Un théorème sur les fonctions de classe 1.

Par

B. Vulich (Leningrad).

On connaît le théorème classique de M. Baire: "pour que la fonction \(f(x) \), définie sur l'ensemble parfait \(P \), soit une fonction de Baire de classe 1, il faut et il suffit que, quel que soit \(\varepsilon > 0 \), sur chaque ensemble parfait \(H \subseteq P \), l'ensemble de points \(x \) dans lequel l'oscillation de la fonction \(f(x) \) (relativement à cet ensemble \(H \)) surpasse \(\varepsilon \) soit non-dense\(^1\).

J'ai obtenu un théorème plus fort dans le sens de la suffisance que celui de M. Baire, en utilisant le procédé transfini employé ordinairement pour la démonstration de ce dernier.

Définition. Nous appellerons oscillation supérieure de la fonction \(f(x) \) au point \(x_0 \in H \) (relativement à cet ensemble \(H \)) la valeur de l'expression

\[
\text{Max}(f, x_0, H) = \limsup_{x \to x_0} f(x),
\]

où

\[
\text{Max}(f, x_0, H) = \lim \sup_{x \to x_0} f(x).
\]

Il est bien entendu que la fonction \(f(x) \) est définie sur un ensemble \(H \).

Je montrerai qu'on peut remplacer dans le texte du théorème de M. Baire le mot oscillation par oscillation supérieure; ainsi on arrive au théorème suivant:

Théorème. Pour que la fonction finie \(f(x) \), définie sur l'ensemble parfait \(P \), soit une fonction de Baire de classe 1, il faut et il suffit que, quel que soit \(\varepsilon > 0 \), sur chaque ensemble parfait \(H \subseteq P \), l'ensemble de points \(x \) dans lequel l'oscillation supérieure de la fonction \(f(x) \) (relativement à cet ensemble \(H \)) surpasse \(\varepsilon \) soit non-dense.

1) H. Hahn, *Theorie der reellen Funktionen*, Berlin 1921, S. 353, Satz II.
ment semblable peut être fait dans le cas où l'ensemble \(P \) n'est pas borné.

Pour que \(F(x) \) soit une fonction de classe 1, il faut et il suffit que pour tout \(a \) les ensembles \(\delta(F > a) \) et \(\delta(F < a) \) soient des \(F_\alpha \).
Cette condition est remplie dans le cas présent, ce qui suit des égalités évidentes:

\[
\delta(F > a) = \sum_{n=1}^{\infty} (E_n - \overline{E}_{n-1}) \cdot \delta(f_n > a)
\]

\[
\delta(F < a) = \sum_{n=1}^{\infty} (E_n - \overline{E}_{n-1}) \cdot \delta(f_n < a),
\]

où

\[
\overline{E}_k = E_1 + \ldots + E_k \quad (k = 1, 2, \ldots)
\]
e et \(E_0 \) est l'ensemble vide.

En effet, \(f_n \) étant des fonctions de classe 1, tous les ensembles \(\delta(f_n > a) \) et \(\delta(f_n < a) \) sont des \(F_\alpha \); de même les ensembles \(E_n - \overline{E}_{n-1} \) sont des \(F_\alpha \) comme des différences d'ensembles fermés; les premiers termes des égalités (2) sont donc des ensembles \(F_\alpha \). Par conséquent, quel que soit \(\varepsilon > 0 \), on peut construire une fonction de classe 1, \(F(x) \), pour laquelle l'égalité (1) soit vérifiée, c. q. f. d.

Chaque ensemble fermé étant un ensemble parfait ou contenant des points isolés, et chaque fonction \(f(x) \) étant continue au point isolé, il est évident que si la condition du théorème est remplie sur chaque ensemble parfait, elle est aussi remplie sur chaque ensemble fermé.

Nous montrerons que, quel que soit \(\varepsilon > 0 \), la condition du lemme est remplie pour la fonction \(f(x) \); il s'en suit que \(f(x) \) est une fonction de classe 1.

Pour conserver l'uniformité, désignons par \(F_1 \) l'ensemble \(P \). En vertu de la condition du théorème, l'ensemble des points, dans lesquels l'oscillation supérieure de la fonction \(f(x) \) sur une \(\varepsilon \), est non-dense sur \(F_1 \). Par conséquent, sa fermeture \(\overline{F}_1 \) ne coïncide pas avec \(F_1 \).

1) H. Hahn, l. c., S. 350, Satz III. \(F_0 \) est la somme d'un ensemble dénombrable d'ensembles fermés.

2) La fermeture d'un ensemble est la somme de cet ensemble et de son dérivé.

Fonctions de classe 1

Posons

\[
M_1 = F_0 - F_1.
\]

\(M_1 \) est donc un \(F_\alpha \) et, par conséquent,

\[
M_1 = \sum_{k=1}^{\infty} M_1^k
\]

où \(M_1^k \) sont des ensembles fermés.

Définissons sur chaque ensemble \(M_1^k \) une fonction semi-continue supérieurement (qui est à fortiori une fonction de classe 1) \(\varphi_1^k(x) \), en posant

\[
\varphi_1^k(x) = \text{Max} (f, x, M_1^k).
\]

L'inégalité

\[
|\varphi_1^k(x) - f(x)| \leq \varepsilon
\]

est vérifiée pour tout \(\varepsilon M_1^k \), car l'oscillation supérieure de la fonction \(f(x) \) à ces points (relativement à l'ensemble \(P \)) ne surpasse pas \(\varepsilon \).

Nous appliquerons ensuite l'induction transfinie. Supposons que les ensembles fermés \(F_\beta \) soient déjà définis pour tout \(\beta < \alpha \) (\(\alpha < \beta \)) et que

1. \(F_\beta \subset F_\beta' \) si \(\beta' > \beta \),

2. \(M_\beta = F_\beta - F_{\beta+1} \) n'est vide pour aucun \(\beta + 1 < \alpha \),

3. Si \(\beta \) est un nombre de \(2^n \) espèce, \(F_\beta = \bigcup_{\gamma < \beta} F_\gamma \).

On peut présenter chaque ensemble \(M_\beta \) (\(\beta + 1 < \alpha \)) sous la forme:

\[
M_\beta = \sum_{k=1}^{\infty} M_\beta^k,
\]

où \(M_\beta^k \) sont des ensembles fermés; supposons qu'une fonction semi-continue supérieurement \(\varphi_\beta^k(x) \) telle que

\[
|\varphi_\beta^k(x) - f(x)| \leq \varepsilon \quad \text{pour tout} \quad x \in M_\beta^k
\]

soit définie sur chaque ensemble \(M_\beta \).

Alors, si \(\alpha \) est un nombre de 1er espèce, désignons par \(F_\alpha \) la fermeture de l'ensemble des points \(\varepsilon x F_{\alpha-1} \) dans lesquels

\[
\text{Max} (f, x, F_{\alpha-1}) - f(x) > \varepsilon.
\]
Über stetige Abbildungen der Teilmengen euklidischer Räume auf die Kreislinie.

Von

K. Borsuk und S. Eilenberg (Warszawa).

Ist M ein metrischer Raum, so bezeichnet S_1^M die (abelsche) Gruppe, die als Elemente stetige Abbildungen von M in die, in der komplexen z-Ebene liegende Kreislinie $S_1 = \mathbb{E} \{ |z| = 1 \}$ hat, wobei die Zusammensetzung von Elementen die gewöhnliche Multiplikation ist. Zwei Abbildungen $f_1, f_2 \in S_1^M$ werden dabei äquivalent in einer gewissen Teilmenge \mathcal{N} von M genannt (Bezeichnung: $f_1 \sim f_2$ in \mathcal{N}), wenn es eine stetige reelle Funktion φ gibt, für welche $f_1(x) : f_2(x) = e^{\varphi(x)}$ für jedes $x \in \mathcal{N}$ gilt. Die mit 1 (d. h. mit der Funktion $f(x) = 1$, welche das neutrale Element von S_1^M ist) im ganzen Raum M äquivalenten Funktionen1 bilden eine Untergruppe $P(M)$ von S_1^M. Die Faktorgruppe von S_1^M nach $P(M)$ wird mit $\mathfrak{B}(M)$ bezeichnet.

Es ist bekannt2, dass das Verschwinden der ersten Bettischen Zahl eines Kompakts M eine notwendige und hinreichende Bedingung für das Verschwinden der Gruppe $\mathfrak{B}(M)$ bildet. Für nicht kompakte Räume verhält sich die Sache anders. Wir werden nämlich in vorliegender Arbeit zeigen, dass schon im dreidimensionalen euklidischen Raum R_3 offene Mengen G existieren, für welche die eindimensionale Bettische Zahl positiv ist, obwohl die Gruppe $\mathfrak{B}(G)$
