132 J. Marcinkiewicz and A. Zygmund.

(b) Under the condition (1.6), the expression ol (#,y;f) tends
almost everywhere to f(x,y), where olh, denotes the (C,q, ) means of
the Fourier series of the function f, and the numbers & f are positive.
The proof follows the same line as that of Theorem 1. We must .O?lly
observe that the (0, a) kernel Kr,(u) satisties for 0<a<1 theinequalities:

@ w1

| B ()| <A (a)[m (m=1,2,...,; 0<u<<m)

| Ko ()| << A(a)m,

analogous to (3.2). (4(a) depends on « only). ‘
Similarly we prove that, if P(r,u) denotes Poisson’s kernel, then

WD) 5 [ [Hetuyo) P Plow) du dofioy)

at almost every point (x,y), provided that
(I—0)/(1—1)<d,

More generally, we have the following

(4.2) r—1, -1, (1 —r)/(1—p)<A.

Theorem 3. At almost every pont (,Y),

L [ [ ety m0) 2o, Ployo) du do—>flayy),
provided that the conditions (4.2) are satisfied, and that t]z@ ponts
with polar coordinates (r,&), (o,n) tend respectively to the points
(1,2), (1,y) along non tangential paths.

Similarly we may generalize Theorem 2 °).

(¢) Theorems 1 and 2 are true for the Fourier series of func-
tions of » variables. The proofs undergo no essential changes.

9) If the function |f| logt|f| is integrable over @, we have (3.11), for m

and n tending to 4+oco independently of each other. The function
o (@,y;f) = Max |o,, , (2,y;])|
: m,n
satisfies the inequality

[ [ (= 1—¢ ]1/’(1"'5’) Ay N A

U [ @ysn) dmayy ™ o [ [lillog™ fide dy+7 -

Q . Q
These results are implicitly contained in the paper quoted in footnote 2).
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On the isomorphism and the equivalence
of classes and sequences of sets?).

By
Edward Szpilrajn (Warszawa).

Introduction. The notions which are the subject of this
paper belong to the General Theory of Sets and particularly to itg
part which deals with classes and sequences of sets. It seems that
one of the chief problems in this field is the investigation into such
relations between classes (or sequences) of sets which are analogous
to as important a relation between sets as the equality of powers.

The relationships in the domain of classes of sets are obviously
more complicated than in the domain of sefs; and so it is possible
to define in a natural way many relations between classes of sets
which are reflexive, symmetrical and transitive and which may be
congidered as analogous to the equality of powers. In this paper
we examine four notions of this type: weak isomorphism, isomorph-
ism (‘“iscmorphie algébro-logique” in terms of Kuratowski-
Posament ?)), total isomorphism, and equivalence (‘‘double similar-
ity in terms of Whitehead-Russel! 3)).

Let us denote by K and L two classes of sets. If K and L,
considered as sets partially ordered by the relation of proper in-
clusion, are similar, then they are called weakly isomorphic. Further,
we say that K and L are isomorphic when they have the same pro-
perties from the point of view of all finite operations upon sets (ad-
dition of two sets and complementation). Analogically, K and L

1) Presented to the Polish Mathematical Society, Warsaw section, on
May 6, 1988. (1. the preliminary report Szpilrajn [6].

2) Kuratowski-Posament [1], p. 282.

3) Whitehead-Russell [1], p. 84. Cf. also Sierpinski [1], p. 80, Stone
[1], p. 91, Szpilrajn [1], p. 306, [2] and [3].
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are totally isomorphic when they have the same properties from
the point of view of all operations upon sets (addition of an arbitrary
finite or transfinite number of sets and complementation). Finally
they are equivalent if, from the point of view of the General Theory
of Sets, all their properties are identical?).

In §§ 1 and 2 I state some general theorems on. these relations
and I give a few of their applications to the study of point gets.
In § 3 I deal especially with enumerable sequences of sets. Before
all I express the condition that two sequences of sets are isomorphic
[or totally isomorphic] with the help of the characteristic function
of a sequence of sets (3.2). Applying this condition and the properties
of the characteristic function, I consider some questions con-
cerning point sets, chiefly the problem of finding for a given se-
quence of sets an isomorphic [or totally isomorphic, or equivalent]
sequence of sets of a special type e.g. Borel sets, projective sets, otc.2).

My paper on the characteristic function: Szpilrajn [4] will
be refered to as CF.

Terminology and notation. By the term space we understand a wholly
arbitrary abstract set. The letters X, ¥ and Z, when no additional explications
are given, will always denote arbitrary spaces. If a metrical space X is a Borel
subset of a complete space, then X is said to be Borel space. The interval 011
is denoted by I; the space of irrational numbers by N, and the space whiel
is the sum of NI and of the set of all integers by N*.

The Cantor set, i.e. the set of all numbers:

(*) t= 2-(0,’5177;2,1.’3,---)3, wlhere ’l:“=0 or 'L'"=],,

is denoted by 0. For i=0,1 and n=1,2,3,... we denote by O the et of all num-
bers (*) such that i =4. Further, for each finite sequence f,,f,,...,§, consisting
of the numbers 0 and 1, we denote by 0?-15,‘2__.7-1 the set of all numbgrs (*) such
that iy=7, for k=1,2,...n, and we call this set inlterwl of C. A subset of O.is open-
and-closed in ¢ if and only if it is the sum of a finite number of intervals of C.

For each set ECX we put E'—X—F and F'=E. Consequently, we have
X—F=F"" for 1=0,1.

For each sequence e={E,,} of subsets of a space X, we denote by o, (x) the
characteristio function of e, i.e. the function which associates with eac(}‘i xedX
anumber (*), where i;=0 or i,=1 according as zwe XL or wel, (sce CF 2.2).

) 1) Precise definitions will be given under 1.1. Let us remark that it is pPoOsE-
ible to define, for each cardinal number 1, “the n-isomorphism” analogous to
“the n-additivity” in the sense of Tarski. See Tarski [2], p. 152.

’) A series of analogous problems concerning especially the equivalence
was raised by Ulam and treated in the paper: Szpilrajn [:‘2].
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We call system of sets each class E={E. . in which with each element
(“index”) £ belonging to a given set & there is associated a set Hy. (Similarly we
may speak of a system {ig., of numbers). In particular, when Z is the set of
positive integers, one obtains a sequence of sets; more generally, if = consists of
all ordinal numbers §< e (where « is a given ordinal number), we obtain a trans-
findte sequence.

F being a biunivocal function, F~! denotes the inverse function. ¢ being
a relation, the set 4 of all elements a for which there exists an element b guch

_that aob [such that bea] is called domain [counterdomain] of e.

A class K of subsets of X is called 1° complementative, 2° additive, 3° iotally
additive, 4° multiplicative, 5° totally multiplicative, when for every transfinite
sequence K, of sets belonging to K we have 19 X—K,eK, 2° K,+E;ek,
3 K+ Kyt .t Bt ..eK, 40 K, K,eK, 5° EKy...-J;-...cK. Each com-
plementative and additive [totally additive] class of sets is called a ring [a total
ring]. The smallest ring [total ring] including a given class K of sets is denoted by K,
{by K. Clearly, each ring [total ring] is multiplicative [totally multiplicative].

A function which associates with each set B belonging to a complement-
ative class K (of subsets of X) a set F(E) (contained in ) is said to be com-
plementative if we have F(X—K)= "— F(K) for K eK. Similarly we define the
additivity, the total additivity, the multiplicativity and.the total multiplicativity
of F. Obviously each complementative and additive [totally additive] function
of a set is multiplicative [totally multiplicative]. )

TFor each complementative function F we always have: F(EY=[F®E)]
{or i=0,1).

§1. Isomorphisms and equivalence.

1.1. Definitions and fundamental properties. A biuni-
voeal transformation F(K) of a class K of sets into a class L of sets
is called weak isomorphism between K and L if given K, K,eK, we
have K,CK, if and only if F(K,)CF(K,).

The condition of biunivocity may be omitted:

(i) A relation o is a weak isomorphism between K and L if
and only if 1° the domain and the counterdomain of ¢ are K and L
respectively, 2° given K, oL, and K, oLy, we have EK,CK, if and only
if L,CL,.

In fact, it is easy to see that the condition 2° implies the
biunivocity of p. ;

(ii) If F(K) is a weak isomorphism between two rings [total
rings] K and L of subsets of X and ¥, then: 1° KE=0 if and only if
F(E)=0, 20 K=X if and only if F(K)=Y, 3° the function F is com-
plementative and additive [totally additive 7Y).

1) This theorem is due to A. Tarski.
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This theorem may be easily derived from the following remark:
if & class R of sets is a ring [a total ring], then the notions of 19 empty

set, 2° whole space, 3° sum of two sets [of an arbitrary finite or

transfinite number of sets] belonging tio R can be defined by using
only the relation of inclusion between sets belonging to R. For
instance, the sum of two sets 4, and 4, belonging to R is an element
BeR such that we have DB for R eR if and only if £D4, and RDA,.

Theorem (ii) justifies the following definition: A transformation
F(K) of a class K of sets into a class L is called isomorphism ) [total
isomorphism ] if and only if there exists a weak isomorphism G(K)
between classes K, and L, [classes K;and L, such that G(K)=F(K)
for K eK.

I shall give one more definition: A transformation F#(K)
of a class K of subsets of X into a class L of subsets of ¥ is called
equivalence of K and L if there exists a biunivocal transformation
o(p) of X into Y such that ¢(K)=F(K) for each KeK.

We say that two classes K and L of sets are weakly isomorphic
[isomorphic, totally isomorphic, equivalent] when there exists a weak
isomorphism [isomorphism, total isomorphism, equivalence] of K
and L.

It is obvious that

(iii) FEach equivalence is a total isomorphism, each total iso-
morphism is an isomorphism, each isomorphism is a weak 18omorphism.
P ’

The isomorphisms and the equivalence may be defined also
for systems of sets: two systems (with the same set = of indexes)
4, and {B.), . are weakly isomorphic [isomorphic, totally iso-
morphic, equivalent]?) if there exists a weak isomorphism [iso-
morphism, total isomorphism, equivalence] F of the class of all
sets 4: and the class of all sets B; such that F(4:)=B; for each &¢.5.

teg

Obviously:

(iv) Two classes of sets K and L are weakly isomorphic [iso-
morphic, totally isomorphic, equivalent] if and only if they can be
well ordered in such a way that the obtained transfinite sequences of
sets are weakly isomorphic [isomorphic, totally isomorphic, equivalent].

) Cf. Kuratoweki-Posament [1], p. 282.
%) The notion of equivalence of sequences of sets is due to Ulam. Cf.
Szpilrajn [2].
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1.2. Classes containing all one-element sets.

(i) Let K and L be classes of subsets of non-void spaces X and Y.
If K and L contain all the one-element subsets of X and Y respectively,
then each weak tsomorphism between K and L is an equivalence
between these classes.

The case X=1 being trivial, we may suppose X>1. Let F
be a weak isomorphism between K and L. First let us prove that

(*) FL(p)]=+0

The relation F[(p)]DF[(p)] for p,p’eX implies the relation
(p’)D(p) and consequently p’=p. Hence we have the relation (*) .
with the help of which we shall obtain the relation

for each pelX.

(%) Plp)l=1

For this purpose suppose (¢)CF[(p)]. Then, F' being also
a weak isomorphism, we have: F'[(¢)]C(p) and,:by (*), F“1[(g)]# 0.
Hence F'[(g)]=(p) or, otherwise, F[(p)]=(g).

It follows from the equality (f) applied for the functions #
and F~' that for each zeX there exists exactly one ye¥ such that

(%) Fl(z)]=y

and vice versa: for each y¢Y there exists exactly one z¢X for which
we have (*.*). Now let us put ¢(z)=y whenever the equality (*.*)
holds; in that way we obtain a biunivocal transformation ¢ of X
into Y. Consequently, it remains to prove that

(3% F(R)=¢(K) for each K eK.

for each peX.

First we have
p(E)=[p(p)]=2Fl(p)|CF(K),
peX peK

where the last relation follows directly from the fact that F is
& weak isomorphism.

On the other hand, suppose geF(K). There exists an element
peX such that g=¢(p) or, otherwise, (¢)=F[(p)]. The function F
being a weak isomorphism, (p)CK; hence gep(K) and finally
p(K)DF(K). Thus the relation (¥ %) holds, and hence the theorem is
proved.
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Theorem (i) has different consequences:

(ii) Two topological spaces are homeomorphic if omd only if
the classes of their closed subsets are weakly isomorphic.

(In other words: the type of partial order established by the
relation of proper inclusion in the class.of all closed subsets of a to-
pological space determines its topology.)

(iii) There exisis a generalized homeomorphism between X and Y
[in the sense of Kuratowskil)] if and only if the classes of Borel
sets in X and in ¥ are weakly isomorphic.

In order to prove Theorem (ii) [Theorem (ii)] " it suffices
to apply (i) and to remark that each equivalence between the
classes of all closed [Borel] sets determines a homeomorphism
[a generalized homeomorphism].

Applying the theorem on the non-equivalence of the class
of sets measurable (L) in the interval I and of that of sets which
possess the property of Baire (in I) %), we obtain, in virtue of (i):

(iv) The class of measurable sets in I and that of seis possess-
ing the property of Baire in I (in the large semse) are mot weakly
isomorphic.

§ 2. Constituents and atoms.

2.1. Definitions and fundamental properties. Let
=[K_];, be a system of sets. Bach set of the form K- K" Kf,::,

where ’1:1,’&3,...,7:), is a finite sequence of numbers 0 and 1 ) and

E1,E2y.y &y 18 a finite sequence of distinet elements of Z, is called
a constituent of K. Bach set of the form
*) 11 &3,

fem
where Ui 18 @ system consisting only of the numbers 0 and 1,
is termed an atom of K 4,

1) For the notion of generalized homeomorphism (homeomorphism of
clase (e, 3)) see Kuratowski [1], p. 221 and [2].

%) Szpilrajn [1], p. 306.

%) For the notation Z° and Z' see p. 134,

4) For the notions of atom and constituent ses e.g. Tarski [1], p. 236
and Kuratowski-Posawent [1], p. 283.
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Let L__\Lt} cey De another system of sets (with the same set
£ of indexes). Constituents of K and L with the same indexes:

K} Ke...Kr  and L L. L

n

and respectively atoms

n K o and [ 1 L’

fer fem

are called mutually corresponding.

The notions of atom and constituent of a transfinite sequence
of sets (but not of corresponding atoms and constituents) do not
depend on the order of elements in the considered sequence and
consequently they can be also applied for classes of sets.

The following theorems are easily derived from the above
given definitions:

(i) FEach set belonging to K is a constituent of K. Hach two
sets K¢ and L: (with the same index £) are corresponding consti-
tuents of K and L.

(ii) The class consisting of the empty set and of all finite
sums of constituents of K is equal to K.

(iii) Let T, and U, T, and U, be sums of a finite number
of corresponding constituents of K and L. Then I',—T, and U,—
can be also represented as sums of corresponding constituents of
K and L.

(iv) Each two sets K: and Lg can be represented as sums
of a (finite or transfinite) number of corresponding atoms of K
and L.

(v) For each two different systems {Z.},. . consisting of the
numbers 0 and 1, the atoms (*) are disjoint; the union of all atoms
is equal to the Whole space.

(vi) The class consisting of the empty sel and of all sums of
atoms of K is equal to K,. Bach non-void element of the class K;
may be represented as a sum of non-void atoms of K in one way
only.
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2.2, Constituents and atoms; isomorphisms and equi-
valence. Let us denote as above by K={K]. - and L={L],
two systems of sets (the indexes of which form the same set).

(i) Two systems of sets are isomorphic if and only if any two
corresponding constituents are both void or both mon-void!).
Necessity. K and L being isomorphic, there exists and iso-
morphism F between K, and L, .such that F(IL y=Ls. For each
two corresponding constituents K" 1 and L"lL'L’”
we have by 1.1 (ii, 39):
F(K?}-...-K;”Z):F(K;) (K’")—«[P(Ix o [ B )]"::J;gl....-L;;;.

Thus, it follows from 1.1 (ii, 1°) that
K{ o Kp=0 if and only if Li-..Ly=0.

Sufficiency. Suppose that any two corresponding con-
stituents of K and L are both void or both non-void.

We establish a relation p between each two sets Vi+Vot....FV,
and Wi+W,+..4+W,, where V; and W, are two corresponding con-
stituents of K and L. .

By 2.1 (ii), the domain of ¢ is the ring K, and the counter-
domain of g is L, In particular, by virtue of 2.1 (ii), we have K o L
for every &.

On account of 1.1 (i), in order to show K and L isomorphic,
it remaing to prove that for every two finite sequences Vy,...,Vy;
Vi, Vi and Wo,..., Wy Wi,..., Wi of corresponding constituents of
K and L, we have

21 yoxy

=1 Jj=1

k !
it and only it Y'W,C2W;
=10 =
or in other Words:
k ! & K
(*) QVJ—Z.] Vi=0 if and only it JW,—Wj=0.
I= i= J=1 J=1

The proposition (*) is an immediate consequence of the hypo-
thesis and of 2.1 (iii).

(i) Two systems of sets are lotally isomorphic if and only if
any two corresponding atoms are both void or both nmon-void.

') Theorem due to Kuratowski-Posament [1], p. 283.
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Necessity. K and L being totally isomorphic systems of sets,
there exists a total isomorphism F between K; and L, such that
F(K:)=L:. For each two corresponding atoms of K and L:

f | Kf and [1Lg

&E'v s.E"

we have by 1.1 (ii, 3%):
F(]E$= [[LF(E =[] L,

\EN -('-4
and by 1.1 (ii, 19):
[[E:=0 if and only it [] LE=0.

feg 7 fex 7
Sufficiency. Let us suppose that every two corresponding
atoms of K and L are both void or both non-void. We establish
a relation ¢ between each two sums Y4, and X'B, of correspond-

ing non-void atoms of K and L.

By 2.1 (vi) the domain and the counterdomain of the relation g
are the total rings K; and L; respectively. In particular, by 2.1 (iv),
we have K:pL: for each e 5.

It follows easily from 2.1 (v) and (vi) that the relation o is
a weak isomorphism between K; and L, and that, consequently,

the classes K and L are totally isomorphic.

(iii) Two systems of sets are equivalent if and only if any two
corresponding atoms are of the same power?).

Necessity. By hypothesis: K=K}, L=|Lg, K:CX, L:CY,
and L:=¢(K;), where ¢ is a biunivocal transformation of X into Y.
It is obvious that ¢ carries each atom of K into the corresponding
atom of L and, consequently, these atoms are of the same power.

Sufficiency. It is a consequence of 2.2 (v) and of the fol-
lowing remark easy to prove:
Let X¥=2X, and Y=2'Y, betwo decompositions of two spa-

1
N

ces X and Y into disjoint sets such that - Y __1; Then there exists
a biunivocal transformation ¢ of X into Y such that p(X,)=Y,
for each .

d

L It is w simple generalization of a theorem proved in the paper Szpil-
rajn [2], 2.5 (ii), p. 311.
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An immediate corollary of Theorem (ii) and (iii) is:

(iv) If two totally isomorphic systems of sets K and L possess
only atoms every of which contains at most a single point, then K and L
are equivalent.

§ 3. Enumerable sequences and classes of sets.

3.1. Regular constituents. For each sequence e={E,
every constituent of the form E{.H...I'" (where 4,=0 or 1)
will be termed regular. Let us consider an arbitrary constituent

J =E{;1 EjﬁE,’;’; of e; obviously, we may suppose ky<<he<<...<<lky.
Denote by | the class of regular constituents j-E..-E% such
that n==F, and i,=7j; for 1=1,2,...,m. All sets belonging to J are
digjoint and their sum is equal to /., Thus we obtain the following
statements:

(i) Every constituent of a sequence e of sets is the sum of
a finite number of disjoint regular constituents of e.

(i) Each two corresponding constituents of two sequences
@ and b can be represented as the sums of a finite number of dis-
joint corresponding regular constituents of o and b respectively.

With the help of (ii) and 2.2 (i) we obtain:

(iif) Two sequences of sels are isomorphic if and only if any
two corresponding regular constituents are both void or both non-void.

3.2. The characteristic function of isomorphic or
equivalent sequences of sets. With the help of theorems on
the characteristic function (CF 1.4 (v), 2.3 (iv), 2.3 (iii)) and the
above proved theorems on isomorphisms and equivalence (3.1 (iii),
2.2 (ii) and 2.2 (iii)) we may state that

A sequence a={A,} of subsets of X and a sequence b={B,} of
subsets of Y are (i) isomorphic, (ii) totally isomorphic, (iii) equivalent if

and only if (1) cu(X)=0s(T), () ca(X)=0n(¥), (iil) o' (t)=c, (1)
for each teC.

_ 3.3. Universal classes. An enumerable clags U of sets is
said to be wniversal in the sense of isomorphism [total isomorphism]

when for ea,ql sequence e of sets there exists a certain sequence
of sets belonging to U which is isomorphic [totally isomorphic] to e.
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(i) The class U of sets both open and closed in C?) is universal
in the sense of isomorphism (Mostowski?)-Kuratowski).

Let ¢ be a sequence of subsets of a space X and let us put

T=c¢.(X). Since the set T is closed in (, there exists a continuous
function f such that f(C)==T3). By Theorem CF 2.4 there exists
a sequence v={V,} of subsets of C such that ¢,=f. The function ¢,
being continuous, all the sets V, are open-and-closed in € (in virtue
of COF 3.7 (iv,1%), i.e. they belong to U. By 3.2(i) the relation

¢,(()=1c.(X) implies the existence of an isomorphism between the
gequences ¢ and v.

C. Kuratowski proves this theorem directly, as follows:

Let e={F,} be a given sequence of sets. For each interval J of the Cantor
sot O we denote by J, and J, its left and right half. Further we put J,=J,=0
for J=0. We shall define by complete induction a function which associates
with each set of the form E;‘E;Ez’ an interval of ¢ (or the empty set,

or else the set O):

F(E})=0, F(E)=0 it B=0
f i=0,1).
F(By)=0, it meorm | P50V
Denoting F(E;‘-,..-Ei;’) by J we further put:
F(BY ... BNE. )= 0 F(E;EifE:Lfl),_J it E?'""EEI'E;“:O]}“_O )

: co b in gl . fy =i
PE ... BNE, )=J, it B-...BrE, +0+E . ErE

Finally we put

i i
“B,)= F(B,-...E".E)

G(E1)=F(E1)’ n—1
(11!""i11~—1)

n=2,3,;...),

where the system (iy,i5,...,%, 4) runs through all sequences consisting of n—1
numbers equal to 0 or 1. .

Consequently, the function & attaches to each set B, an open-and-closed
subset of C. It follows easily from 3.2 (iii) that the sequences {E,} and {G(F))
are isomorphie. .

(ii) In any space of the power c there exists 2° sequences no
two of which are totally isomorphic.

1) This eclass is enumerable; see p. 134,

2y Mostowski [1], Korollar 5, p. 46. :

3} hecause every compact space is a continuous image of C; ¢f. e. g. Haus-
doxrff [1], p. 197.
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Let be j,; =¢. For each non-void set Z’'CC there exigts a func-
tion f such that f(X)=T and, consequently (by CIF 2.4), & sequence ¢
of sets B,CX such that ¢,(X)=1T. Since the power of the class of
subsets of C is equal to 2¢, we obtain our theorem by applying
Theorem 3.2 (ii). ‘

(iii) There exists mo enumerable class universal in the sense of
total isomorphism ).

It is a consequence of (ii) and of the fact that for each enumer-
able class E of sets there exists only ¢ sequences of sets belonging to E.

3.4. Measurability (B).

(i) For each sequence e= By} of subsets of X there exisls a set
TCQ such that e is totally isomorphic to a sequence of sets both open
and closed in T. More precisely: The operation ¢! is w total iso-
morphism between the sequences {cJ(X)-C',‘,} and B,

It is an immediate consequence of the properties of the charac-
teristic function and those of the operation of the counterimage
(CF 2.5).

(i) A sequence e={H,} of subsets of X 4s tolally isomorphic
to a sequence of Borel subsets of a Borel space (or: of sets which are
both Gs and Fy in I, or: of sets which are both open and closed in N)
if and only if the set ¢.(X) is analytic.

Necessity. Let e={F,} be a sequence of subsety of X which
is totally isomorphic to a sequence b=={B,} of Borel subsets of a
Borel space Y. Thus the function ¢, is measurable (B) (CF 3.7 (iv,3°))
and consequently the set ¢,(Y) is analytic. By Theorem 3.2 (ii),
the set ¢.(X) is analytic as well.

Sufficiency. Suppose that e={#,}, F,CX and that the set
¢,(X) is analytic. Then there exists 1) a function f of the first class
such that f(I)=c¢.(X) and 2) a continuous function g such that
g(N)=e.(X). By CF 2.4 there exists 1) a sequence a={4,} of sub-
sets of I such that ¢,=f and 2) a sequence. b=_B,} of subsets of N
such that ¢y==g. By CF 3.7 (iv, 19 29) 1) all the sets 4, are both
F;and G5 in I and 2) all the sets B, are both open and cloged in N.
Finally, by Theorem 3.2 (ii), the sequences & and b are totally iso-
morphic to e.

wwY) dnd a fortiori in the sense of equivalence; cf. Szpilrajn [2], 2.6 (v),
p. 313.
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The problem. of characterizing in a similar way the sequences
of sets which are equivalent to sequences of Borel sets is still open.
We shall give only certain partial answers:

(iii) If a sequence e=({E,} is equivalent to a sequence of Borel
subsets of I, then the set '

Ze(n)= K[, (t)=n]
i

is analytic for n=c and its complement C—Z.(n) is analytic jé?
n=0,1,2,..., 8.

It is a simple consequence of the statements 3.2 (iii), CF 3.7
(iv, 3% and of the following theorem: For each function f measur-

able (B) the set E[;“:f(ijén] is analytic for n=c and its complement
; ‘
is analytic for n=0,1,2,..,, N,.

This last theorem for n=0 follows immediately from the analyticity of
the set f(I) and from the equality

=0 F 1 1=0).
t

The same theorem with n=1 was stated by Lusin?) and the cases with
n=2,3,... may be easily deduced from his result.

The case of n=N, i¢ due to Miss Braun2?) and that of n=¢ to Mazur-
kiewicz and Sierpinskis).

We do not know whether the condition of Theorem (iii) is sufficient. This
problem is reducible to the question of inversion of the theorem just quoted:
given a decomposition into disjoint sets: I=d+ B+ E,+ E;+...; when does
there exist a real function f measurable (B) such that:

BE,=F U )=n]

““““““ _ o
A=Fiiw=c. B=F1 )=x] ?
I b

(n=0,1,2,...),

In particular: is the necessary condition of analyticity of the sets: 4, I—2B
and I—E" (n=0,1,2,...) also sufficient?

(iv) Let e={E,} be a sequence of subsets of a space X. Let us
suppose that X=c and that cach atom of e contains at most a single
point. Then the sequence e is equivalent to a sequence of Borel subsets
of I [or: of open-and-closed subsets of N*] if and only if the set ¢.(X)
18 a Borel set.

1) Cf. e.g. Lusin [1], p. 259 and Kuratowski [1], p. 259.
%) Braun [1], Théordme 7, p. 171.
3) Cf. e.g. Kuratowski 1], p. 262, ’
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In order to prove this theorem it suffices to apply Theorems
CF 3.6, OF 3.7 (iv), and the following: a linear set & of the power ¢
is a Borel set if and only if there exists a biunivocal function f
measurable (B) such that f(I)=FE ') (or: & continuous biunivocal
function g such that g(N*)=F ?)).

(v) There exists a sequence e of sels contained in I which is
totally isomorphic to a sequence of Borel subsets of I, but equivalent
to mo such a sequence.

In order to build such a sequence it suffices to take a func-
tion f such that f(I)=C and for which the set J/ [F'(t)=c] is not
t

analytic. In virtue of CF 2.4, there exists a sequence ¢ of subsets
of I such that ¢,=f. By Theorem (ii), it is totally isomorphic to
a sequence of Borel subsets of I, and, by (iii), it iy equivalent to no
such a sequence.

3.5. Projectivity. It is possible to consider problems analogous
to those considered above concerning sequences of projective sets.
Denote by P, the class of analytic sets, by C, the class of com-
plements of all sets belonging to P., by P,4: the class of all con-
tinuous images of sets belonging to C,, and finally put B,=GC,-P,
(n==0,1,2,...). We shall formulate a few theorems easy to prove:

(i) A sequence e of subsets of a space X s totally isomorphic
to a sequence of subsets of I belonging to the class B, if and only if
the set c.(X) belongs to the class. P,.

(It is a generalization of Theorem 3.4(ii)).

(ii) A sequence e of subsets of a space X is totally isomorphic
to o sequence of projective subsets of I if and only if the set c,(X) is
projective.

(iii) There exists a sequence of subsets of I belonging to B,y
which is totally isomorphic to no sequence belonging to B, (n==0,1,2,...).

(iv) There exists a sequence of sets which is totally isomorphic
to o sequence of Borel subsets of I and which is equivalent to no se-
quence of projective sets.

(v) There exists a sequence of sets which is totally isomorphic
to mo sequence of projective sets.

1) Cf. e.g. Kuratowski [1], p. 231.
%) Cf. e.g. Szpilrajn [2], p. 313.
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3.6. Convergence. Now we shall consider problems analogous
to the preceding but only for sequences converging in the sense
of the General Theory of Sets. We know that a sequence e of sets
converges if and only if the function ¢, assumes only values of
the form n/3™ (CF 3.4).

(i) Each convergent sequemce of sets is totally isomorphic to
« sequence of sets both Fy, and Gs in I and to a sequence of sels both
open and closed in N.

It is a simple consequence of the theorem just quoted and
Theorem 3.4 (ii).

Moreover, let us remark that every sequence totally isomorphic
to a convergent sequence is itself convergent.

(i) In order that every convergent sequence of sets contained
in I be equivalent to a sequence of Borel sets [or: of sets which are
both ¥, and Gs], it is necessary and sufficient that the hypothesis of
the continuum be truel).

Necessity. Let F be any subset of I. The sequence EE,..
is convergent and therefore it is equivalent to a sequence B,B, ...,

where B is a Borel subset of I. Hence E=B and consequently
E<y, or E=c.

Sufficiency. It is a consequence of the above cited theorem,
Theorem 3.2 (iii), and the following remark: .
Let f be a real function carrying I into an at most enumerable

set. If fli(i)=c or ]A‘_I('i')g 8, for each real ¢; then there exists a real

function ¢ of the first class defined on I and such that f'(t)= (1)
for each real number 1.

To prove this, denote by {t,j the (finite or infinite) sequence
of all values of the function f and by F, a closed set contained in

the open interval (1/n-1,1/n) such that 17’,,=f1(t7)—. Obviously

there exists a positive integer m, such that f"’(t,;;———c. Putting
g(x)=t, for weF, and g(x)=t, for wel—(F,+F,+..) we obtain
the required function g.

1)y Cf. the preliminary veport Szpilrajn [5].
10*
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On the asphericity of regions in a 3-sphere.
By
J. H. C. Whitehead (Oxford).

1. This note arises out of an attempt to answer two questions
proposed by S. Eilenberg?!), namely:

1. pour gquelles courbes simples fermées 2,CS° Pensemble ;S’3~Qo
est asphérique?

2. pour quels couples 2,2,C8" de courbes stmples fermées disjointe&
DPensemble Ss——(.Ql—{—Qz) est asphérique?

I first show how Reidemeister’s theory?) of ‘“Homotopie-
kettenringe” can be applied to the study of the first question in case
£, is a polygonal knot, which I will call %, and in 4 I show how the
methods of 2 and 3 can be applied to the study of similar questions.
Some examples are given in 5, and 6 contains an “addition theorem”
with an application to the study of knots and linkages. Taking
M= 8" it follows from theorem 6, in 7, that the hypothesis “S°—% is
aspherical”, k being any polygonal knot in a 3-sphere §’, implies
the algebraic analogue of Dehn’s lemma 3) for circuits in 8° (i.e. it
implies that, if ¥ bounds a singular 3-cell without singularities on
the boundary, then :rrl(S‘o’-—k) is eyclic.) The final section is an appendix
on the group ring of an “indexed” group 4).

') Fund. Math., 28 (1937), p. 241. We recall that a space X, is called asphe-
rical (W. Huréwicz, Proc. Akad. Amsterdam, 39 (1936), p. 215) if all the (addi-
tive) higher homotopy groups x (X), n>1, reduce to zero. 74(X) is the (multi-
plicative) fundamental group, which need not reduce to 1.

%) See: Abh. Math. Sem. Hamburg, 10 (1934), p.211; Journal fir die
r.uw.a. Math., 173 (1935), p. 164, and other papers.

) Math. Annalen, 69 (1910), p.147. There is a gap in Delm’s argument (at
the top of p. 151) which has not yet been filled. See also E. Pannwitz, Math.
Annalen, 108 (1933), p. 629 (§3), and 1. Johansson, Math. Annalen, 110 (1934),
p. 312 and 115 (1938), p. 658,

4 J. W. Alexander, Trans. American Math. Soc., 30 (1928), 290,
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