Z. Waraszkiewicz.

Ceci établi, soit θ_{h+i} la première dentrice de la suite (θ_{h+i}) qui jouit de la propriété (p). Nous pouvons évidemment supposer que θ_{h+i} est de la forme

$$a\beta_1 + a\beta_2 + \ldots + a\beta_N$$

avec le seul point de ramification a. On a donc, pour chaque système de 3 indices distincts k_1, k_2, k_3, l'une des 3 relations:

$$C[\Psi_k(\alpha\beta_h)] = C[\Psi_k(\alpha\beta_h + a\beta_{k_1})],$$

$$C[\Psi_k(\alpha\beta_h)] = C[\Psi_k(\alpha\beta_h + a\beta_{k_2})],$$

$$C[\Psi_k(\alpha\beta_h)] = C[\Psi_k(\alpha\beta_h + a\beta_{k_3})],$$

p.ex. la première. Elle entraîne en vertu de (VI), en γ posant $\omega = \epsilon/8N$, l'existence de deux $\frac{\epsilon}{8}$-déformations γ et γ' de la dentrice $a\beta_h + a\beta_h + a\beta_h$ en deux arcs simples respectivement, de façon que

$$\text{Max} \left(\sup_{x \neq y} \frac{\Psi_k(\gamma(x), \gamma'(x))}{\gamma(x) - \gamma'(x)} \right) < \epsilon/8N.$$

Il en résulte immédiatement par induction la possibilité de transformer la dentrice θ_{h+i} toute entière en un arc simple au moyen d'une $(3\epsilon + \frac{(N-1)}{8N})$-déformation, soit une $7\epsilon/8$-déformation. Comme d'autre part θ_{h+i} est d'après (i) et (1) une $\epsilon/16$-déformation du continu K, ce continu se laisse ϵ-déformer en un arc simple, c.q.f.d.

Quelques inégalités pour les opérations linéaires.

Par J. Marcinkiewicz et A. Zygmund (Wilno).

1. Nous entendons par $L'(a, b)$, où $r>0$, la classe des fonctions (réelles) définies dans l'intervalle $a \leq x \leq b$ et intégrables en puissance r. Si une opération linéaire $\varphi = T[f]$ transforme toute fonction $f \in L'(a, b)$ en une fonction $\varphi \in L^r(a, b)$, nous disons que T appartient à la classe $L^r(a, b; a, b)$ et nous écrivons $T \in L^r(a, b; a, b)$. Le plus petit nombre M tel que

$$\left\{ \int_{a}^{b} |\varphi(z)|^r \, dx \right\}^{1/r} \leq M \left\{ \int_{a}^{b} |f(z)|^r \, dx \right\}^{1/r},$$

est nommé la norme de l'opération T.

En utilisant un raisonnement de M. Paley, on peut démontrer que si $T \in L^r(a, b; a, b)$ et si M est la norme de T, alors pour toute suite (f_n) finie ou infinie de fonctions de la classe $L'(a, b)$ on a l’inégalité

$$\left\{ \int_{a}^{b} \left(\sum_{n} \varphi_n^r \right)^{1/r} \, dx \right\}^{1/r} \leq MC_r \left\{ \int_{a}^{b} \left(\sum_{n} f_n^r \right)^{1/r} \, dx \right\}^{1/r},$$

où $\varphi_n = T[f_n]$, le coefficient C_r ne dépendant que de r.

La valeur de la constante C_1 obtenue dans ce raisonnement, tend vers l'infini avec $r \to +\infty$ et $r \to 0$. Comme l'inégalité (2) a des applications importantes, il n'est peut-être pas sans intérêt de prouver — ce qui est le but principal de cette note — que l'inégalité (2) subsiste lorsque $C_1=1$. En d'autres mots, on a le

Théorème 1. M désignant la norme d'une opération linéaire $T : L^r(a, b; \alpha, \beta)$, on a pour toute suite (f_n), finie ou non, de fonctions appartenant à $L^r(a, b)$

\[
\left(\int_0^b \left(\sum_{\nu=1}^n f_{\nu}(x) \right)^r dx \right)^{1/r} \leq M \left(\int_0^b \left(\sum_{\nu=1}^n f_{\nu}^2(x) dx \right)^{1/2} \right)^{r/2},
\]

où $\varphi_{\nu} = T[f_{\nu}]$.

Dans le cas où la suite (f_n) se réduit à une seule fonction, l'inégalité (3) se réduit à (1).

M. Paley se servait dans son raisonnement du bien connu système orthogonal de M. Rademacher. Pour établir (3), nous ferons l'usage d'un autre système de fonctions, qui paraît être mieux adapté au problème.

Lemme 1. Il existe une suite de fonctions $(h_n(t))$ équimeasurables avec une fonction $h(t)$ où $0 \leq t \leq 1$ et telle que pour toute suite finie (a_ν) de nombres réels

\[
\lim_{n \to \infty} \sum_{\nu=1}^n a_\nu h_\nu(t) = h(t).
\]

La fonction $h(t)$ est intégrable en toute puissance positive.

Démonstration. Il suffit de prendre pour $h_1(t), h_2(t), ...$ une suite de fonctions indépendantes à distribuant de Gauss. Alors (4) découle des théorèmes bien connus d'après lesquels la somme d'une suite de variables aléatoires indépendantes obéissant à la loi de Gauss obéit elle-même à la loi de Gauss et la dispersion de la somme est égale à la somme des dispersions.

2) Par la distribuant $H(y) = (e^{-y} + e^{-y})$ d'une fonction $h(t)$ ($0 \leq t \leq 1$) on entend la mesure de l'ensemble des points t où $h(t) < y$. La distribuant
La démonstration sera basée sur le suivant

Lemme 2. Si les fonctions \(h_r(t) \) sont définies comme dans le Lemme 1 et si \(g_r \in L^r(a,b) \) pour \(r=1,2,\ldots \), on a

\[
A_s \left(\int_a^b \left(\sum_n g_n(x) \right)^{1/s} \right) \leq B_s \left(\int_a^b \left(\sum_n g_n(x) \right)^{1/s} \right),
\]

où \(A_s \) et \(B_s \) sont des constantes positives qui ne dépendent que de \(s \).

Considérons séparément les cas \(s \geq 1 \) et \(s < 1 \). Dans le premier cas, en appliquant l’inégalité de Hölder et en tenant compte de (5), nous avons

\[
\left\{ \int_a^b \left(\sum_n g_n(x) h_r(t) \right)^{1/s} \right\}^{1/s} \leq \left\{ \int_a^b \left(\sum_n g_n(x) h_r(t) \right)^{1/s} \right\}^{1/s}.
\]

Où \(C_r \) et la deuxième des inégalités (11) est démontrée.

D'autre part

\[
\left\{ \int_a^b \left(\sum_n g_n(x) h_r(t) \right)^{1/s} \right\}^{1/s} = \left\{ \int_a^b \left(\sum_n g_n(x) h_r(t) \right)^{1/s} \right\}^{1/s},
\]

où le maximum est pris par rapport à toutes les fonctions \(\lambda(x,t) \geq 0 \) satisfaisant à la condition

\[
\int_a^b \lambda(x,t) \, dx = 1, \quad 1/s + 1/s' = 1.
\]

En particulier, en vertu de (12) et (13), pour toute fonction \(\lambda(x,t) \geq 0 \) telle que

\[
\int_a^b \lambda(x,t) \, dx = 1,
\]

nous avons

\[
\left\{ \int_a^b \lambda(x,t) \, dx \right\}^{1/s} \leq \left\{ \int_a^b \left(\sum_n g_n(x) h_r(t) \right)^{1/s} \right\}^{1/s}.
\]
Quelques inégalités

Il est maintenant facile de démontrer le th. 3. Pour toute valeur de \(t \) on a la relation (6) et l’inégalité
\[
\int_a^b \left(\sum_{r=1}^n g_r(x) \right)^{\gamma} dx \leq M \left(\int_a^b \left(\sum_{r=1}^n g_r(x) \right)^{\gamma} dx \right)^{1/\gamma}.
\]

En intégrant cette inégalité par rapport à \(t \) dans l’intervalle \(0 \leq t \leq 1 \) et en tenant compte du lemme 2, on obtient (9) avec \(K_{18} = B_{18}/A_{18} \). Le raisonnement analogue donne (10). Il faut seulement appliquer au lieu de (11) l’inégalité suivante (avec \(0 < s < \gamma < 2 \)):
\[
A_{18} \left(\int_a^b \left(\sum_{r=1}^n g_r(x) \right)^{\gamma} dx \right)^{1/\gamma} \leq \left(\int_a^b \left(\sum_{r=1}^n g_r(x) \right)^{s} dx \right)^{1/s} \leq B_{18} \left(\int_a^b \left(\sum_{r=1}^n g_r(x) \right)^{s} dx \right)^{1/s},
\]
dont la démonstration est la même que celle de (11). Les coefficients \(A_{18} \) et \(B_{18} \) ne dépendent ici que de \(s \) et \(\gamma \).

3. Nous avons supposé dans l’énoncé du théorème 1 que l’opération \(T[f] \) est définie pour toute fonction \(f \) de la classe \(L^1(a,b) \). Il est cependant évident qu’il suffit d’admettre que l’opération \(T \) n’est définie que pour les \(f \) appartenant à une famille \(\mathcal{F} \) de fonctions, pourvu que cette famille ait la propriété suivante:

Si les fonctions \(f_1, f_2, ..., f_n \) appartiennent à \(\mathcal{F} \), il est de même de toute combinaison linéaire (à coefficients constants) de ces fonctions.

Notons que les théorèmes que nous venons de démontrer pour les intégrales de Lebesgue subsistent pour les intégrales de Stieltjes-Lebesgue. Il suffit de remplacer dans tous les énoncés les différentielles \(dx \) et \(d\frac{y}{x} \) par \(d\omega(x) \) et \(d\omega(\xi) \), où \(\omega(x) \) et \(\omega(\xi) \) sont des fonctions non décroissantes définies respectivement dans les intervalles \(a \leq x \leq b \) et \(a \leq \xi \leq b \). Les démonstrations restent les mêmes.