Sur les fonctions indépendantes I.

Par

J. Marcinkiewicz (Wilno).

1. Ce travail contient trois parties différentes.

Le théorème principal de la première partie est le th. 3. Ce théorème est la base de deux parties suivantes. Le th. 4 en est aussi une conséquence. La démonstration du th. 3 est fondée sur les résultats du th. 1.

La deuxième partie du présent travail sera consacrée aux recherches des conditions suffisantes et nécessaires pour la validité des lois de grands nombres, de Gauss et de Poisson. Les résultats obtenus sont connus en ce qui concerne la loi de grands nombres et celle de Gauss; par contre, ceux qui concernent la loi de Poisson semblent être nouveaux. La dernière partie sera consacrée à l'étude des fonctions caractéristiques analytiques de P. Lévy.

Les résultats obtenus peuvent être traduits en langage de la théorie de probabilités, ce que nous laisserons au lecteur.

2. La notion de fonctions indépendantes est due à M. M. A. Kolmogoroff et H. Steinhaus. Nous allons nous appuyer souvent sur les résultats récents de M. A. Zygmund et moi-même.

Nous désignons par \(A, B, C, \ldots \) des constantes, qui peuvent être d'ailleurs différentes dans différents contextes. \(\int \) désignera toujours l'intégrale prise dans l'intervalle \((0,1) \), c. à d. l'intégrale \(\int_0^1 \).

3. Nous allons établir d'abord une inégalité fondamentale pour tout ce qui va suivre:

Théorème 1. Soient \(x_1, x_2, x_3, \ldots \) des fonctions indépendantes telles que

\[
\begin{align*}
(3.1) \quad & \int x_1 \, dt = 0 \\
(3.2) \quad & |x_r| \leq K, \quad (r = 1, 2, 3, \ldots) \\
\text{Posons} \quad & S = \sum_{r} x_r.
\end{align*}
\]

Alors les inégalités

\[
\begin{align*}
(3.3) \quad & \int_{\lambda} |S'|^r \, dt \leq M'^r, \quad r > 0, \quad |CA| \leq \varepsilon < \varepsilon_0
\end{align*}
\]

entraînent l'inégalité

\[
(3.4) \quad \int_{\lambda} |S'|^r \, dt \leq C_r (M^r + \varepsilon K^r),
\]

où \(C_r \) et \(\varepsilon_r \) ne dépendent que de \(r \).

La démonstration de ce théorème va être décomposée en plusieurs lemmes.

Lemme 1. Le th. 1 est vrai pour tout \(q < r \), s'il est vrai pour \(r \).

En effet, soit \(q < r \) et \(\varepsilon_0 = \varepsilon_0 / 2 \). Il suffit de démontrer la proposition pour \(K = 1 \). En supposant le th. 1. faux pour \(q \), on pourrait trouver pour tout nombre \(n \) une suite de fonctions indépendantes

\(x_{n, 1}, x_{n, 2}, x_{n, 3}, \ldots \)

satisfaisant aux conditions (3.1) et telles que l'on ait:

\[
\begin{align*}
(3.5) \quad & |x_{n, 1}| \leq 1,
(3.6) \quad & \int_{\lambda_n} |S_{n}'|^q \, dt = M_{n}', \quad S_n = \sum x_{n, r},
(3.7) \quad & |CA| = \varepsilon_0,
(3.8) \quad & \int_{\lambda_n} |S_{n}'|^r \, dt \geq n [M_{n}'^r + \varepsilon_0],
(3.9) \quad & \varepsilon_0 \leq \varepsilon_0 / 2.
\end{align*}
\]

Nous allons montrer que c'est impossible. On voit d'abord que \(M_{n} \to 0 \). En effet, dans le cas contraire, on pourrait supposer que \(M_{n} = M \). Désignons par \(B_n \) l'ensemble des points contenus dans \(A_n \) et tels que \(|S_n| \leq n \). On a \(|A_n - B_n| \to 0 \) d'après (3.6), de sorte que \(|CB| \leq \varepsilon_0 \) pour \(n \) suffisamment grand. D'autre part

\[
\begin{align*}
& \int_{\lambda_n} |S_{n}'|^r \, dt \leq n^{-r} \int_{\lambda_n} |S_{n}'|^r \, dt = n^{-r} M \to 0.
\end{align*}
\]
Le th. 1 étant supposé vrai pour r, on en tire
\[\int |S_n|^r \, dt \leq C_r [n^{-r} A + \varepsilon_n], \]
ce qui donne
\[\left\{ \int |S_n|^r \, dt \right\}^{1/r} \leq \left\{ \int |S_n|^r \, dt \right\}^{1/r} \leq C_r [n^{-r} A + \varepsilon_n]^{1/r}. \]

Or, comme $(r - q)q < r$, la dernière inégalité entraîne $A = 0$ d'après (3.8).

Ceci établi, nous pouvons donc supposer que $M_n^r \leq \varepsilon_n/2$. En posant $B_n = E \{ t \in A_n \mid |S_n(t)| \leq 1 \}$, on a alors
\[|B_n| \geq 1 - \varepsilon_n \quad \text{et} \quad \int |S_n|^r \, dt \leq \int |S_n|^r \, dt \leq M_n^r, \]
d'où, en appliquant notre théorème pour r,
\[\int |S_n|^r \, dt \leq C_r [M_n^r + \varepsilon_n]. \]

Désignons par P_n et Q_n les ensembles définis par les formules:
\[P_n = E \{ t : \text{t non } \in A_n \mid |S_n| \leq 1 \}, \quad Q_n = E \{ t : \text{t non } \in A_n \mid |S_n| > 1 \}. \]

On trouve facilement:
\[\int |S_n|^r \, dt \leq |CP_n| \varepsilon_n, \quad \int |S_n|^r \, dt \leq C_r [M_n^r + \varepsilon_n], \quad \int |S_n|^r \, dt \leq M_n^r. \]

En faisant la somme de ces formules, on en tire
\[\int |S_n|^r \, dt \leq C_r [M_n^r + \varepsilon_n], \]
ce qui est en contradiction avec (3.8).

Lemme 2. Soient $\omega_1(\theta), \omega_2(\theta), \ldots, \omega_d(\theta), \ldots$ les fonctions de Rademacher. On a
\[A_r (\Sigma \omega_i)^{r/2} \leq \int |\Sigma \omega_i(t)|^r \, dt \leq B_r (\Sigma \omega_i)^{r/2} \quad (r > 0). \]

Ce lemme est connu; il est dû à M. A. Kintchine.

Lemme 3. Pour tout $r > 0$, il existe un $\varepsilon > 0$ tel que, pour tout n,
\[\int |\Sigma \omega_i(t)|^r \, dt \geq C_r (\Sigma \omega_i)^{r/2} \quad \text{dés que} \quad |CA| \leq \varepsilon_n. \]

Fonctions indépendantes I

Nous ignorons si ce lemme a été explicitement formulé dans la littérature; en tout cas, sa démonstration est immédiate. On a en effet,
\[\int |\Sigma \omega_i(t)|^r \, dt = \int_0^1 \int_0^1 \int_0^1 \int_0^1 |\Sigma \omega_i(t)|^r \, dt \, d\theta_1 \, d\theta_2 \leq \int_0^1 \int_0^1 \int_0^1 |\Sigma \omega_i(t)|^2 \, dt \, d\theta_1 \, d\theta_2 \]
on bien
\[\int |\Sigma \omega_i(t)|^r \, dt \geq C_r (\Sigma \omega_i)^{r/2} - O(\varepsilon_n), \]
d'où le résultat demandé pour ε_n suffisamment petit.

Lemme 4. Si les fonctions indépendantes x_1, x_2, \ldots, x_m admettent des distributions symétriques et vérifient les relations (3.1) et (3.3), il existe un ensemble B tel que $|B| \leq a_0 e$ et
\[\int |S(x|^r) \, dt \leq C_r M^r, \]
où a_0 et C_r ne dépendent que de r.

Soit $S(t, 0) = \Sigma \omega_i(t) \omega_i(0)$.

Les fonctions $S(t, 0)$, considérées comme des fonctions de t, sont équimétrables. Il existe donc pour tout θ un ensemble $A_0 \mid A_0 = |A|$, tel que
\[\int |S(0, t)|^r \, dt \leq C_r M^r. \]

Désignons par Q l'ensemble plan des points $(0, t)$ tels que $t \in A_0$, et par $\varphi(0, t)$ sa fonction caractéristique. On a d'après (3.11)
\[\int \varphi(0, t) |S(0, t)|^r \, dt \leq M^r. \]

Désignons par B l'ensemble des points t tels que la droite $t = c$ const. contient un ensemble de mesure $\geq 1 - \varepsilon$, $(c$ fixé) de points t pour lesquels $(0, t) \in Q$. On a
\[|B| (1 - \varepsilon) + |B| \geq 1 - \varepsilon, \quad |B| > 1 - \varepsilon/2. \]

Soit Q^* l'ensemble des points $(0, t) \in Q$ tels que $t \in B$, et $\varphi^*(0, t)$ sa fonction caractéristique. On a alors
\[\int \varphi^*(0, t) |S(0, t)|^r \, dt \leq M^r, \]
ce qui entraîne (3.10) en vertu du lemme 3.

Lemme 5. Le th. 1 est vrai pour les fonctions x_0 symétriques (c. à d. à distribuant symétriques), lorsque $r = 2k$ où k est un entier positif.
Nous allons démontrer ce lemme pour le cas de \(k = 3 \), qui est tout à fait typique. D’après le lemme 4, nous pouvons supposer que
\[
\int_A (\sum \alpha_j^3) \, dt \leq M^4, \quad |CA| \leq \varepsilon < \varepsilon_0.
\]
On a
\[
\int_A (\sum \alpha_j^3) \, dt = \sum \int_A \alpha_j^3 \, dt = \sum \int_A \sum \alpha_j^3 \, dt = \sum \int_A \alpha_j^3 \, dt + \sum \int_A \alpha_j^3 \, dt + \sum \int_A \alpha_j^3 \, dt = A + B + C.
\]
Supposons que \(A \) est le plus grand des nombres \(A, B, C \). On a alors, en posant \(\sigma = \sum \alpha_j \),
\[
\int_A \sigma^3 \, dt \leq R \left(\int_A \sigma^3 \right) = K \left[\int_A \sigma^3 \, dt + \int_A \sigma \, dt \right]^3 \leq \frac{D \left[M^2 + \varepsilon^2 \left(\int_A \sigma^4 \, dt \right)^{1/3} \right]}{D \left[M^2 + \varepsilon^2 \right]}.
\]
En admettant \(D\varepsilon^2 < \frac{1}{4} \) on en tire
\[
\int_A \sigma^3 \, dt \leq 2DM^4.
\]
D’une façon analogue, si \(B \) est le plus grand des nombres \(A, B, C \), on a
\[
\int_A \sigma^3 \, dt \leq D \int_A \sigma^3 \, dt \leq D \left(\int_A \sigma^3 \, dt \right)^{3/2}
\]
et on en conclut comme auparavant que l’on a (3.12) dès que \(\varepsilon \) est suffisamment petit.

Dans le cas où \(C \) est le maximum de \(A, B, C \), on peut suivre une autre voie. On a dans ce cas
\[
\int_A \sigma^3 \, dt \leq 3 \int_A \alpha_j^3 \, dt = 3 \int_A \alpha_j^3 \, dt + 3K^2 \sum \alpha_j^3 \left(\int_A \sigma^4 \, dt \right)^{1/3} \leq 3M^4 + 3K^2 \varepsilon^3 \left(\int_A \sigma^4 \, dt \right)^{1/3},
\]
ce qui donne ou bien (3.12) ou bien
\[
\int_A \sigma^3 \, dt \leq DK^2 \varepsilon^3 \left(\int_A \sigma^4 \, dt \right)^{1/3}.
\]

Le premier cas est banal et dans le second on obtient\(\int_A \sigma^3 \, dt \leq DK^4 \varepsilon^2 \). On a donc toujours
\[
\int_A \sigma^3 \, dt \leq C_\varepsilon \left[M^4 + K^4 \varepsilon^4 \right].
\]

Pour en tirer l’inégalité (3.10), il suffit de s’appuyer sur le lemme connu suivant 4):

Lemme 6. Soient \(x_1, x_2, \ldots \) des fonctions indépendantes à valeurs moyennes nulles. On a
\[
\int_A \sigma^3 \, dt \leq \int |S| \, dt \leq B_r \int \sigma^3 \, dt \quad (r \geq 1).
\]

4) Marcinkiewicz et Zygmund [6].

Fonction indépendantes 1.

Pour se débarrasser de la restriction que les fonctions \(x_1, x_2, \ldots \) soient symétriques, on utilisera le

Lemme 7. Soient \(x \) et \(\tilde{x} \) deux fonctions indépendantes à valeurs moyennes nulles et telles que \(x \) est équimésurable avec \(-\tilde{x} \). On a
\[
A_r \int |x| \, dt \leq \int |x| \, dt \leq B_r \int |\tilde{x}| \, dt \quad (r \geq 1).
\]

Ce lemme est aussi connu 4).

Lemme 8. Le th. 1 est vrai pour les \(r \) paires.

Soit, en effet, \(\tilde{x} \), équimésurable avec \(-x \). Supposons que les fonctions \(x_1, x_2, x_3, \ldots \) sont indépendantes 3).

Les fonctions \(x + \tilde{x} \) sont symétriques et vérifient les conditions:
\[
|x + \tilde{x}| \leq 2K, \quad \int |x + \tilde{x}| \, dt \leq C \int |x| \, dt.
\]

Il vient de là, en supposant \(r \) entier pair et en tenant compte du lemme 5,
\[
\int |x + \tilde{x}| \, dt \leq C \int |x| \, dt.
\]

Il suit de là, en vertu du lemme 1 l’inégalité (3.4) pour les \(r \) paires.

Le théorème résulte directement des lemmes 1 et 8.

4. Soit \(V_n \) une suite de fonctions de distribution. Posons
\[
F_n(\lambda) = \int_{-\infty}^{+\infty} \lambda^2 dV_n(\lambda).
\]

Nous appellerons ces fonctions les fonctions des moments.

Théorème 2. Si la suite des fonctions des moments \(F_n(\lambda) \) converge dans un intervalle \(\langle a, b \rangle \), où \(a \geq 0 \), vers une fonction \(F(\lambda) \), la suite \(V_n \) tend vers une fonction de distribution \(V \) satisfaisant à la condition
\[
F(\lambda) = \int_{-\infty}^{+\infty} \lambda^2 dV(\lambda).
\]

Il est très probable que ce théorème soit connu, quoique soit difficile de dire s'il a été formulé explicitement dans la littérature mathématique. Nous allons déduire le th. 2 de trois lemmes suivants:

4) Ibid. 3) en appliquant le th. suivant de M. A. Donjov [1]: pour toute suite \(\{f_n\} \) de fonctions définies dans l'intervalle \(\langle 0, 1 \rangle \), il existe une suite équimésurable de fonctions indépendantes.
Fonctions indépendantes 1

Lemme 1. Soit \(\lim_{\infty} |x|^{-d}dV(x) < \infty \). La fonction \(F(z) = \lim_{\infty} |x|^{-d}dV(x) \) est analytique pour \(0 < R(z) < r \).

La démonstration est immédiate.

Lemme 2. Si la suite \(F_n(a) \) converge pour \(\alpha < z < \beta \), elle converge uniformément dans tout rectangle défini par les inégalités:

\[
|z| \leq M; \quad \alpha < R(z) < \beta - \epsilon; \quad z < \beta.
\]

C'est une conséquence immédiate du lemme 1 et du fait que les fonctions \(F_n(z) \) sont uniformément bornées dans le domaine considéré.

Lemme 3. Sous les conditions du lemme 2 la suite \(F_n(i\theta) \) converge uniformément dans tout intervalle \(-M \leq \theta < M \).

Comme l'intégrale

\[
\int_{-\infty}^{\infty} |x|^d \, dV_n(x) \leq Mr \quad (0 < r < \beta)
\]

existe, il est évident qu'il est possible de choisir un nombre \(\lambda < 1 \) suffisamment grand pour que l'on ait:

\[
\int_{\lambda}^{\infty} |x|^d \, dV_n(x) \leq \epsilon, \quad \int_{-\infty}^{\lambda} |x|^d \, dV_n(x) \leq e^{-\alpha M}.
\]

On en a alors aussi:

\[
\int_{\lambda}^{\infty} |x|^d \, dV_n(x) \leq \epsilon, \quad \int_{-\infty}^{\lambda} |x|^d \, dV_n(x) \leq e^{-\alpha M} \quad (0 < \lambda < r).
\]

Supposons que \(0 < R(z) < r \), \(|z| < M \) et considérons l'intégrale

\[
(4.3) \quad \int \frac{1}{|x|^d} dV_n(x) \leq \int \frac{1}{|x|^d} dV_n(x) \leq e^{\alpha R(z)} dV_n(x) \leq e^{\alpha R(z)} \leq e.
\]

D'autre part

\[
(4.4) \quad \int \frac{1}{|x|^d} dV(x) = \int e^{\alpha R(z)} dV_n(x) \leq e^{-\alpha (i\theta)} \int \frac{1}{|x|^d} dV_n(x) \leq e.
\]

Désignons par \(F_n \) la limite de la suite \(F_n \). D'après ce qui précède, elle est sûrement définie pour \(0 < R(z) < r \) et tend vers une limite bien déterminée quand \(z \to i\theta \). Nous pouvons donc admettre qu'elle est définie aussi pour \(z = i\theta \). Les inégalités (4.3) et (4.4) montrent que la fonction \(F_n(z) \) peut être représentée dans le domaine \(0 < R(z) < r \), \(|z| < M \) par l'intégrale

\[
\Phi_n(z) = \int_{-\infty}^{\infty} x^d \, dV_n(x) \quad (r = 0, 1, 2, ...)
\]

avec une erreur \(< 2\epsilon \). La fonction \(\Phi(z) \) étant continue, on a pour \(z \)

suffisamment petits

\[
(4.5) \quad |\Phi_n(x + iy) - \Phi_n(iy)| < \epsilon, \quad -M < y < M.
\]

Or, pour \(n \) très grand, la différence \(F_n(x + iy) - F_n(x + iy) \) (où \(x \) est fixé) est très petite, ce qui montre en vertu des inégalités (4.3), (4.4) et (4.5) que \(F_n(i\theta) \) diffère très peu de \(F_n(i\theta) \) dès que \(-M < \theta < M \) et \(z \) est très grand. Le lemme 3 ainsi établi.

Nous pouvons maintenant démontrer le th. 2. D'abord, on voit facilement que les suites \(\{ F_n^1(i\theta) \} \) et \(\{ F_n^2(i\theta) \} \), où

\[
F_n^1(i\theta) = \int_0^{\infty} x^d \, dV_n(x), \quad F_n^2(i\theta) = \int_{-\infty}^{0} x^d \, dV_n(x),
\]

convergent aussi pour \(\alpha < z < \beta \). En répétant donc l'argumentation du lemme 3, nous pouvons admettre que les suites \(\{ F_n^1(i\theta) \} \) et \(\{ F_n^2(i\theta) \} \) convergent uniformément dans tout intervalle fini. On a

\[
F_n^1(i\theta) = \int |x|^d \, dV_n^* |(u) \quad \text{où} \quad V_n^*(u) = V_n(e^u).
\]

La suite \(F_n^1(i\theta) \) étant uniformément convergente, on conclut d'un théorème connu 4) que la suite \(V_n^*(u) \) converge vers une fonction \(V \) non décroissante assimettée à la condition \(V(\infty) = 1 \). La même conclusion est donc justifiée aussi pour la suite \(V_n(x) \) dès que \(0 < x < \infty \). En opérant de la même façon sur la suite \(F_n(i\theta) \), on établit facilement la convergence de la suite \(V_n(x) \) pour \(-\infty < x < 0 \), ce qui achève la démonstration du th. 2.

5. Nous allons démontrer à présent le théorème principal de ce travail.

Théorème 3. Soit donné pour chaque \(u \) un système de fonctions indépendantes \(a_n_1, a_n_2, a_n_3, ... \). Soit \(S_n = \sum_{a_n} \), et \(V_n \) la distributrice de la fonction \(S_n \).

Pour que la suite \(V_n \) converge vers une fonction \(V \), admettant une fonction de moments \(F(z) \), il faut et il suffit qu'elle existe des constantes \(K_1, K_2, ... \) telles que:

\[
(5.1) \quad \sum_{n} |E(|a_n| - \lambda_n)| \geq K_n \rightarrow 0,
\]

\[
(5.2) \quad F_n^1(i\theta) \rightarrow F(z),
\]

où \(\lambda_n \) est défini par les relations: \(|E(|a_n| - \lambda_n)| \geq \frac{1}{2}, \frac{1}{4}, \frac{1}{2}, ... \). \(F_n^1 \) désigne la fonction de moments de la somme \(\sum_{a_n} \) et

\[
(5.3) \quad a_n^* = \begin{cases} 0 & |a_n^*| \leq K_n, \\ 1 & |a_n^*| > K_n. \end{cases}
\]

4) Voir p. ex. Lévy [4], p. 37 et suivantes.
Fonctions indépendantes I

Lemme 3. On a pour tout $K > 0$

\[\lim_{n \to +\infty} \int_{-\infty}^{+\infty} |S_n(t)|^2 dt \leq G_r M_r \]

où $M_r = \int_0^r |x|^r \, dV(x)$, $S_n = \sum_{r} a_{n,r}$ et les $a_{n,r}$ sont définis par (5.5).

En tenant compte du lemme 2, on voit que S_n^* et S_n ne diffèrent, pour n très grand, que dans un ensemble de mesure d'ordre K^{-r} et, d'autre part, que l'ensemble des points où S_n surpasse K est aussi d'ordre K^{-r}. Il existe donc un ensemble A_r tel que $|A_r|$ est d'ordre K^{-r} et que l'on a $S_n^* = S_n$, $|S_n^*| \leq K$ partout dans cet ensemble. Par conséquent,

\[\lim_{n \to +\infty} \int_{A_r} |S_n^*|^2 dt \leq \int_{K} |x|^r \, dV(x), \]

au moins quand K et $-K$ sont des points de continuité de la fonction V. Pour K suffisamment grand, nous pouvons appliquer le th. 1, ce qui nous donne l'inégalité (5.7).

Lemme 4. Il existe une suite $K_n \to \infty$ telle qu'en posant:

\[a_{n,r}^* = a_{n,r} \quad \text{si} \quad |a_{n,r}| \leq K_n, \quad a_{n,r}^* = 0 \quad \text{si} \quad |a_{n,r}| > K_n, \]

\[S_n^* = \sum_{r} a_{n,r}^*, \quad M_r = \int_0^r |x|^r \, dV(x), \]

on a:

\[\int_{A_r} |S_n^*|^2 dt \leq C_r M_r. \]

La possibilité du choix d'une suite $K_n \to \infty$ satisfaisant à l'inégalité (5.6) résulte du lemme 3 ; l'inégalité (5.8) est alors une conséquence immédiate de la relation $K_n \to \infty$ et du lemme 2.

Lemme 5. Les conditions du th. 3 sont nécessaires si $a_{n,r}$ et V sont symétriques.

On conclut du lemme 4 que les fonctions $F_n^*(z)$ sont bornées pour $A < R(z) < r - A$, $|I(z)| \leq M$. Comme $V_n^* \to V$, il en résulte que $F_n^*(z) \to F(z)$, au moins pour z réel et tels que $A < z < r - A$, ce qui entraîne la convergence de la suite $\{F_n(z)\}$ dans la bande $A < R(z) < r - A$. Une simple modification de l'argumentation permet d'établir la convergence pour $0 < R(z) < r$.
Le lemme 6. La condition du th. 3 est nécessaire dans le cas général.

Posons \(x_{n,r} + \lambda_{n,r} = y_{n,r} \), où \(x_{n,r} \) est équimeasurable avec \(-x_{n,r} \) et \(Y_n = \sum y_{n,r} \). Définissons maintenant \(y_{n,r}^* \) de manière que les conclusions du lemme 5 soient satisfaits. On a:

\[
\sum \mathbb{P} \left(\left| x_{n,r} + \lambda_{n,r} \right| > K_n \right) \to 0, \tag{5.10}
\]

\[
\int \left| Y_n^* \right| \, dt \leq M, \tag{5.11}
\]

Soient \(\lambda_{n,r} \) définis de façon que l'on ait \(\mathbb{P}(x_{n,r} \geq \lambda_{n,r}) \geq \frac{1}{2} \) et \(\mathbb{P}(x_{n,r} \leq -\lambda_{n,r}) \geq \frac{1}{2} \). La formule (5.10) entraîne facilement

\[
\sum \mathbb{P} \left(\left| x_{n,r} - \lambda_{n,r} \right| > K_n \right) \to 0,
\]

ce qui se déduit facilement des relations:

\[
\mathbb{P}(x_{n,r} - \lambda_{n,r} \geq K_n) \mathbb{P}(x_{n,r} + \lambda_{n,r} \geq 0) \subset \mathbb{P}(y_{n,r} \geq K_n),
\]

\[
\mathbb{P}(x_{n,r} - \lambda_{n,r} \leq -K_n) \mathbb{P}(x_{n,r} + \lambda_{n,r} < 0) \subset \mathbb{P}(y_{n,r} \leq -K_n).
\]

Posons

\[
x_{n,r}^* = \begin{cases} \left| x_{n,r} - \lambda_{n,r} \right| & \text{si} \quad \left| x_{n,r} - \lambda_{n,r} \right| > K_n \\ 0 & \text{si} \quad \left| x_{n,r} - \lambda_{n,r} \right| \leq K_n \end{cases}
\]

déstignons par \(x_{n,r}^* \) la fonction équimeasurable avec \(-x_{n,r} \). Supposons enfin les fonctions \(x_{n,1}, x_{n,2}, x_{n,3}, x_{n,4}, \ldots \) indépendantes. La distributante de la somme \(\sum x_{n,r} \) tend alors vers \(\int v(x-y) \, dV(x) \) pour \(n \to \infty \).

Il est évident que la mesure de l'ensemble où la somme considérée diffère de \(Y_n \) ne surpass la somme suivante

\[
S = \sum \mathbb{P} \left(\left| x_{n,r} + x_{n,r}^* \right| = y_{n,r} \right). \tag{5.6}
\]

D'autre part, il est facile de voir que

\[
S \leq C \sum \mathbb{P} \left(\left| y_{n,r} \right| \geq K_n \right).
\]

D'après (5.6), la dernière somme peut être supposée d'ordre \(K^{-1} \). Nous pouvons donc appliquer le th. 1, ce qui donne

\[
\int \left| \sum x_{n,r} + x_{n,r}^* \right| \, dt = O(1), \tag{5.6.1}
\]

Où, comme la distributante de \(\sum x_{n,r} \) converge vers \(V \), il en résulte facilement que

\[
\int \left| \sum x_{n,r} \right|^k \, dt = O(1) \tag{k \geq 0}
\]

dès que la fonction \(V \) admet au moins deux points différents de croissance. La dernière inégalité donne facilement le résultat demandé.

Il nous reste le cas où la fonction \(V \) n'admet qu'un seul point de croissance. Sans restreindre la généralité, nous pouvons supposer que c'est le point 0.

Soient \(x_{n,0} \) des fonctions équimeasurables à une fonction \(x_0 \) bornée et à distributante continue. La loi de la somme \(x_{n,0} + \sum x_{n,r} \) tend alors vers celle définissant \(x_0 \). Nous pouvons donc appliquer notre théorème, démontré déjà pour les distributantes continues, ce qui donne

\[
\int \left| x_{n,0} + \sum x_{n,r} \right|^k \, dt = O(1) \tag{k \geq 0}
\]

la définition de \(x_{n,r} \) étant la même qu'au paragraphe. En tenant compte de l'hypothèse que \(\lambda_{n,0} \) sont uniformément bornées, on en conclut que

\[
\int \left| \sum x_{n,r} \right|^k \, dt = O(1) \tag{k \geq 0}
\]

du fait que la fonction identiquement égale à 0, il vient

\[
\int \left| \sum x_{n,r} \right|^k \, dt \to 0 \tag{k \geq 0}
\]

certache la démonstration du théorème.

6. Le th. 3, qui vient d'être établi, se simplifie dans le cas où la fonction caractéristique de la distributante limite est une fonction entière. Nous avons dans ce cas le

Théorème 4. Soient \(V_n(x) \) la distributante de la somme \(\sum x_{n,r} \), les fonctions \(x_{n,r} \) étant indépendantes.

Pour que la suite \(V_n(x) \) converge vers une distributante \(V \) dont la fonction caractéristique est entière, il faut et il suffit qu'il existe une suite de constantes \(K_1, K_2, K_3, \ldots \) satisfaisant aux conditions:

\[
\sum \mathbb{P} \left(\left| x_{n,r} - \lambda_{n,r} \right| > K_n \right) \to 0, \tag{6.1}
\]

\[
\int \left| \sum x_{n,r} \right|^k \, dt \to \int |x|^k \, dV(x) \tag{k = 1, 2, \ldots}
\]

où \(\lambda_{n,r} \) sont définis par les relations:

\[
\mathbb{P}(x_{n,r} \geq \lambda_{n,r}) \geq \frac{1}{2}, \quad \mathbb{P}(x_{n,r} \leq -\lambda_{n,r}) \geq \frac{1}{2},
\]

et \(x_{n,0} = x_{n,0} \) ou \(x_{n,0} = 0 \) suivant que \(|x_{n,r} - \lambda_{n,r}| \leq K_n \) ou non.
En vertu du th. 3, il ne s’agit que de la suffisance de ces conditions. Or, la relation (6.2) entraîne la convergence uniforme dans tout intervalle fini de la suite des fonctions caractéristiques des fonctions $\sum_{n} a_{n}$, ce qui entraîne le résultat demandé d’après le théorème classique de M. P. Lévy.

Ouvrages cités.

1) Voir p. ex. Lévy [4], p. 37 et suivantes.

Eine Äquivalenz zwischen der Kontinuumshypothese und der Existenz der Lusinschen und Sierpińskischen Mengen.

Von Fritz Rothberger (Wien).

Wir definieren, wie üblich ¹), eine Menge X habe die Eigenschaft L (und schreiben: $X \in L$), wenn jede nirgendsdichte Teilmenge von X abzählbar ist; und eine Menge Y habe die Eigenschaft S (oder: $Y \in S$), wenn jede Teilmenge vom Lebesgueschen Masse Null abzählbar ist.

Aus der Kontinuumshypothese $\mathfrak{c} = 2^\mathfrak{c}$ folgt bekanntlich die Existenz zweier linearer Mengen X und Y von der Mächtigkeit des Kontinuums, wobei $X \in L$ und $Y \in S$ ist ²).

In der vorliegenden Arbeit soll die Umkehrung dieses Satzes bewiesen werden (Korollar zu Satz 1).

Wir betrachten hier ausschliesslich lineare Punktmengen und bezeichnen mit \mathfrak{c} die Menge der reellen Zahlen.

Lemma 1. Wenn eine Menge von positivem äusserem Mass und von der Mächtigkeit \mathfrak{c} existiert, so lässt sich \mathfrak{c} in \mathfrak{c} Teilmengen von I. Kategorie zerlegen.

Lemma 2. Wenn eine Menge von II. Kategorie mit der Mächtigkeit \mathfrak{c} existiert, so lässt sich \mathfrak{c} in \mathfrak{c} Teilmengen vom Masse Null zerlegen.

²) W. Sierpiński, loc. cit., p. 29 R., Proposition P, und Proposition Pr.