the required formula we have only to show that \(\int_0^t (g_\nu(t) - g(t)) \, dX(t)\) vanishes for all \(\nu\). This is true \(^{13}\), since \(g_\nu(t) - g(t)\) vanishes except on the set \(EN\), of measure zero, and \(X(t)\) is \(VBG^*\) on \(E \cup EN\).

(For \(\nu, t\) are different parameters for the same curve \(I\), and \(x(t)\) is \(VBG^*\) on \(r^{-1}[F(E)]\).

The corollary follows at once. \(E\) reduces to the whole interval, so that \(g(t)\) vanishes, and the \(PS\)-integral reduces to an ordinary Perron integral.

\(^{13}\) loc. cit., Theorem 10.

Warszawa, 1936.

Ultraconvergence et espace fonctionnel.

Par

Stefan Mazurkiewicz (Warszawa).

1. Cette note contient un théorème général sur l'existence de séries de puissances ultraconvergentes \(^{1}\), basé sur l'étude d'un espace fonctionnel.

2. Désignons par \(R^2\) le plan de la variable complexe \(z\). \(G\) étant un domaine simplement connexe, désignons par \(\mathcal{H}(G)\) l'ensemble de toutes les fonctions holomorphes dans \(G\). Nous définirons dans \(\mathcal{H}(G)\), considéré comme un espace fonctionnel, une distance par une méthode due en principe à M. Fréchet. Choisissons dans \(G\) un point arbitraire \(z'\), posons \(\lambda = \varphi(z', R_2-G)\), enfin désignons pour \(0 < \lambda < \lambda'\) par \(\lambda(\lambda)\) l'ensemble des \(z \in G\) tels que

\[
\varphi(z, R_2-G) > \lambda; \quad |z - z'| < \frac{1}{\lambda}.
\]

Soit \(G(\lambda)\) le composant de \(G^*(\lambda)\) contenant \(z'\). \(G(\lambda)\) est borné, simplement connexe, on a \(G(\lambda_1) \subset G(\lambda_2) \subset G\) pour \(\lambda_1 > \lambda_2\) et, pour une suite \(\{\lambda_j\}\), la condition \(\lambda_j \to 0\) entraîne \(\sum_{f=1}^{\infty} G(\lambda_j) = G\).

Posons pour \(f, g \in \mathcal{H}(G)\):

\[
(2) \quad \sigma_0(f, 0) = \inf_{\lambda} \left(\lambda + \sup_{\lambda_0 \in \mathcal{H}(G)} |f(\lambda)|\right),
\]

\[
(3) \quad \sigma_0(f, g) = \sigma_0(f-g, 0).
\]

\(^{1}\) Une série de puissances \(S\) est dite ultraconvergente dans un domaine \(U\) contenant le cercle de convergence de \(S\), si une suite de sommes partielles de \(S\) converge dans \(U\), la convergence étant uniforme dans tout sous-ensemble fermé et borné de \(U\). L'ultraconvergence a été étudiée par M. M. Jentsch, Ostrowski et Bourion.

Fundamenta Mathematicae, T. XXVIII.
σ₀(f, g) est alors une distance entre f et g, et Α(G) un espace métrique, séparable et complet. Pour une suite (fₙ), fₙ ∈ Α(G), la relation σ₀(fₙ, f) → 0 exprime que fₙ converge dans G vers f, la convergence étant uniforme dans tout sous-ensemble fermé et borné de G.

3. Théorème. G étant un domaine simplement connexe, l’ensemble δ de toutes les fonctions f ∈ Α(G) telles que:
 I) G est le domaine d’existence de f,
 II) toute série de Taylor de f est ultraconvergente dans G,
 est un résiduel dans Α(G).

 4. Lemme. L’ensemble Β des fonctions f ∈ Α(G) telles que G est le domaine d’existence de f, (c. à d. que f est non prolongeable au delà de G) est un résiduel dans Α(G).

 Soit H = G - G, B un sous-ensemble dénombrable de H dense dans H; b₁, b₂,... les points de B. A tout bᵢ on peut faire correspondre une suite (bₙ, k), k=1, 2,... telle que bₙ, k ∈ G et limₙ bₙ, k = bᵢ. Soit Βₖ, m, k l’ensemble des f ∈ Α(G) telles que |f(bₙ, k)| > m. Posons:

 (4) \[\mathbb{B}^* = \bigcap_{j=1}^{\infty} \bigcap_{m=1}^{\infty} \sum_{k=1}^{\infty} \mathbb{B}_{j, m, k} \]

 Evidemment Βₖ, m, k est un ensemble ouvert, donc Β* un G₀ dans Α(G). Soient: g ∈ Α(G), 0 < η < η’, j, m fixes. Comme bᵢ non ∈ G, on a aussi bᵢ non ∈ G(η’/4); il existe donc un indice kᵢ pour lequel bᵢ, kᵢ non ∈ G(η’/4). Comme G(η’/4) est simplement connexe, il existe d’après le théorème de Runge un polynôme p(x) tel que:

 (5) \[|p(b_i, k)| > m, \]

 (6) \[|p(x) - g(x)| \leq \eta/3 \quad \text{pour} \quad x \in G(\eta/3) \subseteq G(\eta’/4). \]

 D’après (5) p ∈ Βₖ, m, k ⊆ Βₖ, m, k et d’après (6) σ₀(p, g) < η; par conséquent l’ensemble \(\sum_{k=1}^{\infty} \mathbb{B}_{j, m, k} \) est dense dans Α(G) et Β* en est un résiduel.

D’autre part, si \(f \in \mathbb{B}^* \), on a \(\lim_{n \to \infty} |f(b_{i, k})| = +\infty \) pour \(i = 1, 2, ... \)

Donc, comme \(B = G \), f n’est pas prolongeable au delà de G, c. à d. \(f \in \mathbb{B}^* \)-C est démontré.

5. Lemme. La dérivation est une opération fonctionnelle uniformément continue dans Α(G).

 Autrement dit, à tout 2η > 0 on peut faire correspondre un ηᵢ > 0 tel que pour \(f, g \in Α(G) \) l’inégalité \(σ₀(f, g) < ηᵢ \) entraîne \(σ₀(f', g') < 2η \).

 On peut supposer sans restreindre la généralité que η < η’ et η < η’’. Posons \(η₁ = η²/4 \). L’inégalité \(σ₀(f', g') < η₁ \) entraîne alors

\[(f(x) - g(x)) = \frac{1}{2πi} \int_{(b₁)} \frac{f(x) - g(x)}{(x - z)^2} dz, \]

\[|f(x) - g(x)| < \frac{1}{2π} \cdot \frac{16}{η^2} \cdot 2π \cdot 4 = η, \]

\[σ₀(f', g') < \frac{η}{2} + η < 2η, \]

ce qui démontre le lemme.

6. Soit \(f \in Α(G) \). Nous désignons par \(p^{(n)}(z) \) la série de Taylor de f au point \(u \in G \) et, pour \(k = 0, 1, 2, ... \), par \(p^{(n)}_u(z) \) les sommes partielles de \(p^{(n)}(z) \), c. à d.:

\[p^{(n)}_u(z) = \sum_{k=0}^{n} \frac{f^{(k)}(u)}{k!} (z - u)^k, \]

\[p^{(n)}_u(z) = \sum_{k=0}^{n} \frac{f^{(k)}(u)}{k!} (z - u)^k. \]

7. Lemme. L'opération fonctionnelle $p^{(f)}_{u,k}$ est pour $k = 0, 1, 2, ...$ et $u \in \mathcal{G}$ continue par rapport à f, la continuité étant uniforme par rapport à u dans tout sous-ensemble fermé et borné de \mathcal{G}.

Aucune limite ne peut être faite à chaque $\eta > 0$ un $\mu > 0$ tel que pour $u \in \mathcal{G}(\eta)$ et $f, g \in \mathcal{A}(\mathcal{G})$ l'inégalité

$$\sigma_0(f, g) < \mu$$

 entraîne

$$\sigma_0(p^{(f)}_{u,k}, p^{(g)}_{u,k}) < \eta.$$

Sans restreindre la généralité, on peut supposer $\eta < \lambda$ et $\eta < 1$. Soit $\mu = \frac{\eta}{2} < \eta$. D'après 5, nous pouvons déterminer $\mu > 0$ de manière que (13) entraîne

$$\sigma_0(f^{(s)}, g^{(s)}) < \mu_1 \quad \text{pour} \quad s = 0, 1, 2, ..., k.$$

Il résulte de (15) que

$$|f^{(s)}(u) - g^{(s)}(u)| < \mu_1 \quad \text{pour} \quad s = 0, 1, 2, ..., k \quad \text{et} \quad u \in \mathcal{G}(\mu_1).$$

On aura donc d'après (1) pour $u \in \mathcal{G}(\eta) \subseteq \mathcal{G}(\mu_1)$ et $z \in \mathcal{G}(\eta/2)$:

$$|p^{(s)}_{u,k}(x) - p^{(s)}_{u,k}(x)| < \mu_1 \epsilon^{z-u} < \mu_1 \epsilon^{1/2} = \eta/2.$$

Ainsi (13) et $u \in \mathcal{G}(\eta)$ entraînent (14), c. q. f. d.

8. Corollaire. Soit $\beta > 0$ et k fixé. L'ensemble des fonctions $f \in \mathcal{A}(\mathcal{G})$ telles que

$$\sigma_0(f, p^{(f)}_{u,k}) < \beta \quad \text{pour} \quad u \in \mathcal{G}(\beta)$$

est ouvert dans $\mathcal{A}(\mathcal{G})$.

9. Démonstration du théorème 3. Désignons par \mathcal{S}_m, où $m = 1, 2, ...$ et $r = 0, 1, 2, ...$ l'ensemble des $f \in \mathcal{A}(\mathcal{G})$ telles que

$$\sigma_0(f, p^{(f)}_{u,k}) < 1/m \quad \text{pour} \quad u \in \mathcal{G}(1/m).$$

Posons:

$$\mathcal{S}_m = \bigcap_{r=m}^{\infty} \mathcal{S}_m, r$$

et

$$\mathcal{S}^* = \bigcap_{m=1}^{\infty} \mathcal{S}_m.$$

D'après 8, \mathcal{S}_m, donc aussi \mathcal{S}_m^* est ouvert dans $\mathcal{A}(\mathcal{G})$. Par conséquent \mathcal{S}^* est un \mathcal{G} dans $\mathcal{A}(\mathcal{G})$.

Soient $0 < 0 < \lambda'$ et $g \in \mathcal{A}(\mathcal{G})$. Le domaine $\mathcal{G}(\eta/3)$ étant simplement connexe, il existe donc d'après le théorème de Runge et la relation $\mathcal{G}(\eta/2) \subseteq \mathcal{G}(\eta/3)$ un polynôme $q(z)$ pour lequel

$$\sup_{z \in \mathcal{G}(\eta/2)} |q(z) - g(z)| < \eta/2,$$

d'où

$$\sigma_0(g, q) < \eta.$$

Soit z un entier supérieur à m et au degré du polynôme $q(z)$. Alors, quel que soit u, on aura $p^{(m)}_{u,z} = q$, donc $\sigma_0(q, p^{(m)}_{u,z}) = 0 < 1/m$, de sorte que $g \in \mathcal{S}_m$ et \mathcal{S}_m. Par conséquent \mathcal{S}_m est dense dans $\mathcal{A}(\mathcal{G})$ pour $m = 1, 2, ...$, \mathcal{S}^* et, d'après 4, \mathcal{S}^* est donc un résiduel dans $\mathcal{A}(\mathcal{G})$.

Soit maintenant $f \in \mathcal{S}^*$. Alors G est le domaine d'existence de f. D'autre part, $f \in \mathcal{S}_m$, pour $m = 1, 2, ...$. A chaque m correspond donc un $r_m > m$ tel que $f \in \mathcal{S}_m, r_m$. Donc

$$\sigma_0(f, p^{(m)}_{u,r_m}) < 1/m \quad \text{pour} \quad u \in \mathcal{G}(1/m) \quad \text{et} \quad m = 1, 2, ...$$

Soit $u_0 \in \mathcal{G}$. Il existe alors un m_0 tel que $u_0 \in \mathcal{G}(1/m)$ pour $m = m_0$, d'où

$$\sigma_0(f, p^{(m)}_{u_0,r_m}) < 1/m \quad \text{pour} \quad m = m_0, m_0 + 1,$$

Ainsi la suite $(p^{(m)}_{u_0,r_m})$ converge vers f dans \mathcal{G}, la convergence étant uniforme dans tout sous-ensemble fermé et borné de \mathcal{G}. Donc, $p^{(m)}_{u_0,r_m}$ est ultraconvergente dans \mathcal{G} pour tout $u_0 \in \mathcal{G}$, c. à d. $f \in \mathcal{S}^*$ et le théorème est démontré.

10. Corollaire. G étant un domaine simplement connexe, il existe une fonction $f(z)$ possédant G comme domaine d'existence et telle que toutes ses séries de Taylor sont ultraconvergentes dans G.

Warsaw, 22. XII. 1936.