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quential topology 7 defined on L will be called ,continuous* if and
only if it is continuous in the operations of the system — that is,
(1) 7l@ny=2 and w(y,j=y imply 2.+ ?/nr"'w“{”% and (2) if {4,) is any
sequence of real numbers converging to 4, and #a,|=®, then ©{1, 2,}=ax.
It is clear that if 4, = implies 7{@,}=w®, then {w,}=w if and only
if viw,—a)=6. This will be assumed throughout § 7.

Theorem 16: The join of any number of continuous sequential
topologies is ilself continuous.

The proof is that sketched for Theorem 6.

Theorein 1 The most inclusive continuous sequential topology «”
included in each of two given continuous sequential topologies v and +'
ewists. and 1is given by the rule v'{w,)=0 if and only if (y.) and {2}
exist, satisfying @, =Ynt+2n and (Y ) =7 {2y} =

The only real question is as to whether this rule defines a con-
- tinuous sequential topology; if it does, v’ (C = and ="+ are obvious,
and is also obvious that any continuous sequential topology inclu-
ding 7 and < must include 7’. Further, ” and homogeneity evi-
dently define a unique sequential topology.

Now suppose 7"{w,) = and ¢"{z}}=2". Then we can find {y,),
{2uly iynt and 2} such that y,+ 2, =x—, Yo+ 2=, —2,

o \ et . N ’ P ,
Yn) =120} =7 {y0) =7{2,} = 6. Hence TWn+Yn) =1 {2n 42} = 8, by

definition . ‘
€,,<(¢’,+w;')_(w+m,)} = T Yn+Yn)+(2a42,) =0

and ©"{@,+p}=x+'. The proof that 1,—>/2 and z"‘w,,,—_.cv 1mpheb

"4, &yy=Ax follows similar lines.

Society of Fellows Harvard University.
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On the differentiation of additive functions
of rectangles.

By
.A. J. Ward (Cambridge).

It has recently been shown that if f(», ¥) is a summable fune-
tion of two variables, it is not in general true that

Lim = d
d(}zl)riloﬂRff/dw Y = 1(%q, Yo)

- almost everywhere, where R is any rectangle containing the point
" {%0y Yo)

1)2), Saks raised the question whether it is possible for the
upper and lower limits, as h, k— 0, of

Xoth gytk
ik f f(@,y) dz dy
xo—h yo—k

to be finite and not identical at the points of a set of positive mea-
sure?). Besicovitch has solved a slightly different but closely

" related problem by showmg that

L Xyth gotk

L ff(w,y)dwd/y

P&mf
Xo I/

is equal, at almost all points, either to f(x,, ¥,) or to +oq 4.

1) H. Busemann and'W. Feller, Fund. Math., 22 (1934), 226—256;

. 8. Saks, ibid., 267—261.

%) Here, as throughout this paper, B denotes a closed rectangle with sides

3 parallel to the co-ordinate axes, d(R) its diameter, and p Lebesgue plane measure.

3) Saks, loo. cit., 260.
) A. 8. Besmowtch Fund. Math 25 (1935), 209—218.
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In this paper I consider the analogous limits obtained when
the integral [[f(,y)dxdy is replaced by an arbitrary additive
R

function of rectangles F(R). The theorems proved include the result
of Besicovitch as a special case.

1. Let F(z,y) be any real function of two real variables, de-
fined in the interior of some square. Given any point (z, ) and
two numbers k, k (which may be positive or negative but do not
vanish), we write R(z,y;h, k) for the rectangle whose opposite
corners are (x,y) and (z-+h, y+%). (All rectangles considered have
their- sides parallel to the coordinate axes.) We write

(1) AF(x, y; b, k)=F(2+h, y+k)—F(w+h, y)—F(2, y+k)+F (@, y);
(2) F[R(z, y; h, k)] = AF(x, y; h, k) sgn (hk).

Thus for any rectangle R, F(R) is defined, and has the same value
whichever corner we take as (xz, y); alse F(R) is an additive function
of rectangles, We define

= - — F(R)
3 D(xr, y) = lim —=*
(3) (2, y) R
where R is any rectangle containing (z, y) either as an interior point
or on the boundary. Since any rectangle containing (@, y) can be
divided into at most four rectangles, each of which has (@, y) at
one corper, we see from (2) and (3) that we have also

T AF(‘”}?/? h, k)

() D(2, y)=lim —=21 B B
k>0 hk
We define further
(5) * Dule,y) = m AE @ Y3 by )
' . 10 h?

There are similar definitions for the lower derivates D(z,y), Dulw,y).
We have at once ' - -

(6)  D(z, y) < Dul, y) < Dz, y) < Diw, y).

. 2. We first state an elementary geometrical lemma. By a prin-
cipal corner of any rectangle we mean either the lower left-hand
or the upper right-hand corner. ‘
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Lemma. If in any redtangle R there is given a finite number
of rectangles R,, not touching or over-lapping each other or the sides
of R; then the remaining area R—3 R, can be divided into a finite
number of rectangles Ri, each of which has as one of its corners a prin-
cipal corner of one of the rectangles R,.

The rectangles R, may be constructed thus: Produce each
horizontal side of every rectangle R, as far as possible to the left,
until it meets either the left-hand side of R or the right-hand side of
some other R,. Then produce each right-hand vertical side of R,
a8 far as possible, both ways, without crossing any of the horizontal

~ lines already in existence. It may be shown ) that the lines thus

drawn dividle R— YR, into a set of rectangles R”, each of which
contains a principal corner of some R,, either at a corner on on a side.
If on a side, we have merely to divide R” into two parts by a line
drawn from that point. Thus we obtain the required subdivision
into rectangles E;.

8. Theorem 1. If at each point (v,y) of a set E, we have

— o< D(x,y) < D(w,y)<oco; then, almost everywhere in E,
2(“", y)=D(a, y).

We shall show that, almost everywhere in E,

(M) D(w, y) = D[, y).
Then by a similar argument we have almost everywhere in B
D—(wa Y) << Dula, y),

and combining these inequalities with (6) we obtain the desired resulf.
Suppose on the contrary that in a subset of E of positive outer
measure, we have
—o0 < D(, ¥) < D2, y) << D(, y) < 00.

Then we can find M so large and % >0 so small that in a set E,
of positive outer measure we have

(8) — M<D(x, y)<Du(x, y) —31<D(z, y) <M.

We can then find an integer A such that in a set E, of positive outer
measure, (8) holds and also

(9) 2(‘1": f‘/)<(A"'“'2)'7;
(10) ) Tﬁm(“’r y) > An.

) The proof is easy and will not he given.


GUEST


icm

170 | A. J. Ward:

From (8) (9) and (10) we see that
(11) | <M.
For any point (z,y) of Ey, there exists d(@, y)>0 such that

_MQF[R(“J’W h, kﬂQM

. 1hik|
whenever 0<[h|<d(w, y); 0<|k|<d(w,y); from (8). Hence, we can
find a fixed 6>0 and a set X, contained in H,, of positive outer
measure, such that (12) is true whenever 0< h|<d, 0<[k|<4,
and (, y) lies.in F,. Let E, be the set of points of B, which are
points of outer density of F,in the strong sense ®). Then u,E=p,H;>0,

(12)

4. Let (2,) be any point of H,. We shall show that there existy
a sequence of rectangles R(w,y; hn, k), n=1, 2,... such that

(13) Bakn>0y [l < [P <2fRe]y
(14) hoy k>0 a8 n—>oo,
(15) (@4 hny y+ka) belongs to H,,
(186) Z[R($: Y3 bny ken)1>(A—1)0 by Fon.

For from (10) ?.nd the fact that (v, y) is a point of outer density
of E,, we can find a sequence of squares S,=R(a, y; ln, l,) such that

1) Ll<d and 1,-»0 as n—> oo,
(18)  F(S)>Aql,

(19) (B>,
‘where :

(20) &=n[16 M.

From (8) clearly 0<e<}. Consider one such square S, and suppose
for example that 1,>>0. By (19) there exist ha ko such that

(21) . (1_5) zn<h'n<lm
(22) (1""5) z:t<kn<;n’

8) (’.l‘;l]:)point (%, y) i8 a point of outer density of set X, in tile strong sense,
e 13 dle . Lo ’
fd(llzl)lﬂ @ = 1, where R is any rectangle, containing (w, y), with sides parallel

to the axes. 5. Saks, Théorie de VIntégrale, Warsaw 1933, pp. 223, 281,
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and (@+hs y+k,) belongs to E;. We can express the rectangle
R(@, y; hny kn) a8

-R(ma ?/; hny kn)=Sn _Rnl ""Rn2‘_-Rn3

where R, R, R have each one corner at (x+hy, y+k,) and their
opposite corners at (z, y+l.); (@+ly y+l); (@41, y) respectively.
The sides of these rectangles are less than I, and so less than d;

‘hence a8 (x+ha, y+k,) belongs to E; we have from (12)

: 3
F(R:xl)+ —F(an) + F(Rns) < M;?l u (Rm')

and so from (18) (21) (22) (20) and (11), since F(R) is additive,

FLR(@, Y3 hay Fon)]>A 115 — M(T— by kn)
> A hyTn— (M — A n) (la—hnFor)
>Aqhakn—2M Iz [1—(1—¢€)]
>Aqh,ky—4Mel,
> A by ka—nli/4
>(A —1) ﬂhn kn

gince from (21) and (22) we have certainly h,k.>ln/4, for e<i.
We have now shown that h,, k. satisfy conditions (15) and (16).
From (21) and (22), since £<}, (13) is also satisfied. If 1,<<O we
can proceed in a similar way; in this case h, and k, will be negative.
Thus hy, k. are defined for all », and since 1,—0 we have clearly
hpy kn—>0 a8 m — oo,

5. Consider now a fixed point (g, y,) of E,; since E;—E, is
of measure zero, (&, ¥o) is also a point of outer density of E, in the
strong sense. From (9) we see that there exist hy, k, such that, writing
Ry= R (@) Yo; oy o)y

(23) F(Ro)<(A—2) 1 1(Ey),
(24) 0<|hg<d,  0<ko<<8,
(25) te (By By) > (1—¢) 1t (Ry).

With each point (x, y) of B, R, is associated a sequence of rectangles
satisfying the conditions of the last paragraph; and in particular
condition (13). Hence we can apply Vitali’s theorem and obtain,
by (25) and (16), a finite set of such rectangles R,.. R,, say, not
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touching each other or the sides of R, such that

(26) Su(B)>

v=1

(1—&) u(Ro),

@ Z"F(R»)_>(A——1)'.ﬂfm13..)-

From (13), (15) we see that the principal corners of each R, are
points of E8 Apply the lemma; we can write

- (28) Ry= £13”+w§1m’

where each K, has‘one. corner belonging to E,; We have therefore,
by (12) and (24)
(29) . F(R) 2z — M u(R)
and so from (20), (26), (27) and (28), since F(R) is additive,

F(R) > (4—1)7 3 p(Ba)— U 5 (B

> (A—1) n u(Ry) —{ M+ (4 -——1)’7‘ V#(Rv)
> (A —1)7n w(Ry)—2M e u(R,)
> (A —2) 1 u(R,),
(since (A—1)n<<M). This contradicts (23) and so (7) is established.

6. A system of rectangles R,(w,y) associated with a point (2, y)
w1ll be said to be completely regular if

(i) Each Rz, y) contains (%, 9);
(i)  d(R,)—>0 as n—>oo;
(iii)  There exists >0 such that, for all n,
(30) ‘ #(Rn) > a [d(R,)],
(31) ' d(Rut1) > ad(Ry).
Theorem 2. If D (%, y)>——occ at each point of a set E, then,

except at the points of a set N of measure zero [independent of the
systems R, (2,y)], we have at each point of E

FlRue,9)]
D By y)] — 2@Y)

for every completely reqular system R, (v, y).
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Suppose the theorem false; then there exists a subset E, of E,
of positive outer measure, with each point of which is associated
a completely regular sequence of rectangles R,(z, y) such that

F[R,(, y_)]
5o M [Rn(m’ y)]

The number @ oceurring in (30) and (31) will depend on (=, y), but
we can find a fixed ¢ so small that (30) and (31) are satisfied, for
this value of e, at all points of a subset E, of E, with positive outer
measure. Let B be an integer such that

(32) Ba® > 576.
Arguing a8 in § 3 we show that there exist >0, 6>>0, an integer 4,

and a set Fj, contained in E,, of positive outer measure such that,
for (v, y) in By, 0<|h|<d, 0<|k|<d, we have

> D(z,y)-

(33) An<Dis, y) < (A+1)7;
(34) tim A (4+B) 7
(35) FLR(@, y; by K)]> A b b;
and also

(36) | ALRy(z, )] = 8

(37) FLR(z, )] > (A+B) n u[Rulz, 9)]

whenever d(R,)<d.

(lonsider a point (x,, y,) which belongs to E, and is a point
of outer density of E, in the strong sense. Then from (33) it follows
that we can find h, k such that the rectangle Ry=R(Zy, yo; b, k)
satisfies

(38) O<lhl<id,  O<Jk<Ld
(39) F(Ro)<(A+2)n p(Ry),

3
(40) el By Ry) > (Ro) (1= g)-

It is convenient to suppose 0{71<Jc (it will readily appear how
to apply the argument in the other possible cases); making this
supposition we define the integer m such that

(41) m>=>2,  mh<<2k<(m+1)h.
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We consider the 2m squares §,, defined by

(42) a0+ (p—1) h2 <2<+ Ph2, (p=1,2)
(#3) Yo+ (g—1) 12 <y<yo+ ah/2, (g=1, 2...m)
and the two rectangles R,,,

(44) To+ (0 —1) b2 < 2 <+ Ph/2, (r=1,2)
(45) Yok M2 <Y <yot+k,

except that if 2k=mh exactly, these rectangles are naturally omitted.
A square 8, will be said to be of class 4 if

(46) (”l‘ (E3 Spq) > ,M* (Spq) _aa h2/14.4:;

otherwise it will be said to be of class B. Let m’ be the number of
squares of class B; then clearly we have

te (By Ro) << 1 (Ry) —m” @® 12144
and so from (40) and (41) we obtain
m’ a® k2144 < ® hk/1000 < a®h? (m -+ 1)/2000

‘and 50
(47) m' < 144 (m+1)/2000
' <(m~+1)/12
< mf6.

From this it follows that each of the two columns of m squares given
by p=1 and p=2 contains some square of class 4. Then the squares
of each column, together with the corresponding rectangle R, (if it
exists), can be grouped together into rectangles, each of which
contains exactly one square of class 4. We suppose this process
carried out for each column. Of the resulting rectangles, some will
consist each of a single square of class 4; these we enumerate as
815 8y... Sar. The remaining rectangles, each of which contains one
or more squares of class B or possibly a rectangle R, or R,, we enu-
merate as Ry, Ry,.. Ry. Clearly M'<Cm/+2, and 80, since by the
construction M=(2m—m’')—M’, we have from (41) and (47)

(48) M > 2m—m[3—2
> m/2,

icm
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Now by the additive property of F(R)

M M
(49) B(Ry) = 3 F(8.) + 3 F(R))

v=1

‘We shall obtain a lower bound for each of these terms.

7. Consider a square S, (one of the squares S,); let (), ¥.)
be its middle point, so that its principal corners are (v,—h/4, y.—h/4)
and (z.,-+h/4, y,4-h/4). 8, is of class 4; hence by (46) there is certainly?)
a point (@, ¥,) of E, such that
(50) @, —h[12 < @, < z,+ h/12,
(51) Yo—h{12 < y, < y»+ h/12.

Let Rx (i, y») be the first of the sequence of rectangles R.(), ¥,)
which satisfies

A[ Ry (w3 yo)] < h/12;
then by (31), (36) and (38) we have

(62) ah/12 < d[Ru (@, 4,)] < h/12,
and so by (30)
(83) w[Ry (@, yu)] > o3 h2[144.

Let (&1, 1) and (L, m20) be the principal corners of Ry(wl, ¢.), 80
that, by (50), (51) and (52) we have

(54) @y —h(8 < &1 < & < @+ h[6;

(85) Yo —h[B < 11, < Maw <Yy + /63

algo from (52) and (53), since j(Rx) <d(Ry) (£2v—£Ew) we have
(56) Eov—E1 > /12,

Congider now the four rectangles

(67) @, —hjd < o < &y Y—h/4 <y <y,+h/t;
(58) o < o < wy,+ h/4, yo—h/4 <y < y,+ hf4;
(59) & <@ < B,y Yo— hfd <y < Mw;
(60) En<<e < g‘b’: Taw <Y < Y»+ hf4;

which together with Ry(z,, y,) make up the 'squa.re S,. By (b4),

") @ iz obviously less than 1.
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(55) and (56) we see that each of these has area ab Ie‘asﬁ (a®h/12)
(h/12)=03h2[144; and so Dby (46) each rectangle containg a point
of By say Py, Py Py Py respectively. It follows that the square §,
can be divided into the rectangle Ry(a}, y,) and sixteen other rect-
angles, 88y R, Boyeer Bty each of which has at one corner a point

Fig. 1.

of E,®). The diameters of all these rectangles are less than h and
80, by (38), less than d; hence by (32), (35), (37) and (83) we have

1
(61)  F(S)=FlEx(a, )]+ SF(R)
= 14

> (A+B)nu[By (@ y)]+An 3w (Buz)
> A np(8,)+ By Ry (i y3)]

> Anu(8,)+ By adh?/144

> Anu(S)+ 4k

Consider finally the rectangles R,; every such rectangle containg
a square of class 4 and so certainly some point of F,. Hence it can
be divided into at most four rectangles, each of which has one corner
at such a point of Hy Their diameters are less than h--%k and so
less than d. From (35) we obtain by addition over these sub-rectangles.

(62) F(R,) > Anp(R).

5.) Each of the four rectangles (57)—(60) is divided into four by lines through
the points P,, P,, P,, P, respectively. :
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From (49), (61) and (62) we obtain

r=1

F(R)> A0l u(8) + 3 (B + 420
and thereioré by (39) and (48) |
(A+2) 01 (Ry) > F(Bo) > A 1. (Ro) + 2m

2nhk'>2mqhﬂ>(m+1)qh=

which' contradicts (41). We obtain a similar contradiction if R,

has any other possible shape, instead of that given by 0<h<k.
Hence the theorem is proved. ‘ :

and so

Corollary 1. If at each point of a set E we have D(z, y)>—o0;
then, almost everywhere in E, D(z,y)=Du(x, y). -

It is only necessary to consider the completely regular system
Rn(z, y) = R(®, y; 27—, 27"). . :

 Corollary 2. If the function F(R) is of bounded variation, in
parti wlar if F(R)= }[; [f(®, y)dzdy; then almost everywhere. either

D(m7 y)=—no0

or .
2(”7 y)= Dm(m; Y).

For in this case it is known that Dn(z, y) existé almost everywhere?).

8. It will be observed that measurability has played no part
in the preceding arguments. It is easy to show, however, that D(, y)

~ and F(xz, y) are measurable functions1?). This will enable us to prove

another theorem similar to Theorem 1. .

Let {R} be any collection of closed rectangles, contained in
some square; the cardinal number of the collection is quite arbitrary.
Then we say that the set E=J'R 18 measurable. For with pach point
of E can be associated a sequence of squares, each confaining the
point and with diameters tending to zero, which lie in one of the
rectangles B. By Vitali’s theorem, for any positive ¢ there is a

9) 8. Saks, Théorie de V'Intégrale, p. 49.
10y F(x,y) is defined as lim &) for all squares 8 containing (z, ¥);
T o i(8) T
we have clearly Dim(z, y) <F(z, y)<Diz, y). Saks, loc. cit. p. 46.

Fundamenta Mathematicae. 1'. XXVI. 12
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finite non-overlapping set of such squares, say &Sy,.. 8, such that
H (”zj Sr) =§’IM (8,) > e (B) —e&.
But each square S, is included in Ej and so
(B = (38> o (B) —e.

Qe

Since € is arbitrary, this shows that ¥ is measurable. Let E(K 4)
be the sum of all rectangles K such that F(R)>Ku(R) and d(R)<d.
Then by the above remark E(K, J) is measurable. The set of points

at which D(z, y)>K is identical with the set ]’/I.E(K—-l/n, 1/n),
Fra |

and so D(z, y) is measurable 1), Again, the set of points (x, y) such
that F(R)<CKp(R) for any rectangle, containing (2,y), of diameter
less than d, is the complement of E(K, d), and therefore is meagurable.

9. Theorem 3.1%), If at each point of a set B we have

—oo < D(&, y) < F(z, y)<oo; then almost everywhere in F, D(w, y)=
=2m(w7 ) = Dy(m, y).

Suppose the theorem false; then arguing as in the proof of
Theorem 1 we find M>0, n>>0, an integer 4, 6>0, and a set I,
of positive outer measure such that, for (z,y) in g, ‘

(63) —M<D(w,y)<(4—2)n<A <Dz, y) <F(x, y)<M;

(64) —M u(R) < F(R)
whenever d(R)<é and R contains (#, y); and finally
(65) F(8) < M u(8)

whenever d(8)<d and the square § containg (@, y). Let H be the
set of points which satisfy the last two conditions, (64) and (65),
but not necessarily (63); then by the preceding arguments H is
measurable. It follows that almost all points (#0y Yo) of H, and a for-

tiori almost all points of K, are such that the sub-set of H lying

on the line y—yy=a—a, is linearly measurable and has linear dengity 1

1) Substituting /squares’ for ‘rectangles’ we see that F(, y) is moeasurable.
In this case the proof is virtually identical with that given by Saks; L cit. p. 47.

‘t“)1 This theorem was suggested to me by a conversation with Mr. B ¢si-
coviteh.
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at the point (24, v,)1?). Let.E, be the set of those points of E; which
have this property; then w.E,~u.E,>0. We shall show that with
each point of E, can be associated a sequence of squares Sy(z,y)=

= R(x, y; hy; hy) such ‘that

(66) >0 as mosoeoy
(67) " (@4 hay y+hs) belongs to H;
(68) - - FSn (@, 9)]>(A—1) ki

Thereafter the proof proceeds exactly as in § 5, by considering
a fixed point (wy, y,) of E, which is-also a point of outer density
of B, in the strong sense. (H takes the place of H,). It remains only
to show how to form the sequences of squares:

10. Let (zy,5;) be a point of B, From (63) and the fact that
(24, ¥1) 18 a point of linear density of H, we can find a sequence
of squares 8,=R(x), ¥1; ln ln) such that - i
(69) <0 and 1,—>0 a3 m—roo;
@) RS)>Aql; o
@) mE0Se o=y =< 2> 2—o 2l
where'm' dénotes linéar Lébesgue méasﬁ‘r’el")yand o _' o
(12) C. ESuEM<L
Consider one éuch équare S,-and suppose for example that 1,>0.
By (71) there .exists h, such that . :
(73) b < ha<(14-€) Lo .

(74) | (@y+ Py Yr+ha) - Delongs to H.

Then 8.(Zy; Y1) ‘is the square R(zy, yy; h,,, .h")‘ (If 1,<0 we proceed
gimilarly; the inequalities in (73) are reversed). To ghow that ﬂus
gequence of squares satisfies the . required conditions it remains

only to prove (68). . ., . Lo e
" 'Let Rui, Rw be the rectangles, respectively. . .. .

(1) oth<e<aths  BSYSUHUER L
- ‘.'15) *Sa.k'&, loc.. cit. p 226, . SRR o P

G M) Tt.is cléar that if n is negative we must read m{H;. 0=a—m=y~Yy>2ln]
in (71). v

g 4 i

12*
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(76) . . m1\'”<~w1+hrn y1+ln§y<(’l1+hn; St
and 1et SZ ‘be the’square Hn P e
(W)““%+h<m<%+m‘”m+h<y m+m _tg“
Since F(R) is additive we have '
(78) P(8n) = ,HJ’m+mldeZ% |

(mli yl‘l’ hu) § (501-{— hm ?/1 + hn) N “.
%////
(m:l’ ?/1+ lu\ ¢ RSP SEEEOF ENTSPINE LR

(05'1-}— lmyl n) I t;‘, “)
y24 AS' N
Ns 4 N Lt
N Y
/%"
A . : ;| Y
2 RSt gv.m«.lﬁb K ) . ‘
(@1, Y1) ( 1t "7'2‘/1(“)‘ (@ t+hny y,)
Y UFigo 2

Since the poit (2w, ¥1--ha) belongs to H ‘and i a'¢orner of édéh
of the rectangles Ry, Bip, §1 We, can apply (64) and. (60); from (73)
and (78) we derive thus

(79) (S") B ,,)———M{MRnl)'l‘”( 1,>)+!¢(‘S;;)
G R M@ S

From (63)’ (70), (72), (73) and (79) W obtain’ imally ERERE

F(8,) > Anl,==5 M e
;.>A7]hn_"‘_5Mln£‘_‘M(hn )
o >A17h,,——5Ml,,e—Ml,, (52—{- 0&) :
c >Anh,,—-—8Ml;, ; , b
R R R L R ».> ( ' ‘—1)"7}&,;,‘ SN T gy sita
which is the result (68) required. The a,rgumen‘u s’ pract1caﬂy ‘the
same in the case when I, and h, aré negative. 1), "

vy If P&, y) is contmuous ‘we can’ replace the condltlon T (w, y)+< oo, in
Theorem 3, by the weaker condition Dm(w, y)- co. The argument is unchanged,
except that (65) is replaced by the condition (65 A): FLR(w, y;h, h)]=2.Mh* ‘when-

ever th[ “d--and {w, y):18 in Hy:: The set of ;pomts satistying (65A) s’ cloaed and
80 H is measurahle. : ‘

icm

‘we have, if (z,4) is in By,
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i 114 For: mea.surable functions of one variable, there is a theorem
which: states that.ifrany of the four derivateés: is. finite in a set B, .
then it is the approximate derivative almost everywhere in H. -An
analogous theorem, #n the: weak' sense, can ‘be proved for functions
of rectangles, but the correSpondmg theorem in the strong sense
is false. Let (wy, y,) be a point, such\ that D(@,, y,)>—o0. Given
>0, we write G(x,, ¥, 1) for'the set of points. (x, y) -such that

(80 MF(‘”H Y3 By Y — Y1) — 99—""1) ( ‘—?IJ,)D(“’U 1‘11)1 >
‘L?‘ ST Ao >"?|~’”—“"1)(f‘/ yl) - .
Theorem 4. If at'each point of a set B D(w, y)>—-oo, then
almost everywhere in B, for.all- >0,

lim Me[SEG(w, Ys v)] —0
Lagmo o apBi T

K
S

oy

where 8 18 cmy squa/re contammg (m, y)

“Suppose the theorem untrue, then by the usual amguments we'
can find fixed >0, >0, an’ mteger 4, 6>0, such that, in a subset
E, of E with positive outer measure we have ‘

(81) fim FE[SEG({”’ Y, 317)]>88
d(S)-w B # S :

(82) - A?]<D(w,?/) (A+1)’7’ v

(83) S 0 A’“‘( )

d(R)<d and R contains (m, y)
Let H be the'sét of points (z,y) satisfying ‘the last condition,
(83), j;hen H.is measu;able and contams E,. Hence (E — H) hag zero

dens:ty a,t almoﬂt a]l pomtgs of EI, sa.y at the pomts of a set E2 Thusf‘

(84;) e e dime s “0 [SHG (my 3/, 3 77)]

TR d(S)—)o ¥ \‘ “S

Now consider any: : square 'S c.ontmm;ng (m, y), in: whlch t;he-r‘
average outer density of the set HG(x, y, 3n), (that is, the ‘quotient :
occurring in (84)), is greater than 8¢, Let S, be the smallest ‘Square
with centre (2, y) and containing S; then ;LS,,<4yS and ‘so the
average density of the set in.S,.is greater.than 2e. Divide §, by lines

> 8 Eoroi T ey
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through’ (@;y): into four equal. squares; in one of these at least the
average:density is greater than 2e. It follows that at each point of K,

@ither: =0 covsl s it R Dl L Cown D
Or; s -4 “ b : R rh “,,",‘ S T ) Ry 0y
(86) ‘ﬁun‘[HG.(.w,,gz,‘?m;FR(x,_y;/h,“,—-— NS ge

h->0
Henoe orie at least of (85) and (86) miist be true in a set B, of
positive outer measure; and we may suppose it is (85), for in the other
case we: could.consider P(®,y)=—F(@ —y). ' . .oy

Let (wy, y;) be a point of By “There is & SOqUONCs T, |1 & 44,

1,—>0, such that

) ke [HG @y 93, 3 ';) Eoy 43 bl o

Hence for, each n there is:a point (by+ R, Y5+ ka)y; say,. lying in
HG(“;’ Yas 31) By, Yas ,l,,,,;l,_,),;&nd.“._auch,thavt,« T T 3 T
(88) Rl e, e

It follows that R

(89) Mok >0, b <[l <&

and from (80),
F R (@, y1; by k,,)] — D (xy, ﬂl)\ b n > 397 b e

Comparing this with (82) aﬁd (83) we khakv‘e; o
Sl Do F[R(wliyli 'hm kn)] > (Arh3)7)hnkn.

We nito finally that (s-+hs 7,-%,) belongs €6 B From this ottt the

argiment is’ exactly parallel to those “used 'in proving Theorems
1 and 3; the detail is left to the reader. =" "= " trtr ot e e

~ Note. The theorem obtained by replacing ;;any square“ by ,any
rectangle” in the enunciation of Theorem 4 is'certainly false; this
may beseen by considering the cage of aipositive function of rectangles
(for. example LJ f(@yy) dz dy) -which has.at:a set. of positive wnea- -

At

sure D(z,
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Sur les théorémes de séparation dans la Théorie
des ensembles.

Par

Casimir Kuratowski (Warszawa).

Soit 4 une famille de sous-ensembles d’un espace composé
d’6léments arbitraires. On dit que cette famille satisfait an premier
théoréme de séparation, lorsqu’a chague couple d’ensembles disjoints
A, et A, appartenant & A correspond un ensemble B qui, ainsi
que son complémentaire, appartient & A et qui satisfait aux for-
mules A,C B et BA,=0. Le deuwiéme théoréme de séparation est
satisfait, lorsqu’a chaque couple d’ensembles 4, et A, appartenant
4 A correspond un couple d’ensembles disjoints C; et (, dont les
complémentaires appartiennent & 4 et qui remplissent les formules
A, —A,CC, et A4,—A,COC, '

" Des exemples surtout importants de familles satisfaisant aux
deux théorémes de séparation présentent: la famille des ensembles
boreliens de classe multiplicative f>01), celle des ensembles ana-
lytiques %), celle des ensembles projectifs de classe CP(CA3).

1y ¢. & d. @3, Foy, Gyos ote. Les théordmes de séparation pour ces familles
d'ensembles ont été démontrés par MM. Lusin et Sierpinski. Voir W. Sier-
pifiski, Fund. Math. 6 (1924), p. 2 et Bulet. Soc. St. de Cluj 6 (1932), p. 461,
et N. Lusin, Fund. Math. 16 (1930), pp. 57 et 60.

11 importe de remarquer que la tamille des ensembles fermés safisfail au

_ deuaiéme théoréme de séparation et cependant — si I'espace est connexe — elle ne
" sabisfait pas au premier: & chaque couple E;, K, d’ensembles fermés correspond un

couple H,, H, d’ensembles ouverts disjoints tel que B,—E,CH, et B,—E,CH,
(cf. par exemple ma Topologie I. p. 99, 2 et 6), tandis que Uespace ne contient
aucan vrai sous-ensemble non vide qui soit simultanément fermé et ouvert.

%) Les théorémes de séparation pour les ensemhles analytiques ont ét¢ dé-
montrés par M, Lugin sous le nom du .premier et deuxiéme principes‘. Ils
.jouent un role fondamental dans la théorie de ces ensembler.

%) Les théorpmes de séparation pour les ensembles CPCA ont été dé-
montrés par M. Novikoff, Fund. Math. 25 (1935), p. 459. '
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