 30 (1938), p. 197 seqq.
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is essential. On the other hand it is clear that the statement
within a system of set-theory which involves the theory of types
(e.g. the theory of classes of Principia M athematica) becomes quite
meaningless. In contrast to this the statement A, in such a case
does not become meaningless at all and still has the axiom of choice
a8 & consequence.

Analogous remarks apply also to a question which was dis-
cussed in my paper: Uber unerreichbare Kardinalzahlen ). In this
paper I have defined the concept of inaccessible cardinal number
(in the narrower sense), and I have formulated an axiom A which
guarantees the existence of inaccessible numbers as large as we
please; on the basis of the usual axioms of Zermelo the existence
of such numbers, apart from the two smallest of them, 2 and s,
cannot be established at all. The axiom referred to is as follows:

A. For every set N there ewists a system M of sets which satisfics
the following conditions:

(i) Nelf;
(i) ¢f XeM and YCX, then Yell;
(iii) if XeM and Z is the system of all subsets of X, then ZeM;

(iv) if XCM and X and M do not have the same potency,
then XeM.

Axiorp A was suggested by a very special characterization
of the inaccessible numbers (or sets) which was given in Theorem 21
of my last-mentioned paper. In this connexion the axiom may
seem somewhat strange and artificial (it is in any case only signi-

ficant if the system of set-theory in question does not depend upon
the theory of types).

In my paper on inaccessibles cardinal numbers the logical
power of Axiom A was emphasized. If it is inclused in the
Zermelo’s or Zermelo-Fraenkel’s axiom-gystem this axiom
brings with it a great simplification and reduction of the system; and,
be it noted, the axiom of choice then becomes a provable theorem.
It might be supposed that Axiom A owes its great deductive power
not so much to its content as to those peculiarities of its form-
maﬁon which were pointed out above. But with the help of the
results of §1 it can be shown that this supposition would not be quite

') Fund. Math. 30 (1938), p. 6889, in particular p. 87 seqq.
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correct: A can be replaced by an axiom B which serves about the
same purpose, for it assures the existence of inaccessible numbers
as large as we please and has the axiom of choice as a consequence,
but is based on 2 much more ‘‘natural’’ characterization of the
inaccessible numbers (and, in particular, does not violate the theory
of types). This axiom is as follows:

B. For every set N there ewists o set M with the following
properties:
(i) N has the same potency as a subset of M;
(ii) the system of subsets of M which do mot have the saine
potency as M has the same potency as M.

(iii) there exists mo set P such that the system of all subsets of P
lias the same potency as M.

In order to derive the axiom of choice from B we proceed in
2 manner analogous to that followed in the case of the derivation
sketched above of the same axiom from statement A, (although
with the difference that we use Corollary 7 instead of Corollary 6).
Having derived the axiom of choice we can regard Theorem 17 of
my paper cited above on inaccessible cardinal numbers as proved.
According to this theorem the potency of & non-void set M is an
infinite and inaccessible cardinal number if, and only if, M satis-
fies the conditions (ii) and (iii) in &B. From this it is seen that the
existence of inaccessible cardinal numbers as large as we please
is really guaranteed by Axiom . ]

In conclusion it may be mentioned that Axiom B seems to
be logically weaker than A. In any case A has not so far been
derived from B [without the help of Fraenkel's axiom of
replacement ), whilst the inverse implication can be derived
from Zermelo’s axioms quite easily.

1) The derivation of & from B on the basis of the axiom of replacement
oan be constructed after the manner of the proof of Lemma 18 in my paper in
Fund. Math. 30 (1938), p. 77 seqq.
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