Soit maintenant $C \subset X$ une courbe simple fermée et $f \in S^1$ une homéomorphie. Comme $\dim X = 1$, il existe ϵ une extension $f' \in S^1$ de f, pour laquelle on a évidemment $f' \sim 1$ sur C, d'où $b_1(X) \geq 1$.

Soient maintenant $C_1 \subset X$ et $C_2 \subset X$ deux courbes simples fermées différentes. On trouve alors facilement deux transformations $f_1, f_2 \in S^1 \times \mathbb{Z}$ telles que que 1^o f_1 transforme C_1 par homéomorphie $(i = 1, 2)$, $2^o f_i(C_1) = S^1 + f_i(C_1)$. Comme $\dim X = 1$, il existe alors des extensions $f_1, f_2 \in S^1$ et on a

\[
\begin{align*}
 f_1' & \sim 1 \quad \text{sur } C_1, \\
 f_2' & \sim 1 \quad \text{sur } C_2, \\
 f_1' & \sim 1 \quad \text{sur } C_1, \\
 f_2' & \sim 1 \quad \text{sur } C_2.
\end{align*}
\]

Les fonctions f_1 et f_2 sont donc linéairement indépendantes, d'où $b_1(X) \geq 2$.

Théorème 3. Tout continu X localement connexe, de dimension 1 et métriquement homogène est une courbe simple fermée.

Démonstration. On a en vertu du th. 2 soit $b_1(X) = 0$, soit $b_1(X) = 1$. Tout continu localement connexe sans courbes simples fermées (c. à d. une dendrite) contient, comme on sait, des points qui le divisent et des points qui ne le divisent pas. Par conséquent, il n'est pas homogène. Le cas $b_1(X) = 0$ est donc exclu en vertu de (1). Par conséquent $b_1(X) = 1$, d'où, en vertu de (2), l'existence d'une seule courbe simple fermée $C \subset X$.

Envisageons la propriété suivante d'un point $x \in X$: x appartient à une courbe simple fermée contenue dans X. Or, par suite de l'homogénéité de X, tout point $x \in X$ joue de cette propriété, c. à d. qu'on a $x \in C$. Par conséquent $X \subset C$, d'où $X = C$.

Concerning biconnected sets.

By

Edwin W. Miller (Ann Arbor, U. S. A.)

Introduction.

In their paper on connected sets B. Knaster and C. Kuratowski introduced the idea of a biconnected set and gave several examples of such sets ¹). Each of the biconnected sets constructed by Knaster and Kuratowski contains a dispersion point ²), and Kuratowski raised the question ³) whether every biconnected set contains such a point. The main object of the present paper is to prove that if the hypothesis of the continuum is true, there exists (in a bounded portion of the euclidean plane) a biconnected set which contains no dispersion point. The proof makes use of the axiom of Zermelo.

¹) Sur les ensembles connexes, Fund. Math. II, pp. 206—255. In this paper, as well as in the present paper, a set of points is said to be connected if it contains more than one point and is not the sum of two non-vacuous mutually separated sets. A set of points is said to be biconnected if it is connected and is not the sum of two mutually exclusive connected sets. It is an immediate consequence of theorem XI of the Knaster-Kuratowski paper that a definition equivalent to the last in this: a set of point is biconnected if it is connected and does not contain two mutually exclusive connected sets. For generalizations of the idea of biconnected set see P. M. Swingle, Generalizations of biconnected sets, Amer. Journal of Math., LIII, no. 2, pp. 385—400.

§ 1. Preliminary theorems.

Definition 1 A family of sets will be said to possess property B if there exists a set which contains at least one element of each set of the family, but does not exhaust any set of the family.

Definition 2. If M is a connected set and C a continuum which separates M, then the set $M \cdot C$ (which of course is non-vacuous) will be called an M-boundary.

Theorem 1. If M is a biconnected set, then the associated family of M-boundaries fails to possess property B.

Proof: Assume that the associated family of M-boundaries does possess property B. Then there is a subset Q of M such that both Q and $M \cdot Q$ have a point in common with every M-boundary. It follows easily that both Q and $M \cdot Q$ are connected. But this contradicts the hypothesis that M is biconnected.

Theorem 2. If M is a connected set, and every M-boundary has the power of the continuum, then M is the sum of two mutually exclusive connected sets.

Proof: It is well known that the set of all continua which separate a given connected set has the power of the continuum. Accordingly, the family of all M-boundaries consists of c sets of power c. But Bernstein's work shows that such a family of sets possesses property B. Hence by theorem 1 we have that M is the sum of two mutually exclusive connected sets.

Theorem 3. If M is a connected set and P is a finite subset of M, and if $M \cdot P = M_1 \cdot M_2$, where M_1 and M_2 are mutually separated and $M_1 \cdot M_2 \cdot 0$ (i = 1, 2), then $M_1 \cdot P$ contains a connected set $i = 1, 2$.

Proof: The theorem will be proved by induction. In the first place, it is well known that in the case where P consists of a single point $M_1 \cdot P$ (i = 1, 2) is connected. Let us assume then that $M_1 \cdot P$ (i = 1, 2) contains a connected set when P consists of a finite number of points, and show that the same result holds when P consists of $n + 1$ points.

We have then that $M \cdot P = M_1 \cdot M_2$, where M_1 and M_2 are mutually separated, $M_1 \cdot M_2 \cdot 0$ (i = 1, 2), and $P = p_1 \cdot p_2 \cdot \ldots \cdot p_n \cdot p_{n+1}$. Let us denote $p_1 \cdot p_2 \cdot \ldots \cdot p_n$ by Q. We have $M \cdot Q = M_1 \cdot p_{n+1} \cdot M_2$. If $M_1 \cdot p_{n+1}$ is connected then $M_1 \cdot P$ certainly contains a connected set. If $M_1 \cdot p_{n+1}$ is not connected, we have $M_1 \cdot p_{n+1} = M_{11} \cdot M_{12}$, where M_{11} and M_{12} are mutually connected sets and $M_{11} \cdot M_{12} \cdot 0$. Then $M \cdot Q = M_{11} \cdot (M_{12} \cdot M_2)$, where M_{11} and $(M_{12} \cdot M_2)$ are mutually separated. Now it is given that $M_{11} \cdot Q$ contains a connected set. The same is therefore true of $M_1 \cdot P$, since $M_1 \cdot P \cdot 0$. The same procedure of course proves that $M_1 \cdot P$ contains a connected set.

Theorem 4. If M is a biconnected set which contains no dispersion point, and P is a finite subset of M, then $M \cdot P$ is connected.

Proof: Let us suppose there were a finite subset P of M such that $M \cdot P = M_1 \cdot M_2$, where M_1 and M_2 are non-vacuous mutually separated sets. Now since M can contain no finite dispersion set, either M_1 or M_2 is connected. But by theorem 3 we know that $M_1 \cdot P$ contains a connected set. Accordingly M contains two mutually exclusive connected sets. But this is impossible since M is biconnected.

If theorem 4 is interpreted in terms of M-boundaries and combined with theorem 2 we obtain

Theorem 5. If M is a biconnected set which contains no dispersion point, then every M-boundary is infinite and some M-boundaries have a power less than c.

Proof: See Knaster and Kuratowski, I. c., theorem VI, p. 210. See R. L. Wilder, I. c., theorem 1 and 10. See Knaster and Kuratowski, I. c., theorem III. It is easily proved for any connected set M that some M-boundaries have the power of the continuum.
Concerning biconnected sets

Lemma. On the base AB of a square $ABCD$ let us take a nowhere dense perfect set P. At each point of P erect a perpendicular to AB extending to CD. Let us denote by W the point set consisting of the points of these perpendiculars. Let T denote a denumerable subset of W dense in W. Let H denote a denumerable set such that $H \cdot T = 0$. There exists a simple closed curve J such that:

1) $H \cdot J = 0$,
2) J intersects c lines of W and lies entirely within $ABCD$,
3) any line of W intersects J in at most two points,
4) $T \cdot J$ is dense in $W \cdot J$.

Proof: Let us arrange the points of H in a sequence $h_1, h_2, ..., h_n, ...$. In what follows, the projection on P of any point of W will be denoted by the Greek letter corresponding to the Roman letter used for that point.

Let a and b be two points of T within $ABCD$ such that a precedes b in the order from A to B and such that there are points of P between a and b. Join a to b by a simple closed curve J_1 lying within $ABCD$ so that:

1. h_1 is outside J_1,
2. any line perpendicular to AB and arising from a point within ab intersects J_1 in exactly two points, while any line perpendicular to AB and arising from a point outside ab does not intersect J_1,
3. the segment within J_1 of any line perpendicular to AB is of length < 1.

Now take points $t_1^{(1)}, t_2^{(1)}, ..., t_n^{(1)}$ of T within $ABCD$ so that $a, t_1^{(1)}, t_2^{(1)}, ..., t_k^{(1)}$ are in that order on AB, so that there are points of P between any two of these points and so that every point of P between a and b is at distance < 1 from some one of these points. Join a to $t_1^{(1)}$ by a simple closed curve, $t_1^{(1)}$ to $t_2^{(1)}$ by a simple closed curve, etc. Each one of these simple closed curves is taken within J_1 so that:

1. h_2 is outside the entire chain of simple closed curves,
2. any line perpendicular to AB intersects the chain in at most two points,
3. the segment of any line perpendicular to AB within any simple closed curve of the chain is of length < 1.
Concerning biconnected sets

The non-dense perfect subset of AB, from whose points the perpendiculars in the set of points W arise, will again be designated by P.

Now the set of all different components of an indecomposable continuum has the power of the continuum \(^{14}\). Let us then denote by Ω, the first transfinite ordinal to correspond to the cardinal number of the continuum, and arrange the different components of K in a well ordered series of type Ω:

$$C_1, C_2, ..., C_n, ... \quad a < \Omega.$$

Let us likewise arrange in a well ordered series of type Ω all continua which separate K:

$$B_1, B_2, ..., B_n, ... \quad a < \Omega.$$

Now let A be a denumerable subset of W dense in W. Consider all subsets A' of A such that A' dense in some W-region \(^{22}\). There are c such subsets and we shall arrange all of them in a well ordered series of type Ω:

$$A_1, A_2, ..., A_n, ... \quad a < \Omega.$$

We shall proceed to define for every $a < \Omega$, subsets M_a of K and simple closed curves J_a with the following properties:

I. $M_a = 0$ if $B_a \cap A = 0$,
II. $M_a = \rho < \Omega, \mu < \Omega,$ and $\mu + \nu = 0,$ then M_a and M_ν belong to different components of K,
III. $J_a(\Sigma M_a) = 0$ and $J_a(\Sigma M_\nu = 0$.

Let us show first that if we succeed in constructing the sets M_a and J_a so that conditions I--V are satisfied, then ΣM_ν is biconnected and contains no dispersion point.

We may notice at the outset that Σ is a subset of K. Then from II we have at once that Σ is connected.

\(^{22}\) Let S be any square which contains no point in the exterior of $ABCD$ and whose sides are parallel to the sides of $ABCD$. If S contains a point of W in its interior, then the set of all points of W in the interior of S will be called the W-region corresponding to S.

Fundamenta Mathematicae T. XXIX.
Now let β be any ordinal $\prec \Omega$, such that there exist M_α and J_α fulfilling for all $\alpha \prec \beta$ conditions I'—V' and VI, VII, and VIII. We will show that M_β and J_β can be defined so that these conditions hold for $\alpha \leq \beta$ 19). (More precisely in III' we will have $\mu \leq \beta$, $\nu \leq \beta$ and $\mu \leq \nu$, and in V' we have $\mu \leq \beta$ as well as $\alpha \leq \beta$.

Consider B_β. If $B_\beta \cdot \Delta = 0$ we put $M_\beta = 0$. Now, by the hypothesis of the continuum $\sum_{\mu \leq \beta} M_\mu$ is denumerable. Also from the fact that $M_\beta = 0$ and from I' and II' we have $\Delta \cdot \sum_{\mu \leq \beta} M_\mu = 0$. We may accordingly apply our lemma to obtain a simple closed curve J_β such that conditions IV', V' (with $\mu \leq \beta$), VI, VII, and VIII hold for all $\alpha \leq \beta$. Conditions I' and II' will clearly be fulfilled for $\alpha \leq \beta$ and III' for $\mu \leq \beta$, $\nu \leq \beta$ and $\mu \leq \nu$.

Assume now that $B_\beta \cdot \Delta = 0$. We will show that there exists a point p_β of B_β such that:

1) p_β is a point of any J_α with $\alpha < \beta$.
2) p_β is in a component of K which contains no point $\sum_{\mu \leq \beta} M_\mu$.

Let us denote by (W) the subset of W actually within $ABCD$. Suppose there are c components which intersect B_β in points not in (W). Now, each J_α lies entirely within $ABCD$, and the set $\sum_{\mu \leq \beta} M_\mu$ is denumerable in virtue of the hypothesis of the continuum. There is accordingly no difficulty in obtaining a point p_β satisfying 1) and 2).

If the set of components which intersect B_β in points not in (W) has a power $\prec c$, then there are certainly c components which intersect B_β only in points of (W). In fact, since any line of (W) lies entirely in exactly one component of K, there will be c components which intersect B_β only in points which lie on lines of (W) arising from interior points of the perfect set P. From each of these components let us select a point x of $B_\beta\cdot(W)$ and let us associate with each point x a sub-continuum R_x of B_β which contains the point x and lies entirely within $ABCD$ 20). Two cases arise.

19) We are of course mainly interested in the possibility of defining M_β and J_β so that I'—V' hold for $\alpha < \beta$. This will be seen however to depend in part upon the realization of VI, VII, and VIII for $\alpha < \beta$.

20) A theorem due to Janiszewski assures the existence of such continua. See Z. Janiszewski, I. c., theorem IV, p. 100.

18) The set $B_1 - C_1$ is non-vacuous since any component of an indecomposable continuum K is dense in K. See Z. Janiszewski and C. Kuratowski, l. c., theorem 8, p. 221.
Case 1. Each continuum R_a is a segment of the line of W which contains the point x.

Since $\sum_{\mu<\beta} M_\mu$ is denumerable, there exists a component C of the set just described which contains no point of $\sum_{\mu<\beta} M_\mu$. Let us denote the point x selected from C by x. The segment R_a is clearly a subset of C. Now, by VI, any J_α (with $\alpha<\beta$) has at most two points in common with R_a. Furthermore, there are at most a denumerable infinity of simple closed curves J_α for $\alpha<\beta$. Obviously then, there is a point on R_a which is not a point of any J_α for $\alpha<\beta$. Such a point may be taken as our point p_2.

Case 2. There is a continuum $R_a\equiv R$ which contains points of two different lines of W.

In this case since R contains the point x, and x lies on a line of W arising from an interior point of P, it is clear that the projection on P of the continuum R is an "interval" (i.e., a perfect set segment) I_1 of P.

We will first show that the projection on I_1 of $J_\alpha R$ for any $\alpha<\beta$ is nowhere dense on I_1. Let I_2 be any sub-"interval" of I_1 and let us suppose that there is a point q of $J_\alpha R$ which projects into a point of I_2. From VIII we have that q is a limit point of $J_\alpha A$. Then, since $B_1 A=0$, we can find a point r of $J_\alpha A$ and an arc A of J_α which contains r, is free of points of the closed set B_β (and is therefore free of points of R) and whose projection on I_1 is a sub-"interval" I_α. It is clear that the arc A may be chosen so that its end points are points of W. Now, from the second part of VI, it is clear that the two lines of W which contain the end points of A determine a second arc of J_α. If this arc contains a point of R_a, by a repetition of the process just described we obtain a sub-arc of it which contains no point of R and whose projection on I_1 is a sub-"interval" I_α. It is clear that I_α contains no point which is projected from $J_\alpha R$. It has been shown, then, that the projection on I_1 of $J_\alpha R$ is nowhere dense on I_1. Now any component C of K is an F_α. Accordingly, we may write $C.R=\sum_{\alpha<\beta} F_\alpha$ where F_α is closed. Now consider the projection of F_α on I_1. It cannot exhaust an entire sub-"interval" of I_1, for in that case all of the lines of W arising from that sub-"interval" would have to be contained in C. This, of course, is impossible, since every component of K is dense in K. Since the projection of F_α on I_1 is a closed set and does not exhaust any sub-"interval" of I_1, it must be nowhere dense on I_1. Therefore the projection on I_1 of $C R$ is of the first category with respect to I_1. Now again, in virtue of the hypothesis of the continuum, there are only a denumerable infinity of components of K which contain a point of $\sum_{\mu<\beta} M_\mu$. The product of their sum with R will project into a set of the first category with respect to the perfect set I_1. Since the projection of $\sum_{\alpha<\beta} J_\alpha R$ is also a set of the first category with respect to I_1, it is clear that there is a point y of I_1 which is not a point of either of these sets. It follows that we may take any point of R on the line of W arising from y as our point p_2.

To complete the induction, it remains merely to mention that if we put $M_\alpha=p_\alpha$ then in the first place I' and II' are clearly satisfied for all $\alpha<\beta$ and III' is satisfied for $\mu<\beta$, $\nu<\beta$ and $\mu=\nu$. In the second place, we have $J_\alpha \sum_{\mu<\beta} M_\mu=0$ for $\alpha<\beta$. Furthermore $\sum_{\mu<\beta} M_\mu$ is denumerable and $\Delta \sum_{\mu<\beta} M_\mu=0$. We can accordingly apply our lemma to prove the existence of a simple closed curve J_α such that IV', V', VI, VII, and VIII hold for all $\alpha<\beta$. We have shown now that for every $\alpha<\Omega_\alpha$ there exist sets M_α and J_α such that conditions I—V hold, and our theorem is proved.
