228 S. Eilenberg.

Es ist zu bemerken, dass die Voraussetzung, nach der die
kompakten Gruppen eine iuverse Homomorphismenfolge bilden sol-
len, fiir die Giltigkeit des letzten Satzes wesentlich ist. Man ersieht
daraus, warum in der Pontrjaginschen Verallgemeinerung des Ale-
xanderschen Dualititssatzes der Koeffizientenbereich fiir das XKom-
paktum K als eine kompakte und fiir das Komplement R, —K alg
eine diskrete Gruppe vorauszusetzen ist.
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Note on the projection of irregular linearly measurable
plane sets of points.

By
J. Gillis (Cambridge).

1. Saks?!)and Be31cov1tch2) have both constructed irregular
linearly measurable 3) plane sets of posmve linear measure whose
projections on all directions have Lebesgue measure zero. The exis-
tence of these has been the starting point for some investigations ¢)
into the structure of irregular sets. One question which suggests
itself is whether parallel projections, for which the stated property
holds, is ,privileged®, i. e., whether or not it may be possible to
prove an analogous result for projection from a finite point in the
plane of the set. The justification of the concept ,,projection from
a point“ lies in the fact that, if the projection of a plane set from
a point of the plane on a straight line not passing through the point
bhas measure zero, then the same is true for any other line which
does not contain the point. I shall not prove this statement since
the proof is quite trivial, but it is important in that it enables us
to say that the projection from a point is zero or positive ®) without
reference to the line on to which the projection is made.

1y 8. Saks, Fundamenta Mathematicae, 9 (1927), pp. 16—24.

?) A. 8. Besicovitch, On the fundamental geometrical properties of linearly
measurable plane sets of points; Math. Annalen, 98 (1928) pp. 422—464. See, in
particular, pp. 431—434. A description of the set is given in § 3 below.

%) i. e. in the sense of Carathéodory, cf. Carathéodory, Gott. Nach-
richten, (1914), pp. 404—426.

4} of. On linearly measurable plane sets of points of wpper density y, Fund.
Math., 22 (1934), pp. 57—869.

%) i. e. has zero or positive Lebesgue measurc
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230 J. Gillis:

2. In this note I consider the set of Besicovitch. I shall, in
fact, show that dts projection from any point of the plane outside the
set is zero. The result completes, in a sense, our knowledge of the
projections of this set, and it suggests the problem of whether amd
in what form it is possible to generalize to projection from a finite
point the known results on parallel projections. The methods I use
here are sufficiently closely related to the methods I use elsewhere ¢)
to suggest that one can easily find arguments substantially ana-

logous to those uged in the theory of parallel projection. In view .

of the still incomplete nature of the results-of the latter theory I
shall make no attempt here to carry out this procedure.

- Again, it is immediately obvious from the remarks of § 1 that
the property proved here for the special set will hold for all its co-
nical projections on. other planes while the'upper and lower densities
of sets are not, in general, invariant under conical projection. Thus
we get a fairly general class of sets which have zero projection from
all external points.

3. In this section I definé the set in question. To begin with I
denote by c(a, r) the circle with centre at the point a and radiug 7
By the operation I';, on a circle o(a,r), I mean the construction of n
circles as follows:

(a) draw the circle c[a, ( 1—1/n r],

(b) divide its circumference into n equal parts,

(c) describe circles of radius 1/nr gbout the points of division.

We now start with a circle C; of radius 1. We perform on it
the operation I', and call the resulting set of four circles C,. On
each cirele of ¢, we perform the operation I'; and call the resulting
set of 20 circles Cy. We proceed in this way constructing C. by oper-
ating with I', on each circle of (n_;. For each n we perform I',
in such a way that no circle of 0, touches a circle of Cp_,. Finally
A=0 X0, X 05 X ... :

~ The following properties of 4 are known 7):

1. LA (= linear measure of 4)= 2.

2. The upper density of A4 is } at every point of A.

: . . 1
3. The lower density of 4 is equal to ;——-—— at almost
' Vartr1i—1

“all points of 4.

%) See footnote 4) cf. also G. W. Morgan, The density directions of irregular
linearly measurable plane sets, Proc. London Math. Soc., 38 (1935), pp. 481—484.

) For 1, 2, and 38 see Besicovitch, op. cit.. 431-—434. Properties 4 and 5
were proved by Morgan,. op. cit.
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4. At almost all points of A every direction is a (weak) density
direction.

5. The (orthogonal) projection of A on every direction has mea-
sure zero.

4. I proceed to prove for A the property stated in § 2. To begin
with I suppose that the point P from which we project is exterior
to €. Let O be the centre of C; and take axes with O for origin and.
OP as axis Ox. The co-ordinates of P are (h,0) (say) and we shall
consider the projection- of 4 on to some fixed straight line. The

k following lemma, which does not require proof, will be fundamental:

Lemma I, Under the conditions described above there exist two
positive constants K,, K, with the following properties:
(i) If 1 is the length of any linear interval included in the closed
circle C, then its projection has length less than K,l.
(ii) If A is the length of any interval included in the projection
of Oy and 0 the angle which the interval sublends at P then
K, <A < K;:

Now divide each ecircle of each C» into N equal sectors, where
N is an arbitrary and fixed number, and take one of the dividing
radii of each circle parallel to Ow.

Let 8n be some circle of Cn; the radius of s» is 6/n! The set 8n-4
lies in the ring bounded by-s. and the concentric circle of radius

S s}
n! n+1 :
Consider the plane areas which this ring has in common with

the sectors containing the points of contact of the tangents t0 s

~from P and let 6, 8, be the angles which they subtend at P [See Fig.].
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232 J. Gillis
Then it is easily verified that, for sufficiently large n,
' 24n% 1 1 )
ISE —iw T (i=1,2)

Hence, by (ii) of lemma, the projections of these areas are each

less than ,
42 1 1 K,

1 ml W al. A (say).
Since the number of these areas obtained from all the circles of

oonl
G, is 31 We see that the total projection of all these areas is less

K .
than F;’ where K, is a constant. Now, for large n, the linear meas-

ure of the subset of A contained in these areas is (asymptotic-
2 ,
ally) I—V'LA' Hence, given N, we can find n, so that, if n>=n, and

we perform the above operatiou on 8ny a subset of A of linear

1 , ,
measure greqter than lTT'LA projects into a set of Lebesque measure
K,

less than Fr

Now consider the circles of Cr.y which were not projected in

‘the given -operation; their proportion to the whole of the circles
. . 2 '
of Cnyy is (asymptotically) 1——-ﬁ. We perform the same operation

on each of them, then again on those circles of Cn+2 which remain, etc.

Suppose that we have performed this operation on Cn, Oniyeeey G .

The measure of the projection so far obtained j
 less than J ained is for large m,n

B+ by
<%-1_(11~1)=%.

The linear measure of the part of the set not yet projected
is less than (1— llv)'"
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Since N was arbitrary and m can be as large as we please,

we have

Lemma II. Given any positive number & we can write
A=A, + A, where (i) L4, <e and (ii) the projection of 4
has measure less than s.

Now, by the definition of Carathéodory measure and (i) of
Lemma II, we can enclose 4, in a set of areas the sum of whose
diameters is less than 2e¢. It follows, by (i) of Lemma I, that the-
projection of 4, has measure less than 2K, e Combining this with
Lemma IT (ii), we see that the projection of A has measure less
than (2 K, + 1) e

Since ¢ is arbitrary we see that the projection of A from P has
measure 2ero.

5. In § 4 we saw that 4 has zero pr6jeetion from every point
external to C;. Now 4 is closed and so, if @ is any point exterior
to A, we can find » such that @ is exterior to C,. We can then apply
to @ and each cirele of C, precisely the same argument as we applied
above to P and (). It follows that the subset of A in each circle
of C, has zero projection from @ and so, therefore, has A. This com-
pletes the result. ‘
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