icm

On the Differentiability of Functions and Summability
. of Trigonometrical Series.
’ By
J. Marcinkiewicz and A. Zygmund (Wilno).

Introduction.

§ 1. The present paper consists of five chapters, in each of
which a different problem is treated. Fundamental for the whole
paper is Theorem 1, which will be enunciated in a moment.

Let f(z) be a funetion!) defined in the interval (a, b), and let

(1) dula, s = 20 (— 1)k (?)f(wﬂh-—{rkh) (h>0, k=1,2,...).
J==

The finite limit 1lim Ag(w, h: f)/h*, if it exists, will be called
. h->0 -

the k-th Riemann derivative of f, at the point x, and denoted by
D,f(x). In the cases k=1,2 we ohtain the first symmetric deriv-
ative and the Schwarz derivative respectively.

If, for a given ®#, we have an equation

(2) f@-+ty=as+ad+ast?/2!+...4-ar t*[k14-0(tF),

where the numbers a;= a;(x) are independent of #, then a, will be
called the k-th de la Vallée-Poussin derivative of f at the point =,
and will be denoted by fu(x). If fi () exists, so does fx—i(z). The
existence of f(z) implies that of Dyf(w), which is then equal to fu(x)-

1) In what follows we shall only consider measurable functions. All the

operations which will in this paper be applied to f(z), lead to measurable func-
tions. The proofs offer no real difficulties, and may be left to the reader. For f

non-measurable, and k>>1, Theorem 1 is false.
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2 J. Marcinkiewicz and A. Zygmund:

Theorem 1. If Tim |Ai(@, h; f)/ht| <co for we B, |E|>01), then
h>0
fuy(@) exists almost everywhere in B. Moreover, for almost every weE,
: . i
(3) fu+n(@) = (d—é)af/ (@),

where the symbol (d/dw). denotes the approximate derivative ®).

§=0, 1.0, b—1,

This theorem will be established in Chapter 1. Its proof is
long and is based on a series of lemmas, some of which are interesting
in themselves. The most important and difficult is the first part
of the theorem (the second is easy, cf. § 19). The argument uses
gome rather deep results from the theory of analytic functions.
A special case, viz. when k=2 and D, f(») exists for xzeF, can
be obtained by an elementary argument (cf. § 17).

§ 2. Chapter 2 generalises and completes the following theorem
recently established by Kuttner3),

Theorem A. If a trigonometrical series

(4) Lay+ Y (avcos va+b.sinva)= 3 A.(x)
v=1 =)
converges in a set B, |B|>0, and the conjugate series

(5) 3 (a.sinvx—b, cos rw) = Y A,.(x)
vzl v=]
is summable (C, 1) in E, then the series (5) converges almost every-
where in E. '
Since the idea of Kuttner's proof will be repeatedly used
in Chapter 2, we reproduce here Kuttner’s argument, in a simplified
form. It is based on the following

Lemma A. If (4) converges in E, |E|> 0, then, for almost
every §c B, there is a sequence {u,y=1{u,(£)}, 1<pu,<2, such that

(6). Z‘Zp(;“)sin_v%ﬁo as n—»oo.
v=1 -0

1) By |El we denote the Lebesgne measure of a set K.

#) For k=1 the theorem was established (even in a more general form)
by Khintehine [1], p. 217 sqq. The case k=2 was enunciated by Denjoy [L],
p. 1220, without proof. Cf. also Denjoy [2).

%) Kuttner [1].
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Let s, (#) and §,(x) denote the n-th partial sums of the series
(4) and (B) respectively. Let éC E, |6/>0, be a set where s,()
tends uniformly to its limit s(zx); in particular s(z) is continuous
over . Let £¢é& be a point of density of &. Since, for n large enough,
the relative density of & in the intervals (§+n7% £42x71) and

(6—2n73 §—mn~) exceeds '/,, there is a number 1<u,<2 such
that & 4+ u,/neé. Therefore
sn(§+”n/n) —=8n (g"'l"n/'n) —> 0,

which is equivalent to (6). Since |E—&| may be arbitrarily small,
the lemma is established.

The rest of the proof is the same as in Kuttner s paper. For
every sequence {u,} we write

(7) n{uszn{uv=“n} — Un41; Aﬁ(’ll/,.}:Aﬁ—I {’u'u} IH-]{ul "y

for k=2, 3,... Applying Abel’s transformation to the left-hand suie
of (6) twme, we get
n—2

®) 3 a0 A,,.(sm "“")+ 3 (8) A,,_l(sin 3;’:—)+ 5.,(6) sinnir,—>0,

n==1

where §.)=7%+5,+...+ 5. Assuming, as we may, that the (C,1)
sum of (5) at § is 0, we have §=o(m). Since |A%(sin v u,)/n| << (2/n),

the absolute value of the first two terms on the left of (8) is less than

(9) ()5 om) +2-0(m)=o ()

N/ et

Since sinnmu, >sinl, from (8) and (9) we obtain ,(£)—0, i e.
Theorem A 1). ‘

§ 8. The importance of theorem A is due to the fact that the series con-
jugate to Fourier series are summable (C, 1) almost everywhere. For an anal-
ogous reason, the following theorem may also be of some interest.

Theorem B. If (4) is summable (C, 1) in B, |BI>0, to sum 8(x), and if
Iim s8,(%)< 0o for e, then, for almost every weX, we have
NPo0

(10) lims, (m)>—oo, 8 (@) =4{lim 8,(2)+Lim 8,()).

1) Let ¢,<0yg< «—>00. The argument of Theorem A shows that, if (5) is
summable (0, 1) for weB, and 8,=0(¢n) for zeF, then F,=0(¢n) for almost

every xe H. The O may be replaced by o.
1*
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4 J. Marcinkiewicz and A. Zygmund:

For let CE, |8|>>0, be such that s*(x) is continuous over &, and
(11) - n(w) <8* (@) + en, (xes)

where &, is a numerical sequence tending to 0; we write s%(x)=lim s (),
84 ()= lim 8n (x). Let £28 be a point of density of 8. Considering the relative
density of & in the intervals (§-+n(1—n)/n, E4+n(147)/n), (§~—n(1+n)/n, E—m(1—n)/n),
where 7>0 is fixed but arbitrarily small, we see, as in Lemma A, that there is
a sequence 4,>0 such that §x(7+dn)/ned. Lot (7+dn)/n=2~n, and suppose that
8(£)=0. Applying Abel’s transformation to the right-hand side of the equation

n
(12) 3 {sn(E+-An)8n(§—An) } = 2 Am($) cosm An,

m=0
and arguing as in Lemma A, we obtain that the right-hand side of (12) is equal
to sn(&) cos m Anto(1). In view of (11) and the continuity of s*(w) over §,
we have
sn(s) cosn An <} {8* (54 2u)8% (5—2n) }+ 04 1) << 8*($)+o(1).
Since cosn An—>—1, we obtain s*(§) = — s (£), which gives the first relation in
(10). In the general case (s(£)+0), the inequality §*(§)>—s4(£) may be written
(13) HE*(E)+84(5)} 2 8(8). .
/

If we started with the function s,, which we now know to be finite
almost everywhere in F, we should obtain, instead of (13), the conversé in-
equality s*1-s, < 2s, which proves the second equation in (10).

§ 4. The following result completes Theorems 4. and B.

Theorem C. Suppose that the series (4) and (5) are summable (C, 1) for
zeE, [E|>0, to sums s(x) and §(x) respectively. Suppose also that

(14) 8¥(x) o0 for weE.

Then the four functions s*(x), 8x(®), 8*(x), x(x)*) are finile almost every-
where in E, and satisfy the relations

(15) Hetw)Foxl@)y=s(®), {F*(@)+8e(@)} =8 (x),
~(16) 8H(2) — 84(2) = 8*() — B4(z)-

Let 8§ CF, |8] > 0, be such that the functions s*(z), s4(x), and s(x) are
continuous over & (that se(z) is finite almost everywhere in & follows from
Theorem B), and let sn(x) satisfy the inequalities

(17 84(®)—=en << 8 () <8*(x)+ om, ze8,

where ¢, i8 a numerical sequence tending to 0. Let §e¢& be & point of density

of 8. There is a sequence J, —> 0 such that, if 2x=(37-d)/2n, the points §x=An
belong to 4. Then

(18) F{su(§+2An)—8u(§—An)}= -—Z A () sin» An.

=1

1) The last two functions denote Tim #a (@) and lim &, () respectively.
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Supposing that §(§)=0, and applying Abel’s transformation twice to the
right-hand side of (18), we obtain

(19) k{8 (§+/1n)—-8u(§'—'l{n)}=——in(§) sin Ann+o(1).
Since nin—> 37/2, (17) and (19) give
(20) BH(E) << H{a*(§)—s4(£)).

This inequality shows that s*(£)<oco almost everywhere in E, so that the
equations (15) follow from Theorem B.

Now let 6,->0 be a sequence siuch _E-J_—zl;,eé', where ).'"= (n+:5;‘)/2'n,.
Replacing 4. by 4, in (19), we obtam

(21) 8x(§) = — L {s*(§)—84(8)},
and, subtracting (21) from (20),
(22) BH(E) —8x(§) << 8¥(8)— 84(&).

In view of thé symmetric réle of the series (4) and (5), the inequality
opposite to (22) is also true, and this gives (16). From (19) follows algo that if,
for almost every x ¢, the series (4) is strongly summable (C, 1), with index q0,
the same may be said of the series (5).

§ 5. We recall the following definitions. A series wg+1u,+...
is said to be summable (C, k), k>—1, to sum s, if :
oh=R81/0%—s,
where the numbers S; and Cf are defined by the equations

(28) Y She=(1—2) 1 S, 5 Charm(1—a) .
n=0 n o n 0

If uy+uy+... is summable (C, k) to s, then it is also summable A

to 8, i. e. up+uyr-+u,724...—>s ag r—1.

The expressions S¢ and of formed for the series (4) and (3),

. will be denoted by S,'?(w), ok (), 5,'§(a:), on(x) respectively. The ex-

pressions Im of () and lim ¢f(2) will be denoted by S*(x) and s ()
n-»c0 e

respectively. Similarly we define the functions St(x) and s*(x) for
the series (5). If the series (4) and () are summable by some method
of summation, the respective sums will be denoted by s(z) and §(2),

The chief results of Chapter 2 may be formulated as follows.

Theorem 2. It (1) is summable A for xeE, |EI>0, to s(x), and if
(24) Sh(p)<vo (e B, k>—1)

then (i) the series (3) is summable A almost everywhere in E, (i) the
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6 J. Marcinkiewicz and A. Zygmund:

four functions St(x), st(x), Sh), §4(x) are finite almost everywhere
in B, and satisfy the relations

(25) @) F M) =s(e), S @)+ SH(r))=5(w),

(26) () — sh(10) = SH() — 5 (10).

Remark. In view of the well-known theorem ) that the series
summable A4 and finite (C, k) is summable (C, k-+¢) (>0, k>—1),
we see that, under the hypotheses of Theorem 2, the series (4) and (5)
are summable (C, k-+¢) almost everywhere in E. From Theorem 2
it follows that, if S*z)=-co and (4) is summable 4, for z¢ B,
then s*(g)=-—oco almost everywhere in E.

Theorem 3. If the series (4) satisfies the condition

(27) —oolskx) < SHx)<+oo  (zek, |E|>0, k>—1)

then the series (4) and (5) are summable (U, k-+e), €>0, almost
everywhere in E, and satisfy the relations (25) and (26).

The most interesting special case of Theorem 3 is

(@) If the series (4) is summable (C, k) almost everywhere in E, so is
the series (7).

It must be added that proposition (@) is not entirely new.
In aletter®) to one of us, Prof. Kolmogoroff mentions that the
case k=0 of Theorem a was established by A. Plessner. The proof
has not so far heen published.

The chief idea of the proof of Theorem 3 consists in combining
Theorem 1 with Kuttner’s argument.

§ 6. Chapter'3 gives a generalisation of the following theorem
due to Lusin,

Theorem D. If the series (4) converges in a set E, |B|>0, to
sum $(zx), the sum S(z) of the formally integrated series

(o8 % @y S0 NE—Db, COSNT _ 4y 4,(x)
(28) 2 +2 n T2 +2 n

n=1 n=1

1) Andersen [I].

%) dated August 1934. Theorein a, in the case k=0, was first enunciated
as probable by Privaloff [1], p. 94.
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is approcimately differentiable at almost every we B, and
(d/dw)q S(x)=s() ).
We shall prove the following

Theorem 4. If (4) is summable (C, k), k>0, for ek, |E>0,
then, for almost every x e B, the series (28) is sumonable (0, k—1) to

sum S(x), and s(@y=(d/dr), S(z) 2).

We add that in the case —1<k<0 the function S(x) has
an ordinary derivative §'(x)=s(x) almost .everywhere in K. For,
hy a theorem of Hardy and Littlewood [2], for every zeFE
we have [S(x+h)— 8(z — h))/2h— 8(w) as h— 0. Applying Khin-
tchine’s theorem mentioned in § 1, we obtain the desired result.
It is plain that, if —1<k<0, the function S(z) exists everywhere
and is continuous.

§ 7. In Chapter 4 we prové an extension of the following
result due to Titshmarch:

Theorem E. Let f(x), 0 <<a<< 27, be an L-integrable function,
and F(x) its integral. Then the function F(x) conjugate to F(x) is
approximately differentiable almost everywhere ).

More generally, we shall prove the following

Theorem 5. Let F(z), 0xa<<2m, be an L-integrable function,
@(x) the integral of F(x), and ®(x) the function conjugate to &(z).
If Fy(x) exvists in a set B, |E|>0, then Du.n(x) exists almost every-
where in K. :

To deduce Theorem EF from Theorem 3, we observe that,

" if f(z) is integrable (even in the special Denjoy sense), F'(x) exists

almost everywhere. Hence, by Theorem 3, @Pp(x) exists almost

everywhere. In view of the second part of Theorem 1, we have the

existence of _ _ ‘
(d]dx)a (d@/dz) D(x)=(d/dw), F(z).

1) Lusin [1]; .it seems that the proof has never been publishe_d. We add
that at every point 2 where (4) converges, S(v) possesses an approximate sym-
metric derivative equal to s(#); cf. Rajehman and Zygmund [2]. )

%) Following Hardy and Littlewood, we say that a series R
summable (0, —1), if it conveiges and u,=o(1/n). Summability (0, —1) implies
summability (0, k) for any % .—1; Hardy and Littlewood (1.

8) Titehmarsh [1]


GUEST


8 J. Marcinkiewicz and A. Zygmund:

§ 8. In Chapter 5 we establish a number of results about
Borel derivatives. We say that a function f(w), a<<a<<b, has, at
a point , a right-hand Borel derivate B.f(), if the integral

h

’ .
20)  I(h2)=I(h,o; = j f—(@l*‘i‘%i‘-i(i‘—) dn=lim
) 0

>0

exists, and I(h, z)/h— B,f(z) for h—>-+0. Similarly, replacing, in

(29) {flatu)—f(@)}ju by f(@)—Ffa—u))fu or {f@+u)—Ffa—u))/2y,
we define the left-hand and the symmetric Borel derivatives, which

will be denoted by B;f(») and B, f(x) respectively. If B, f(x)=DB:f(=),
the common value will be denoted by B f(x). To fix ideas, we as-
sume that f(z) is integrable L, but no difficulties would arise if we
supposed e. g. that f(«x) is integrable in the special Denjoy sense.
The derivative B,f(x) deserves some attention, since the integral

f {fla+u) —flz—u)) ’ﬂﬂ is known to converge for almost every .

Thls is not necessarily true (even if f is continuous) for the expres-
sion I(h, ; f). It is plain that, if Bf(x) exists, so does B, f(x); the
converse is not true.

It has recently been shown by Sargent that, if

Tim [I(k, a; f)/h|<oo . for wekE,
>0 '

then Bf(x) and (d/dz)s f() ewist and are equal almost everywhere in E ).
In Chapter3, we prove, besides this result, the following

Theorem 6. Let (h,x;f) denote the expression analogous to (29),
the integrand {f(z-+u)—f(x)}/u being replaced by {f(x-+u)—f(v—u)}/2u.
If @(h, z;f)=Oh) for every xeE, and h—>0, then Bf(x) exists
almost everywhere in E.

The rest of Chapter 5 is devoted to a theory of the trigono-
metrical integral. It is well-known that the sum of an everywhere
convergent trigonometrical series need not be integrable I, and so
the series itself need not be a Fourier-Lebesgue series.

The problem arises to find such a definition 7 of an
integral (,,trigonometrical integral“) that the sums of every-

1) Sargent [1]. If Bf(x) exists for x e ¥, then (d/dw),f(x) exists almost

everywhere in E, and is equal to B f(z); this result is due to Xhintchine [1}
and Sargent [1].
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where convergent trigonometrical series should be integrable T, and
the series themselves be the Fourier series of their sums. A solution
of this problem was found by Denjoy, who published a series of
notes on the subject ). Here we shall give another definition, based
on the idea of majorants and minorants. The arguments are inde-
pendent of those of the previous chapters.

Let s be a trigonometrical series convergent everywhere to
gum f(z), 0<<o<<2n. In the first place, we observe that s integrated
term by term need not converge everywhere. The sum F(2) of the
integrated series exists, in general, only almost everywhere. It is
natural to expect that the integrated series represents, in some
gense, the ,,primitive function® of f, and that the integral of f over
an interval (a, 8) is defined as F(f)—F(e) ). Thence we infer that
(i) whatever reasonable definition of T-integration we propound, the
integral may be neither continuous nor even defined at some points,
(ii) the funetion f may be non-integrable over some intervals (e, ).
There will however exist a point-set P (0,2n), |P|=2=, such that,
if aeP, feP, then the integral of f over (a, ) will be defined as
F(8)— F(a). For details we refer the reader to Chapter 5.

CHAPTER I.

§ 9. Besides the expressions Ay, u; f) considered in §1, we
shall also introduce differences Ax(w, u;f) defmed by the equations
(30) Zl(wyu:f)':f(w"l'u —f(@), Ak(wy”’”):Ak»-1(w5‘“;f)—2k—ldk—l(w7“:f);
for k=2, 3,... Wherever it will cause no misunderstanding, we shall
write Z'k (2, w), or even Ay(u) simply. Similarly for the differences
Ay, u; f). To grasp the meaning of the second equation in (30),
observe that Ax(u) /u"—-—2"*1{A,,_,(2u)/(2u Ye-— 1u)/u"'"1‘/u It is
plain that

(31) 2,, w)=a, f(+241u)+ar 1 f( (@424~ 2u)—i— Aayf( m+u)+aof(

where «; depends on j and & only (a,,=1) 'We shall show that the
a’s satisfy the condmons : ~

(32) | 2 a,_o

1) gee e. g. Denjoy [3], [4]; the notes mostly contain statements of Te-
sults. A detailed account has not yet been published. The case of power series
is treated by Verblunsky {1].

%) These remarks are due 1o Lusin [1]

L
2 21'8 a.:o

Jrl

(8:‘:1 2 ey k— 1).
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In the first place we observe tha)t, if the k-th de la V allw Poussin
derivative fu(x) of a function f(x) ewists, so does hm A,, (y s fY/uh,

For k=1 this is obvious. Supposing that the result is truo for £k —1
and that fu(z) exists, we obtain

(33) Anw) =T —i(2u) — 26— X,y () =o0(ut 1),

Substituting the equation f(fv-i-u) F6e)-afuy(@) .o uk () R+ o (1k)
into (31), we have

’

k I~
(34) Ao, u; f) = Z a,,f(:v)—[— vl 57°f"a,4lu”f(,,)(m)+o(1b"),

s=0
From this and (33) we deduce (32). The second equation (32) is
certainly false for s=k, for the Vandermonde determinant [2#| doeg
not vanish, and e,=1=0. Hence from (34) follows the existence
of a number 4, depending on % only, and such that

(35) Ay im By(, w; f)jwh=f (@),
u>0

provided the right-hand side exists. Thus, the expression f)kf(w),
equal to the left-hand side of (35), may be considered as a generalig-
ation of the: k-th derivative. '

Suppose that there exist k-+1 numbers @;, 0<Cj<CFk, (ar=1)
such that, for every function f(#) for which fu(») exists, we have

apf(@+24 " u)F @y fl+ 24 20) - B, f(B4-u) @ f() = O uk).
Then @=a; for i=0,1,.., k. This follows from the fact that the
@’s satisfy the equations (32).

§ 10. Lemma 1. If the derivatives Dy fz

; ) and fo n(®) exist
at a point ®, so does fu(x).

Suppose that f(2)=0 for =0, 1,...,k—1, and that D, fla)=
It d(u)=o(uk), i. e. |Ax(w)| <elult for |u|<d=d(e), then

k

goee

(i

[A,, A(20)— 261 B,y (w) | << fulty 5

IANk_l(’M:)—-Zk_] A\;’,__‘l (g—)l < €
~ {7 okt ¥ (U % [*
b)) <ol
Multiplying these inequalities by 1, 2+-1, 2012 2Gk-Dr pegp-

ectlvely, we obtain, by addition, |, -y(2u)— 2w+ F, _, (uf2m)|<<
< 2¢ fut.

<eé
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Hence, making n—>oco, and observmg that fu..1(z)
we see that

|35 -+( (2u)| < 2¢efult, ie. A, 1(u)=o(u*),

=ﬁk '~1f(m)=09

From this we similarly deduce 4, 2(w)=o(u*), 4, su)=0(u"),...
and finally 4 (u)——o(u"), i. e. f(@+4-u)=o(u*). This proves the lemma.

§ 11. Let us put
At (2,05 F) =F(x+1u)—f( (@), Ak(wyu;f)=2%_(x+n, w; F)—A4% 1(2yu3f)
for k=2, 3,... In other words,

k - ) .
Fu=) (1) ¢ ('ﬁ) fatiu), 4, w>=ak(x+§u, w).

It is not difficult to see that, if fu(z) exists, so does the limit DEf(e)=

= Hm A%(w, w)/u* (for u—0), and is equal to fu(z). More generally,
Jor amy fized 2, the existence of fuy(x) implies

(36) lim A—’*(“"—’Eiii“) — ().

u->0
§ 12. We shall now express 4, by means of 4,

Lemme 2. There are constants Cy, Cyy... Cok-1—; such that

ak—1_p

> G A,,(m+4-ku+w ).

lll

~

(37) Ay (a0, u)=

In view of the remark concerning (36), and the last remark
of § 9, it is sufficient to prove the existence of constants Cy, (...,
such that the sum on the right of (37) is equal to

(38) @ f(4 241U+ Ry f24-257200) - @ f),
with @,=1.

The expression 4,(z+ ku-+iu,u)is a linear form L; in the variables
E=f(z+up), p=0, 1,..., 2%, We write L;=L;+L;, where L; is the
group of terms containing the variables §, with p=0,1,2,22..,, 21,
Hence L; containg 2%—1-—Fk variables only. The number of the forms
L is 2% -'—k+1>2+~'—F, Therefore we can find constants Cy, Cy,...
not all of which are equal to 0, and such that CyL;+0C,Li+...,
et Oy -1 L5k 1.4=0, Hence CyLy+O\Ly+...=CoLig+Cy Li+... is of
the form (38). A moment’s consideration shows that ;40 (if @,=0
then, as (32) shows, &y—1=...=&;=a,=0, which is easily seen to be
impossible), so that we may suppose that ap=1.
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§ 13. Lemma 3. If the Riemann derivative D,f(x) exists
for every weRE, |E|>0, then, at almost every point of B the derin-

ative Dy f(z) ewists and is equal to Dy f(z).

Let 8CE, |6|>0, be a set over which D,f(») is continuous,
and the relation
lim Ap(2, u)/wt=Dyf(x)
u->0
is satisfied uniformly. The lemma will have been established When
we have shown that, if #¢& is a point of density of é, then D, f(»)
exists and is equal to D, f(x). Let ¥=0 be such a point, and suppose
that D, f(0)=0. " ‘
If the points }ku-+iu, =0, 1,.., 2*~'—F%, belong to &, then,
in view of (37), we shall have

(39) 840, u)=o0(ut).

To fix ideas we assume that w>0. First of all we shall show
that there is a set P of numbers u, for which =0 is a point of density,
and along which we have (39). For, since =0 is a point of dengity
of & the set & of points u such that u (i k%) belongs to & has
also this property. The same may be said of the product
=68y 8,... Ep—1_y,

along which we have (39).
Next we shall show that, if >0 is small enough, we can find
a number v, w<<v< 2w, such that all the points

U1

v—u . U+
=Y (=1,2,.,k), 'g
belong to P. For let ¢(t) be the characteristic function of P. The
set P;(u) of numbers v belonging to (u, 2u), and such that the point

%+(v — w) i/k belongs to P, is of measure

(j=0,1,..., b—1)

2u u(1-+-1 k)

(40) fq:(u—l—iv“u)dm:% f«p(w)d'w.

k

u u

Similarly the set P/(u) of numbers 2, USO2%, such that 2/(u+v)/2¢P,
is of measure

2u sy,
U-t+v 1
(41) . f q»(zf w-zl:—)dv—..—_ . / P(w)dw.
“ 28/—1y
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Since u==0 is a point of density of P, the integrals (40) and (41)
are asymptotically equal to , i. e. to the length of the interval (u, 2u).
Thence we deduce that, if » is small enough, all the sets P;(u) and
Pi(u) (i==1, 2,.., k, =0, 1,.., k—1) have a point v in common, and
our assertion is established.

Since 2/(u-v)/2 ¢ P, we have

(42) 4 (z.f“—-g”f, 22— =2k' (—1 )t~ (’:) f (2:' 1l,+2fiv_Tu)=o(u")
=0

for j=0,1,.., k—1. Multiplying (42;) by «;, we obtain, by addition,

==

(43) Zk‘ (—1) (7:} & (u+i1’:ki‘)=o(uk).

Observing that w+i(v —u)/ke P, and so ANk(zi—i-i (;v»——u)/k):o(u")
for i=1,2,.,k, we deduce from (43) that Ap(w)=o0(u*), and the
lemma is established. »

Lemma 3. Lemma 3 holds if we replace in it Dyf(r) by
D} f(x)=lim 43 (=, u, f)/u*.

The proof is similar to that of Lemma 3.

§ 14. Lemmad,. If fu n(x) and Dy f(x) exist almost everywhere
in B, so does fu(x)- L

Lemma 4,. If Tm|Ay(z,u)/ut| <oo, xeE, then li—I:(: |Ak(e, ) [1k| < o0

>0 -

almost everywhere in E.

Lemma 4. If fu n(x) exists and ng]d,,(;v, ) [uk| <»oo for
xel, then et w(,4)

(44) f(w+t)=f(w)+tf(n(w)+---+m?‘(k-n(m)‘F A

for almost every x e B, where o(x, 1)=0(1) for t—0.

Lemma 4, is a corollary of Lemmas 1 and 3. Lemmas 4, a_nd dq
follow by exactly the same argument a8 Lemmas 3 and 1 respectively.

§15. Lemma 5. If lﬁm(.w, u; )| <oo for weE, the function f
) u-»0
is bounded in a neighbourhood of almost every point xeE.

Let H, be the set of points #¢E such that
(48)  |f(m)j<m, and |8, u)| <m  for O<|u|<1/m.
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Since |[E—E,|—>0, it is sufficient to show that f is bounded in a
neighbourhood of every point e F,, which is a point of density of E,,.
Let 2=0 be such a point. We fix m, and write é for £,. By an argament
similar to that of § 13, we show, that, if ¥>0 is small enough (we
consider e. g. the right-hand neighbourhood of the point 0), there
is a number ve B, 0<v<u, such that all the points v+2/h, where
h=(u —v)/2*-1, j=0, 1, 2,..., k—2, belong to & also. Hence, if h<1/m,

(46) a(r, D) <m, [fo)|<<m, [fo+2/B)<m (j=0,1,..., k—2).
From (45) and (46) we obtain [f(u)|<<m (|@g|+ ... +|ax 1), and the
lemma follows.

§ 16. Lemina 6. If ﬁﬁ@(w, u)fuk| < oo for xeE, then

>0

lim ]zik 1@y, W)kl <oo  for almost every xeB.
u=>0

In view of Lemma 5, we may suppose that f is bounded. Under
this assumption we shall prove that Iim |4, . (2, w)fu=1<oo for

u->0
every re f. 1f xeE, and 6>0 is small enough, we have |d(x, )| <<
<< Muft for [u]<Cd. Thence, arguing as in § 10, we obtain
iy (c2y 10) 20050 F, _ (a, w/20)] << 2 Mucfk,
2= =0 B (2, /o) < 2 MO+ By (2, u) k).
If $0<C u|<<d, the right-hand side of the last inequality is less
than a constant J'. Hence, writing £=u/2", we have
B OIS tor o2 <[ < o,

and the lemma is established. ,

Repeating the above argument, we obtain |d,(x, )| <M, |u| for
lu| << d,. Therefore, using the well-known Denjoy theorem?), we

see that, under the hypothesis of Lemma 6, f'(x) exists almost every-
where in E.

§ 17. It is now easy to prove the special case of Theorem 1
. enunciated at the end of § 1. If D, f(x) exists for zel, then, in
view of Lemma 3 and the last remark of § 16' the derivative f'(x)
exists almost everywhere in E. It remains to apply Lemma 4,

1) If, for every x e E, the ratio (f(w+u)—f(2))/w is finite when u—>0, then
f'(x) exists alinost everywhere in E; Denjoy [4]. Cf. e. g. Baks [1], p. 168 8qq.

n=0,1,...,
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$ 18. Lemma 7. If, for every ek, we have (44), where
(@, t)=0(1) for t— 0, then the derivative Tw(@) ewists almost every-

~where in B, and satisfies the equation fuy(@)=(d/dw)a fu-(®) for almost

every we B,

Assuming that this' lemma is established, we shall be able to
prove Theorem 1. Lemma 4, shows that the condition

Hm |4(a, u)/ut{<oo, e,
u->»0

may be replaced by %lﬁk(m, u)/ut|<oo. In this mew form, the

first: part of Theorem 1 iz certainly true for k=1. Let us suppose
it to be true for k—1. If l_iﬁlz‘,(w,u)/u*Koo for ze¢E, then
-0

E[Z,,-,(m, u)[ut~!|<oco almost everywhere in E (Lemma 6), and,
>0 .

by the case already established, fu—p(x) exists almost everywhere
in E. By Lemma 4;, f(-+1) is of the form (44), and it is sufficient
to apply Lemma 7.

§ 19. It remains to prove Lemma 7. We begin with its second
part. Suppose that, for every xz¢E, we have an equation

(40 fat=f@) o+ 10D ey g

where &—0 with ¢. Let &, |§/>0, be a subset of E, over which
fw(w) is continuous and #—0 uniformly. Let w¢6 be a point of
density of &, and suppose for simplicity that f)(z)=0. In view of (47),
we have

(48) A2 (m+u, u)—AF_; (2, u)y=o0(u*),

gince the difference on the left is equal to A%(w, u). Since ze8C E,
(47) gives  M_((w, u)=u*"'fp_y(x)+o(uf). If x-+ueb, then also
A 1(x+u, u)=u*"" fu_1(z+u)+o(u*). Hence, from (48),

(48a) f—1(@+u)—Ffo—ry(z)=0(u),
i. e. fw(w)=(d/dw)s fx—1)(®) for wmeé. This establishes the second
part of Lemma 7 and, by induction, the equations (3),

§ 20. We shall now prove a result containing that of §19
a8 a @pecial case.
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Lemma 8. If we have (47) for we B, and if 0<s<k, then, for
almost every xeE,
(49) o 45 (@, 4y fu—a) W =F i (@),
w
where lim, denotes the approximate limit, i. e. the limit along a set of

points having u=0 as a point of densily.

Suppose, for example, that s=2. Let ¢ and x have the same
meaning as in § 19.
Starting with the relation

A¥(x4u, w) =8~ (x+2u, u) — Af_(x+u, u)=0(u*),
analogous to (48), we obtain
(50)  fua—n (242u) — fre—n (@ +u)=0(1)
In view of (48a) and (50), |
(51) A (&, U; fre—n)) =0(%).

(2++u, 3+2u ¢ &)

Now observe that, 0;1 account of (47),
(52) Al (@ u; )=u®2 f_p(x) 2 WD fuey (@) +o(uk),

where 4 is-a certain constant. If r+u and x-+2w belong to &, then,
remembering that f is continuous over & and fu(®)=0, we may
replace # by x+wu or z-+2u in (52). Hence, since A¥(w,u;f)=
=4 A} »(@, u; f), We obtain from (52)

A (e, usf)  (=o(uk)=uk "2 AF(x, 4; fie—n) 4wk =" AF (0, %; freny) 40 (uk)

when z+4wued, z-+2ued. From this and (51) we deduce that
45 (@, %3 fre—n)=0(u?), for r+u and z-+2u belonging to &, i. e. the
equation (49) for s=2. In the same way we obtain, by turns, the
- cases 8=3, 4,.., k—1. The last of them may be stated as follows

(33) limg, 8% 1 (, u, foy)/u* '=Ffx (®) almost everywhere in E.
u—>0

§ 21. Eemma 9. If (a) lilona A% (x, u, f)ju*  ewists and
e . u-> .
(B) Hﬂ]dz(w, u, f)ju¥| <oo, for every xeE, then lig}) Az, u, f)|u*r ewisls

almost everywhere in E.

icm

Differentiability and summability 17

In the first place, there is a set § CE, with |E—é| as small ag
we plea,se? and such that condition (8) is satisfied uniformly over 8,i.e.

(54) A%, w)| << Mult for wed, |u|<d.

Let xeé be a point of density of 8; and suppose for simplicity
that 2=0. Let @& be a subset of § having x=0 as a point of density
and such thatb

(55) lim A}(0,u; f/u"_hmadk 0, u, f)juk.

) a0, neG

Suppose, moreover, that the last expression is equal to 0. Let 0<e<1
be a small but fixed number, and let >0 (for u<0 the argument
is similar). Arguing as in § 13, we show that, if « is small enough,
we can find a v, (1—&) uKv<Cu, such that the points

(56) v +3‘—“k:~”9' (j=0,1,2,myk—1), and dv  (i=1,..k)
all belong to @. Denoting by 4, 6,, 6,,...
in absolute value, we have the relations

numbers not exceeding 1

k

S (B o =o

F-0

A (v’u_k_»v)zj(_1),,,](;6)7,(”_{_16—];— u?,) _ 6 (u;fv)k

=0

ay (w %v——u> 2 — 1)kt ( ) (W—H

for i=1, 2,.. k. Multiplying the ¢-th equation by (— 1)”—"(7;'), we
obtain by addition

(57) 21 (— 1)'«*1(7;) A2 (O,v e j) — O Mketur.

=
Observing that the points v-j (v—w)/k belong to G for j=0,1,..,
k—1, we deduce from (57) that

4x(0, u)=o(u")+0Mk£"u" i e. A0, u)=o(uk),

gince € may be arbitrarily sm proves the lemma.
Fundamenta Mathematicae, T. XXV . 2
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§ 22. Lemma 10, Let f(x) be a function integrable L over
(a,b), and let F(x) be an integral of f, and suppose that Fpry(2) exists
for xeR. If, for xe B, f satisfies the equation (44) where w(w, t)=0(1)
for t—0, then fu(x) ewists almost everywhere in B.

In view of Lemma 8 (cf. (53)), li_r”r}a *(, u; f)/uk exists almost
everywhere in E. The equation (44) implies hm[Ak z, w; f)ju <oo
for z¢E. Hence, by Lemma 9, }g%Ak(m,u i /u" existy for almost

every xe B, and it is sufficient to apply Lemmas 3, and 1. We
add that the condition concerning the integrability L of f is not
very restrictive, since, in view of Lemma 5, f is bounded in the
neighbourhood of almost every ze E.

§ 28. Lemma 11. Let f(x) be integrable L over (a,d) and
let FP(w) denote a p-th integral of f. Suppose that Fipiu(x) exists for
ze B, and that f satisfies (44) with o(®, t)=0(1) for weE and t— 0.
Then: fu(w) exists almost everywhere in E.

This follows by repeated application of Lemma 10, if we ob-
serve that (44) implies

wj(wy t)
(G+k)!

j ‘ ‘
Fi(w+t)=Fi(@)+Flyw)t+...+ Pl @) yren-1 | 0/, ek,

(j+k—1)!
j=1,2,..., where o/(z,t)=0(1) for xeE, t—0.

§ 24. We require now a number of lemmas from the theory
. of Fourier geries and analytic functions. By &[f] we shall denote the
Fourier series of a function f(x), 0<Ca<2n, and by SW[f] the series
©[f] differentiated term by term % times.

Lemma 12, If 1 is integrable over (0,2n), and fu(x) exists,
then ©W[f] is summable (O’ k+2), to fu(w), at the point x. If | satis-
fies (44) with w (z, 1) 1) for t— 0, then &®@[f] is finite (O, k+2)

at x.
Thig lemma is known 1).
Let
1——'r2 1 :
P(r, 0)= i‘:—mn u(r, 9)=;/f(t)P(7‘,t“‘*0)dt
-7

1) See e. g. Zygmund [1], p. 2e,
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Lemma 13. If f satisfies the conditions of the second part
of Lemma 12, then dru(r,0)/d6* is bounded in a region

(58) |6 —a|<a(l—r7) (Br<1),

where a is an arbitrary but fived constant, and B=p(a).

It is difficult to say whether this result has ever been ex-"
plicitly stated, and so we prefer to give a proof here). We may
assume that =0, f(0)=f(0)=...=f4—1(0)=0. Then, all we have to
show is that

. " )
(59) j 1#‘ %P (r, 0——-t)l at

is bounded for |6|<a(l1—7) and r—1. Let y=y(x), z=2a(u). Then

k

dt &
(60) T de)= >0, -y,

g1

where @,, ,,... are polynomials in dz/du, d®x/du?... On the other

hand, a simple induction proves the formula

. dx 1 1 Aiﬁp
(61) AR 2 (@Faty
2g—p=k+2

(g<<E+1)

where the A’s are independent of # and e. Putting x=2)7 sin 16,

¥=1/[(1 —r)*4-2?%], we obtain from (60) and (61)

it |27 sin 1 6}
FTRA )’<M (1= 2 [(1—7)>4-47sin? | 6]
20— plht2

M denoting a constant. In order to show, therefore, that (59) is

|6 —t|»
[(A—=r)+-(6—1)*]
<< k+2, which presents

dt

boulitied, it is sufficient to prove that (1—7) f [t]*

is bounded for |6|<a(1—r7), r—>1, 2¢—p
no difficulty.

1) A similar argument gives the following result, which, for the general
theory of trigonometrical series, is slightly more interesting than Lemma 13:
If fumlw) exists, then d¥ w(r, 9)/dﬂk—>f(,,)(w), provided that (r, 0)——)(1 x) throughout
the region (58).

9k
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§ 25. Lemma 14, If a series uy+u;+... is summable (C, k),
k=0,1,.., to sum s, then it is also summable by the method of Riemann
of mder k+2, to s, that is

: . < sin wh)it?
(62) 1,,1_13 |:w'0 ”%2 n (_’;b—ﬁ-) ] =,

n=l

If ug+uy+... is findte (O, k), the expression in square brackets in (62)
is bounded for h->01).

- We recall the meaning of the Riemann method of summation.
The series %, #,+ ... may be congidered as the series w,-+- u, cos 2+
ity cO8 204 .. for x=0. Let F(x) denote the sum of the last series
integrated term by term %+ 2 times. Then it is easy to verify that
the existence of the Riemann derivative Dj.,F(0) is equivalent
to the relation (62), with s= Dy F(0).

Lemma 15. If a series ug+u ...
mable A, then it is also summable (

is finite (C,
Cyy) for any y>e.

a) and sum-

This is Andersen’s well-known theorem ?2)

. Lemma 16. Let w(r,0) be a function harmonic for r<1, and
let E, |E|>0, be a point-set on the circumference r=1. Suppose that,
fm" every xeE, there is a region of the form (38) in which wu(r, 8) is
bounded. Then, for almost every wxeE, the function wu(r,0) tends to
a finite limit as (r, 0)—>(1, ®) along any non-tangential path3).

§ 26. Weare now in a position to prove the first part of Lemma 7
(the second was established in § 19). Without loss of generality we
may suppose that f(x), 0<Cw< 2x, is bounded (cf. Lemma 5). If u(r, 6)
is the Poisson integral of f, then, by Lemma 13, d*u(r, 0)/d6* is
bounded in every region of the form (58) (veE, a=a(x), f=0(x)).

Hence, on account of Lemma 16, ©*[f] is summable 4 almost
everywhere in F. Being finite (C, k-+2) for x¢ £ (Lemma 12), &W[f]
must be summable (C, k+3) almost everywhere in E (Lemma 13).
Let F(z) be the function obtained by integra,ting G@[f] term by

1) Koghbetliantz [1]; see also Rajechman and Zygmund [1]. A dif-
ferent proof will be found e. g. in Zygmund (1], p. 304.
*) Andersen [1). The proof will also be found in Zygmund [1] p. 262.

' %) This result is due to Privaloff [1). A more general result will he
found in Plessner [2].
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term k+5 times. F(x) is the fifth integral of f(x), and, by Lemma 14,
D15 F(x) exists for almost every z¢E. Moreover, integrating (44)
five times, we see that F(.,.y(#) exists almost everywhere in E. Ap-
plying Lemma 4,, we deduce the existence of Fiprn(®), and so also
that of fu(z) (Lemma 11) for almost every xzeE.

This completes the proof of Lemma 7, and so also of Theorem 1.

§ 27. We will complete Theorem 1 by a number of remarks.

Theorem 7. Let A be a fized real number. The conclusion of
Theorem 1 holds, if

(63) lim
u->4-0

Ak(w1<oo for xe _E_
It is sufficient to prove that (63) implies A.(x, u; f)=0(u*) for -
u—>0, and almost every ze¢E. We break up the proof into three
lemmas. .
Lemma 17. Under the hypothesis (63), Ak(w, u; f)=0(u¥) for
u—>+0, and almost every xe E. .

Lemma 18. If A%z, u; f)=0(u’f). for u—>+0, zek, then
Ao, u; f)= O(lulf) for u—+0, and almost every zeE.

Lemmea 19. If A4f(z,u;f)=0(ul*) for u—0,
Az, u; f)= O(Iul”) for wu—0, and almost every veE.

zeE, then

To fix ideas, we assume that 42>0; for 4<0 the proof is
similar. Let 8C E, |8 >0, be any set such that ' |Ax(e+Au, u)| < Mu?
for z €6, Ogugé. Let zy¢8 be a point of density of 6. To sim-
plify the notation we suppose that z,=0. Let >0 be any point
of §. We define a number » by the equation

(64) U+io —sko=0, i.e., w=u/(k—2).

We may suppose that 4z:=1k, for otherwise Theorem 7 is obvious.
We consider separately the cases (i) A<<ik, (ii) A>3k In case
(i), » is positive with u, and we have :

(65)  A%(0, 0)=Ay(utiw, 0), so that |AH0, o)< M ok,

if u is sufficiently small (0<Cw<Cd). Let ueé tend to 0. Since
o=uf(}k—2), the set £ of the numbers © for which (65) is true,
has 0 as a point of density.
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We-shall now show that 43(0, u)=0(u*) for w—> +0. Let u>0
be an arbitrary number, but so small that the mean density of the
sets 8 and Q in (0, w) is sufficiently near to 1. Arguing as in § 13,

we can find a point v, tu<<v<Cw such that
(a) v, 20, 3v,..., kve&; (d) u—kw, t—(k—1) 0., 4—wel,

where w is given by the equation
(66) w—i—lw—l—gw.—_—u, i. e. o=(u—v)/[(A+ik).

We then have the following relations

k
A(v+Aw, @)= D ( (k) (U — jo)=0, M w*
= o
(67)
Ir
Ay(sv+siw, sw)= D' (—1) ( ) (su — gjo) = 6, M (sw)*,
=0
s=1,'2,..., k, where the 6’s do not exceed 1 in absolute value. As-

suming, as we may, that f(0)=0, and multiplying the s-th equation.

(67) by (— 1) (’s“), we obtain by addition

(68) 2( 1)1( )A*Ou——yw) =0 MErwh=0 Mktu*,

=0

In view of conditions (b), [4%(0, u—jo)| <M(u—jo) < Muk if §>0.

Hence, by (68),
TE>A.

In the case }k<<A the argument is similar. In the first part:
of the proof we take u<0, so that o defined by (64) is positive.

The second part, and in partlcula.r the formulae (67) and (68) are
unaffected.

3(0, u)=0(u*), and this proves Lemma 17 for

§ 28. Passing to the proof of Lemma 18, let §CFE, |6]>0,
be such that |A}(w, u)|<CMu* for zeé, 0<Cu<<d. Let myeé, be
a point of density of & we assume that @,=0. Let u<<0, ue&;
then w=— u/k>0, and |4%(0, — w)| = |A¥(u, w)|. Thence as before
we deduce that |4%(0, —w)|<< Mw* for w sufficiently small and
belonging to a sef £ ‘whose right-hand density at 0 is 1.
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Let u<0 be small enough. We can then find a », 2u<or<Cu,
such that

i=1,2,...y F.

(a) v, 20y...,kveé, - ) w—jlu—nuv)/ke L,
From this and the inequalities
Af(v, (u — v)[k)= 0, Mu*,...,  Af(st, s(u — v)[k)= 0, Muk,...,

we obtain |4%(0, )] = O(|u|*), and the lemma is established.

§ 29. In the case of Lemma 19, 8CE, |§>0, is again a set
such that |di(z, u; )| <<Muf* for zed, 0<C|u|<<d; eé is a point
of density of & Suppose that z,=0. Let ueé, u<0. If @ is defined
by the econdition u-{kw=0, then 440, v)=4%(u, ). Arguing as
before, we see that |40, w)|<< Mo* for wef, Q denoting a seb
having 0 as a point of right-hand density (since [4x(0, @)|=|4x(0,—w)|,
we may restrict ourselves to the case »>-0).

If >0 is small enough, but otherwise arbitrary, we can find
a v, 0<v<<u, such that

(a) e, im—ik,—ik+1,, bk (B) vHjoe,
where w= (u—v)/k. From the equations

j=0,1,., k—1,

43 (i, tw) = \“0( )‘?—1( )f(w—i—y'zw) O(u*), t=—1=%tk,.., 3k,
J=

we deduce
’ X i .

3 (1 ] 40, o) =0(w),
= y

which, in view of (b) gives Ax(0, u)=0(u*).

proof of Theorem 7.

Theorem 8. If, for ze¢E, we have (44), where o (®, t)—-O(l)
when t— -0, then fu(x) exists almost everywhere in E.

For the hypothesis of Theorem 8 implies that 4;(x, ; f)= O(u*)
for . e B, u—-0, and it is sufficient to apply Theorem 7 with 1=

This. completes the

§380. Theorem 9. For every even k=2, 4,... there is a function f
and a set B, such that (a) fu—v(z) exists for almost every zeE (b) for xelE
we have (44) with w(x,1)320, and yet (¢) fuy(w) does not exist in B.

This result shows that the Denjoy theorem (which asserts
that, if flz+t)=f(x)+tw(z, 1), where w(z, t)=—M, for |{|<d., zeb,
then f(x) exists almost everywhere in E) cannot be extended to
higher derivatives.
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We shall construct a function f(z), 0<<r <1, such that (a) fu ()
exists almost exerywhere in E, (b)(44) is true with w(z,1)>0,
‘weR, |B|>0, (¢) fu(x) exists for no xe B. The set E will be defined
as follows. Let Ro—(O, 1), and let d,, d,,.. be a positive sequence
tending to 0. From R, we remove a concentric open interval §;, such
that |8|/|R,/=0,. The remaining set R, consists of two intervals,
from-each of which we remove the interior of a concentric interval;
the removed intervals are of equal length, and their sum S, satisfies
the equation [S,|/|R,| = d,. With R,= R, — §;, which consists of four
intervals, we proceed similarly, and so on. We write §;+8,+4...=49,
RyR, R,...=E. If 6,+40,+...<oo, then |E|>0.

Let (a, b) be an interval contiguous to R,. We deflne f(x) over
(a,b) by the conditions; f(a)=f(b)=0, fta-++b)=2 %) {(x) is linear
in (a,+a+4b) and (Ga++4b, b). If we put f(»)=0 in E, f is defined
over (0, 1).

If foy(@), (... fun(®) exist almost exervwhere in H, they
must vanish there (observe that, vaheorem] fon(@)=(d/d@)a fy—1(2))
so that (44) reduces to f(x-+t)=w(x, t)t*/k!. Since k is even, we have
o(z, 1)2=0, so that (b) is satisfied. Since the length of no interval
of R, exceeds 27, it is easy to see that condition (¢)is also satisfied.

If the sequence d, decreases sufficiently rapidly, then the
length ¢, of any of the intervals constituting R, is > 02—, with (>0
independent of n. Let us consider a system R} of intervals, of equal
length, concentric with R, and such that |R}|/|R,|=1—e¢,, where
&} will be defined presently. Let RERIR}..=E*. If e E*, then
fz+1)

(*) max =

t

If the sequence ey*-D<C 272 then the last term of (*) is bounded,

and so, by Lemma 7, f..;y(#) exists almost everywhere in E*. Since
|E— E* is small with &+ &,+..., condition (a) is satisfied.

If k is odd, the above construction gives a function f(x) which,
besides (a) and (¢) satisties the condition (b'): tow(x, t) =0.

<max(e,,z,,) k1 gtk <) < pax Ok g=lhe-1) g a2,
n

CHAPTER II.

§31. We begin the proof of Theorém 2 with the following
Lemma 20. If for zeE, |E|>0, the series (4) is . summable
(Cy k+1), to sum s(x), and if

(69) - SKx)< 4o (te B, k>—1)
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then, for almost every e E, we have s¥(x)>—ooc, and
(70) 1 {8*(@)+s*(@)}=3(=).
Suppose first that k>0 is an integer. Let §C B, |§|>0, be
such that s(z) and S*x) are continuous over E, and
(71) on(@) < S*(w)+-¢, (zed),

with ¢, independent of #, and tending to 0. Let £eé& be a point
of density of 6, and {4,} a sequence such that ni,—>z, §+1,¢6.
From (71) it follows .

(72) -1_" ’{Uk( E-—}~Z,,)+0h(§— ln)} <_§_{SI¢(E+,1")+SI((§_ /7.,,)}-{—6‘,,,
The left-hand side of (72) is equal to

(73) 01,2 Gn I-A- (E COS'V/?,,,_...
1 -k -2 k-H ‘
=Z‘; 2 SH—‘(&) Ak+3( Cu —p CO8 ’Dln)+ 2 S}C _,(g) A,, i G,I:,_,, cos vd,) =
i o j-—o
~HII+K”,

say (it must be remembered that the differences are taken with
respect to the suffix v). Using the formulae

K2
( 74) Ah—H ‘Cu dn}z (k_;.‘z) A{: {Cu} Aﬁij - {du}i
=0 ‘
(75) Aj{('"_m__(]ﬁll, |A:‘if —i ‘GOS v 'Zﬂll 1}:—}-2 _j’

(76) Cri=0(n—r)t—i=0(n*-), j=0,1,...,
we obtain, for 0<Cr<Cn—k—2,

k; O =02 =0 for m>1,

k
< Y Oomt) 4, =0(n2).

jW-O

(17)  |AET(CF ., cos v dy)

Hence, agsuming that $(§)=0, i. e. SEHE)=0(v*H1), we get H,=o(1).
Now observe that the coefficient of Sf,;,(é‘) in K, is equal to
. .
(18) G;{j cosn d,+ 2' (g) kvs j,:;_‘_s{COS’Ul,,,—-—-Cj— cosnid,+ O(”‘l))

8=0
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and so, since the condition Sk (£)=o(m*+1) implies 81.(8)= o(mrt1),
§=0, 1,.., k, we obtain from (72), (73), and (78)
k1

’ ;Il -, 5y
9 I an, § 0/ < 8e).

ll—}oo

Noting that cosnl,~>—1, Citi=0, (79) may be written

(80) lim = 28,,..1 E)0F ™ = — k(&)

Il—)DO ll

Consider now the difference

€ or .. ot
(81) 0,(£) '—0:’7+1 ZA { o - 0::—%—1]""
1 Ok, A,(E).

e —— v)!
k
(n+k+1) 0y <

If to the last sum we apply an argumént similar to (73), we obtain
2)  ai(f)—ant : r 1
(82)  ai(&) —okt(E)= n+k+1 0” Zs,,_, ) O 7 4o(1) ).

From (80) and (82), we see that lim o,(§) = — S4(§),

8%(£) = —8k(£). This inequality was estabhshed under the assumptlon
8(§)=0. In the general case it may be written

(83) SH(E)-+ (&) = 2s(8),

which relation, therefore, holds almost everywhere in E. In part-
icular *(&) > —oo for almost every £¢E. Hence, changing the
signs of all the coefficients in (4), and applying (83) to the new series,
we obtain the mequahty opposite to (83), and (70) is established.

§ 82. It remains to consider the case of non-integral k. Let
I=[k], 80 that I<k<l-1. Suppose first that (4) is summable in E

—————

1) The proof is even simpler, if we use the equation

» O, =—(H+1) R 4n 0.
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not only (0, %-+1) but also (C,141). The left-hand side of (73)
is equal to

n—{—2 I+1
D S A4 0k cos0 )+ 2 Sh_j(8) 8, (C*_, cos i) =

=0

1
Cs
'_-Pn'}’Qn;

say. Using the formula (74) for A™*(CFf_,cosw4,), and observing

that OF is asymptotically equa.l to m*/I'(k+1) (a8 m—> o), we find
without difficulty that

n—l-2

(84) ——2 SEHE) of;J‘ cos (¥+1+42) A,4-0(1) =
v::O
Cosnin _F 41 h—1—2
"‘T S (E) On—t +0( ) )

=0

assuming, as we may, that oy '(£)— 0. Similarly,

+1 K
0= S sm 5 (jorous
< ” cosn i O
+= 2‘8,,_,(5) O cos A, = 0(1) + —— " o 23 & e

=0
Hence the left-hand side of (73), and so also of (72) is equal to

141
“OS“" 'Z 8 O + Zs,_,(é 0"'1}+o< )s

=0

whence, since nd,—>n, we obtain

n—l—2 +1 )
(8) lim —§ ' 8GOS+ Y 88 o}‘"fgz—sw&).
n—roo Upn =0 J=0

Now consider the equation (81) and apply, to the last sum in it,
Abel’s transformation 14-2 times. Essentially the sgme argument

1) Since cos (1+1+2) Ay — cos n Ay = O{{n'— ») Zn}, and (n—w) 05»«,1
=0 (0~ p)k=l~1, N
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which led to (85), shows that ¢f(€)— oft'(&) is equal to

n 1 Iu S ] 1 ‘i 41 y . e ' ‘
%+7G+1 '6? ]2 Sr (5) Cn-_.u + jzzovsn-j(g) Cj + 0 (1)

r=f)

Comparing this with (85), we obtain (83) (with s(£)=0), and so
also (70).

We add that the foregoing argument shows that, if o, (£)=0(1) ,
and S*(€)< oo, then k(€)= 0(1).

§ 83. To remove the assumption concerning summability
(C,1+1), we argue as follows. From the hypothesis of Lemma 20
we see that (4) is summable (C,1-2), and S8 (z)<oo, for weE.
Hence, o,''(z)=0 (1) almost everywhere in E. In view of the last
remark of § 32, we have a,’f(m):O (1) almost everywhere in Z.
Since 1<k<!+1, an application of the Andersen theorem stated
in § 25, shows that (4) is summable (C,7+ 1) almost everywhere
in E. This, in connection with the result of § 32, completes the proof
of Lemma 20.

§ 84. Lemma 21. If (4) is summable A in o set B, |E|’>O,
to sum 8(x), and if (69) is true, then, at almost every point xeH, we have
k(@) >—oco and the equation (70). ‘

For the proof it is sufficient to apply Lemma 20, and the
following

Lemma 22. If a series uy+u,+... is summable 4, and its
k-th Cesaro means . (k>—1) are bounded above, the series is sum-
mable (C, k-+1)12).

!).Littlewood [1]; the result is proved there for k=0 only, but the gen-
eral theorem can be deduced from this special case by a comparatively simple
argument; cf. Zygmund {2}, p. 329. It must however be added that in the last
paper only the case k>0 is explicitly dealt with. Although 'the proof may be
80 modified as to cover the case —1< k<0 also, this is not required for our pur-
poses, for in this case we may argue as follows. The condition 8%(z) <o, weE,
%<0, implies 8%x)< oo, and so0 summability (C, 1). Hence s,(x) is finite almost
everywhere in E, and, in view of the last remark of § 32, the same is true for
sﬁ(z). "By Andersen’s theorem, s,(x) converges almost everywhere in FE, and
it is sufficient to apply the result of § 32 (with I=—1).
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§ 85. Lemma 23. Under the hypothesis of Theorem 3, the
series (4) and (3) are summable (C,%~+6) almost everywhere in E.

For let @(x) denote the sum of the series (4) integrated term by
term (I+2) times (I=[k]+1). From the second part of Lemma 14, and
Theorem 1, follows the existence of Py (x) for ve8CE, |8|=|E. We
may assume that a,==0, and that &(x) is periodie. Differentiating
the Fourier series of @(x) (I+ 2) times, we obtain the series (4),
which in view of Lemma 12, is summable (C,1+24-2), and so also
(C, k+5), for xe6. In order to prove the second part of the
lemma, we need the following

Lemvma 24. Let D (x) be a periodic function, U(x) s integral,
and T(x) the function conjugate to ¥(z) (we may assume that U ig
periodic). Then, if Du(x) ewists for zeE, the derivative T (@)
exists almost everywhere in E (a=0, 1,...).

Assuming this lemma, which is identical with Theorem 5 (the
pi‘oof we postpone to Chapter 4), we see that U1 5(x) exists almost
everywhere in E. Hence, the series (5), which is obtained by differen-
tiating the Fourier series of T (x) (1+3) times, is summable (G, I4+5),
and so also (C, k-+6), at almost every point of &.

§36. Lemma 25. If —oo<sH(m)<BHw)<oo for weE, |B[>0,
and if (5)-is summable (C, k+1) in E, then, at almost every point
of E, (5) i finite (C, k) and satisfies the relations

(86) L{5%(@)+SHx))=3(x),  SHx)— s*(x)="C5kz)— ().

The proof is analogous to that of Lemma 20, so that we may
condense some parts. Let §CE, |¢|>0, be a set over which the
functions s¥(x) and Sk(x) are continous, and such that

sk(w) —&< Oﬁ(m) < Sk(w) +&, ) (m € 8),
with &,—> 0. Let £e& be a point of density of &, an 4, a sequence
such that ni,—n/2, &+ 1,e& Consider the difference

n

1
(8T)  Hoh(E+A) —on(E— Ay =— Z*"'"Z

- n

A—"(g) GI’:—V Sin v ﬂ.,,"

p=1

and, to fix ideas, suppose that k is an integer. We may the.n argue
exactly in the same way as in § 31, the only difference being that
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now we have A4,(£) and sinv4, instead of 4,(£) and cos» 4, As-
suming that §(§)=0, we find the following relations, corresponding
to (79) and (80).

in’

. . k
Flol(E A — ol — ) =— 2255 3T EL(6) of o).
j=0" .

S B4 O <THEM @ — (@)
=0

69)  —lm_

n=po0 Vn

Arguing as in (81), we obtain for 6}’(&)—5,’:“(5) an expression

analogous to the right-hand side of (82), with S(£) replaced by

8! /(£). From this and (88) we deduce that §4(&) = — H{Sk(§)—sk(&)\.
If §(£)=0, the last relation takes the form

(89) §4(£) —3(5) = —+{8*(§) — sH(£))
Applying (89), which is true for almost every §eH, to the series (5)

with coefficients multiplied by (—1), we get the inequality
Sk (&) — 5 (§) <<4IBH(E) — s*(€)}). From this and (89) we deduce

(90) H(E) — 5H(£) << SK(E) — sH(8).

Being finite (C, k) and summable (C, ¥+ 6) (Lemma 23), the
series (4) is simmable (C, k+ 1) almost everywhere in & Hence,
‘under the hypothesis of Lemma 25, the series (4) and (5) play sym-
metric roles. Therefore the inequality opposite to (90) is also true,
which proves (86). In the above argument k was an integer. The
case of general k>—1 may be left to the reader; the argument
is analogous that of § 32.

§ 837. We are now in a position to prove Theorems 2 and 3.

Let us suppose the hypotheses of Theorem 2 satisfied. In view of
kR

Lemma 21, on(z)=0(1) almost 'everywhere .in . The hypotheses
of Theorem 3 are therefore also satisfied, so that it is sufficient
to prove the latter theorem. By Lemma 23, (4) is summable (C, k+6)
for almost every zeE, and so (Lemma 15) summable (C, k- &).

In particular (4) is summable (0, k+5). Since (5) is summable
(C, k-+6), it is, by Lemma 25, summable (0, k+5). Repeating this
argument, we obtain that (5) is summable (C, %+1) and finite (C, k)
for almost every weB. This implies' summability (C, k- €) -of (5).
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To prove (25) and (26), it is sufficient to apply Lemmas 21
and 25 once more. This completes the proof of Theorems 2 and 3.

CHAPTER III.

§ 38. Let us suppose that (4) is summable (C, k), k>0, for
¢ B, |E|>0. Assuming, for simplicity, that a,= 0, we shall consider
the two series

b a,cosnz-+b,sinnx it a,sinnx—>b,cosnx
a) 2 n D) Z n ’

n==1 =l

(91)

In view of a very well-known result, at every point # where (4)
is summable (C, k), the series (91a) is summable (C, k—1)1). Hence,
by Theorem 2, (91b) is summable (0, k—1) almost everywhere in E.
Let s(z) and S(») denote the sums of the series (4) and (91b) resp-
ectively. Let ! be the least integer >k, and @ (x) the sum of the
series (4) integrated term by term (I-+2) times. In view of Lemma 14,
Dy, @ () exists for ze¢F, whence, applying Theorem 1, we see
that @, exists almost everywhere in E. Since (4) and (91b) are’
SHA[ @] and SH[P] respectively (for the notation cf. § 24), using
Lemma 12 we obtain that S(z)= Puin(x), s(@)= Oyin(x) almost
everywhere in B. Applying Theorem 1, we see that s(x)=(d/dx)a 8(x),
and this completes the proof of Theorem 4. .

§ 89. Theorem 4 holds, in an appropriate form, if (4) is finite
(0, k) for we B. For then, by Theorem 3, (4) is summable (C, k+e)
almost everywhere in B (¢>>0). Arguing as before, we see that (91D)
is summable (C, k—1+e¢), e>0, almost everywhere in E. If 8(x)
and S(z) denote the sums of (4) and (91b) respectively, we again
obtain s(x)= (d/dw)s S(z).

Theorem 4 may be completed by the following

Theorem 10. Let (4) be summable (O, k), k>0, to sum, s(z), for
weE, |E|>0, and let 1 be any positive integer such. that k—1l=—1.
Then the series (4) integrated term by term 1 times is summable (0, k—1)
almost everywhere in B. If S(z) is the sum of the integrated series, then

1) See e. g. Hardy and Riesz [1], or Zygmund [2], p. 326,
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8(w) 18, for almost every weE, the l-th de la Vallée-Poussin approx-
imate derivative of S(x), that is we have
{

b1 Rt h
(92) S(a+h)=8(x)+8() h+...+8,¢.,(m)(7_:1—)! + 8(@) 37 +en(@) 3y,

for almost every veE, and b tending to 0 along a set H=H, having
h=0 as a point of density. :

Using the argument of § 38, Theorem 10 iy a simple 'corolla,ry
of the following proposition, the proof of which will be given elge-
where 1).

Lemma 26. If fy(z) evists in a set B, |E|>0, the?z fn() is.,
almost everywhere in E, the (k—s)-th de la Vallde Poussin approri-
mate derivative of f() (8=0,1,2,.., k—1).

We add that, if k—I<—1 in Theorem 10, then D, 8(x) exists
and is equal to s(z) for every we E *). Hence, by Theorem 1, Sy (x)
exists and is equal to s(z) almost everywhere in B. :

CHAPTER IV.

§ 40. To prove Theorem 5, We may sSuppose that the constant
term of the Fourier series of F(z) vanishes, so that ®() is periodic, and

i 1 ™ :
Bla)—— f o) botgsli—o) dt. Tes Baoy=——=2 [ la

The difference @ (x)— ®(x) is regular in the interior of (——5’_5_, ),
and so it is sufficient to consider the function & (x) instead of @ ().
We shall show that Diy QN)(w) exists almost everywhere in F, for

this, in view of Theorem 1, implies the existence ot & +1(®). The
proof of Theorem 5 will be based on the fqllowing

Lemma 27. Suppose that f(x) is a function of period 27, inte-

grable L. If fuw(x) evists for ze B, |E|>0, that is, if we have (44)

1) See Marcinkiewicz [1].
" 2) Kogbetliantz [1]; of. also Zygmund [1], p. 304.
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with w(z, ) tending to fuyx) as t— 0, ze B, then the integral

aco(w,t)——w(a;, —1) . ”w( y §) — o (2, —1
(93) 0/ » ; dt‘=11m @, 1) tw(w ) at

=0
&

exists almost everywhere in E.

This result is due to Plessner 1). Agsuming it, let zeE be any
point for which (93) exists. Supposing, as we may, that =0, F(0)=
=F1)(0)=...=F(0)=0, we write (see § 1)

(94) Apt1(0, u; ﬁ)“‘—-—"--% fﬂj(t)Ak.H (0, u; %) dt = 2) -

—7T
(13

2ku  ~2hua T 2k T
1 1 1 .
—: S+ L [-LS (B0-H1V D) 411s(0, 05T =
—2ku -~ 2kn —2hu 2ku

=A4,+ Bu,

say. By hypothesis, F(t)=o(t*) as t—0, so that @ (¢)= o (t+).
Let us observe that, if —}k<Cs<C{L%, then

Zku 2

2kn
(95) f (D(t)dt=./‘@(ti—-—qj(su)dt+@(su) t_—;d%l 3)‘

t—su —3u
—2ku —2ku —2ku

The second term on the right is o (u*t!), since the coefficient of
@ (su) is bounded. By the mean value theorem, the integrand of
the second integral on the right is o(w*). Hence the left-hand
side of (95) is o(w**!), and so also A,=o(ut+1),

It can easily be verified by induction that

] Vi1 1 k1
(0, u; 1/8) = £+11) (k1)1

,=_[.0[ (t-i—k%} u—iu)

1) See Plessner [2]; an elementary proof will be found in Marcinkie-
wiez [1]. ’

*) By d441(0, u; 1/t) we mean 4 ;(x, %; 1/(t—x))/v—, Where the difference
is taken with respect to z. :

8) The integrals- are understood in the Cauchy principal sense.
Fundamentua Mathematieae. T. XXVIL
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We have |

(96) =B —/ + /[df t)+ (—1)¢ @ —-t)]A,,.H(o,u;1/t)dt==B;,+B;;

2hu B

say, where 0>0 is a small but fixed number.
Applying the second mean :value theorem to B, we find

d
‘ / [B (1) +(—1)¢ B(—1)] Fi“z

2ku

(97) |By < M wht!

H

where M is independent of @ and u, and 2ku<§<d. An integra-
tion by parts shows the integral on the right of (97) to be equal to

1 () +(—1)k B(—1) — (—DFF(—1) 4
L pose P+ ,M”{ P

1 (B)+(—1)k B(—1) 1 (a0 )—e(0,—1,
= k+1{ t'*+' >2ku * (k+1)! / 1

Rhu

which expression is small with d. Hence
. (98) Lim |B,/ut+1|<< K3, where K;-—0 with d.
u->0 R

Since d id fixed,

’ £ B (1) (— 1) B (—1 _
%-»( 1)k+1(k+1)!/ D (1) +( tk+2) ( )dtz.—
§
Dt — 1) @ (— 1)

’ (0, 1) — w(0, —1)
D D! f g

In view of the existence of (93) for =0, and the relation &(+d)=
=0(6*+1), the right-hand side of (99) is equal to O+Kj; where ¢
is independent of 4, and K;—0 with d. This, together with (94),
(98), (99), and the relation A4, = o(u"+‘) shows that D %(0 exmts,
- and Theorem b5*is established.
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CHAPTER V.
§ 41. Given a function f(w)eL o< r<.b, we shall denote by

hmflf:t

exists. Plainly, ¢(h)—0 Wlth h. By 1)2 flz) » and D,f(x) we shall
denote the upper and lower limits of A, (z, ks f)/hE for h—>0.

Lemma 28. Let feL, and let F(z) be the integral of f. A ne-
cessury and sufficient condition that B, f should ewist at a point z,
15 the evistence of D, F(z); then D, F(x)=DRB, f(x).

A mecessary and sufficient conduiion that @ (k)= O(h) for h—0,
s that | Dy F(x (@) + | D, F(w)|<oo 1),

Let 0<k<h, and suppose that ¢(h) exists. From the equation

9(h)=g(h, 2 ) the integral f {flw+u) —flo—u)) 2

kR
4y (2, 1 F) — Ay (, 15 F) = / {Ha-+u)—flo — )} du = 2 ') ud,
integrating by parts and making k— 0, we obtain
. I
(100) Az(m,h;F):Q[q)(h)h—-_[ q>(t)dt}.
0

This shows that, if ¢(¢)/t—4, then D,F(z)=A. If #(t)=0(t), then
Ay(z, h; F)=0(h?).

!
Now let Ay(x,t; F)= f {f(m+u)—f(w—u)}du=zp(t). Then, if

0<k<h,
d
/{fa:+u ) — )} o f"’%

Integrating by parts, making k0, and supposing that ¢(¢)=0(#2),

'we obtain
It
«/i(wﬂ)a —1) 4 1[h +f J

1) The sufficiency of the condltlons was estabhshed by Khlntchme [11,
p. 221,

(101)

g%
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Hence, if w(h)/h*—>A4, then ¢(h)/h—>A; if p(h)=0(k?), then g(h)=0(h).
This completes the proof of the lemma. 4

§ 42. Lemma 29. Let f and F have the same meaning as before.
A necessary and sufficient condition that, for a given z,

....tﬁ,

- Fla-H)=F@) )+ 220

where w(x,t) is bounded for t—-0, is that I(h, x; f)== O(h) for h—0

(cf. (29)).

A necessary and sufficient condition for the emistence of F((w)
is the existence of R [(x), which, then 18 equal to Fy (x).

If we observe that [F(v-t)—F(x)—1if(w)]'=f2+1t)—Ff(«), the
proof becomes similar to that of Lemma 28, and may be left to
the reader.

In order to prove Theorem 6, we note that if ¢ (h, z; /)=0(h)
for xe E, h— 0, then, by Lemma 28 and Theorem-1, Fy(x) exists
almost everywhere in ¥, and it is sufficient to apply Lemma 29.
To establish the Sargent theorem. enunciated in § 8, we observe
that, if I(R,2;f)=0(h) for zeE, then, by Lemma 29 and The-
orem 8, D, F(z ) exists almost everywhere in E. So does (Theorem 1)
(8)dw)a (@]dm)a F(z)=(d/dz)s f(2), which, is equal almost everywhere,
to D, F(z)=B f( )

§ 43. Given a function geL, by B,g(z) and B,g(») we shall
mean hmq: (hy @; g)/h and lim ¢ (R, @; g)/h respectively. In what fol-
>0
lows we assume that the integral ¢(z,h;f) either converges or
diverges to foo. In the latter case, B,f(x)=+oo.
We shall say that g¢ is ('ontinuous in mean, or, simply, m-conti-

nuous, at a pomt z, if hml fg (@+ 1) dt=g(z).

~ Let now f(« ) be a funcmon defined in-an interval (e, b), and P
& point set contained in (a, b), ae¢P, beP, |Pl=b—a. A function
M(r), asa<<h, will be called a majorant of f(w), corresponding to
the. hasis P it (i) M(x)eL, (i) M(x) is m-continuous for weP,
(iti) M(a)=0, (iv )—oof= B, M(2)=>f(x), a<w<b, except, perhaps, at
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an enumerable subset E of P. Similarly we define a minorant m{x):
(") m{w)eL, (ii') m(xz) is m-continuons for =zeP, (iii') m(a)=0,
(iv') +oo==B, m(x)<f(x), a<x<h, except, perhaps, at an enumerable
subset ¥ of P. N , '

Let F*(b)=Inf M(b), Fy(b)= Sup m(b). If F*(b)=TF,(b), we
shall say that f(z) is integrable T' over (a, b), and write

b
- (102) Fy(b)=F*b)=F(b)=(T) [ f(z) da.

It will often be convenient to say that f(») is integrable T(P) over (a,b).

§44. Lemma 30. Let f(z) belong to L, and F(x) be the integral
of 1. Then D, F(z)< B, f(2) < Bf(x) < D, F(a).

Let us first assume that ¢ (h,»;f) converges at the point
congidered. To prove e. g. the last inequality, it is sufficient to show
that, if B;f(z)>0, then D,F(x)>>0. If B,f(x)>0, then p(h)=p(h, z;f)
takes positive values in every neighbourhood of h=0. Since @(h)—>0

with h, we deduce, that there is a sequence of points &>&,>...—0,
Ex

such that @(&x)=@(h) for OCh<CER, and so also & (5= / p(t) dt.

In view of (100), 4, (%, &; F)>=0, i. e. D, F(x)>>0. The mequahty
Dy F(z) < B, f(v) may be established in the same way.

" Let ws now suppose, for example, that (=, h;f)=-+o0, so
that B, f(x)=B,f(#)=-+oc0; and let us suppose, confrary to what
we in?end to prove, that D2F(z)<oco. By subtracting a linear
iuncmon from f, we may assume that Dzlf’(a:)<0 We put cp*(u)—-

= f [ aa—}-t)——f(m———t)] % (u>0) It is easy to see that o*(u) ——o(l/u)
80 tha,t the same argument which led to (100) gives

(102) Ay(z, by F)y=—2 [cp*(h)h——j P*(1) dt].
Since, by hypothesis, @(h)— -+oo with k1/1 there is a sequenée
&, &,...—>0 such that ¢(t)= @) for 0<t<C§;, From (102a) we

deduce that A,(z, &, F)>=0, so that D,F(x)>0, contrary to
assumption. ’
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§ 45. Returning to majorants and minorants, we shall con-
sider the difference d(x)=M(z)—m(w), and its integral 4(x) = / ‘6(t)dt.

In view of conditions (iv) and (iv’), E,-d(m)}ﬁsM(w)—B;m(m)>0,
outside ¥, and so, by Lemma 30, D,A(®)>= 0 outside E. It is well
known that, if a continuous function F(z), a<<z<b, satisfies the
inequality D2F(z)>>0, except perhaps at an enumerable set E,
where, however, we have F(w+h)+F(x—h)—2F(x)=o0(h), then F
is' convex. In our case B(C P, so that A(x) is m-continuous in F.
This gives A(x-+h)-+A(x—h)— 24(x)=o0(h) for z ¢ E. It follows that
4(z) is convex.

Now the right-hand derivative 4(r) exists for a<Ca<b, is
non-decreasing, and 4,(z)=4,(z-+0). Since 4,(x)=0d(x) almost every-
where, it follows that A;(z)=d(x) at every point & where d is m-con-
tinuous. Therefore d(x) is non-decreasing over the set P deprived
of the point . To remove the last restriction, we repeat the pre-
vious argument using the left-hand derivative 4;(»), for which
A (z)=4} (x—0), a<a< ). Since 0 (z)=M(x)— m(») is non decreas-
ing over P, aeP, d(a)=0, it follows that d(x)=0 over P. In part-
icular M (b)=m(b), F*(b)z=Fy(b).

§46. (a) If f(x) is integrable T(P) over (a,b), then it is also
integrable T over any interval (a, x) with xeP.

For, if zeP, then 0M(z)—m(z)<M(b)—m(d). It follows
that F*(2)<Fx(®). Since also Fy(r)<F*(x), we obtain that Fy(z)=
=F*(x).

(8) If  is integrable T(P) over (a,b), then for any points aeP,

feP, a<as<P<Th, | is integrable T(P), and
T(P) _/E Hz) do=F(8) — F(a).
(y) If f(=) is integrable T(P) and T(Q) over (a, b), then
1(P) | fia) do=1(0) i) .
z a
To prove (y), we observe that, from the hypothesis, ae P, aeQ;
beP, beQ. Let R=P. Q. It is sufficient to use the fact that inte-

grability T(P) over (a, b) implies integrability T(R) over (a,-b), the
value of the integral being the same. '
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(8) If f is integrable L over (a,b), then it is also integrable T(P),
where P=(a, b), to the same value.

(¢) The function F(x) is integrable L over (a, b).

(€) If ¢y, ¢, are constants, then

b ? b
() [ (erfyFafe) do=ex(T) [ fy da-t-oo(T) [ fodo

a

(n) For almost every x, B F(x)=f(z).

Proposition (¢) follows from the inequality m(z) < F(e) < M(x)
(zeP). To prove (7), we observe that, since M(wx)—m(x) is non-
increasing over P, so are M(z)—F(x) and F(z)—m(z). From the
relations F=(F—m)-+m and M=(M—F)+F, we obtain respectively

BI<B,(F—m)+Bm<B,F—m)+f and }<B,M<BF+B(U—F),
(103) B, F(w) —{F(2) —m(@) < f(a) < B, (o) +{Mle)— @)y

for almost every x. Now observe fhat, it @(x) is a non—decrfaasing
function over (a, b), ®(a)=0, p(b)<# then the set B, of points @
where ¢'(x)>n is of measure <¢&/n. For :

b
e>q(0) = ¢'(@)dos=n- B

Taking (p(a})=M(zb)——-F(a;), where M(b)—F(b)<¢, _we obtain that
(M) —F(2)y << Ve outside a set of measure < Je. This, and the
gecond inequality (103), gives flz)<< B F() -almost ?_verywhere.
In the same way from the first inequality (103) we obtain B.F(x)<f(x)
and so B, F(x)=f(x). It remains to apply Theorem 6. o
Proposition (d) follows from the fact that every function 1.:(111(?-
grable: L is integrable in the sense of Denjoy-Pel.'ron, and it 18
plain that the latter integrability is a special case of integrability T
Proposition (§) is obvious. v

(8) Let a<<b<le. If f is integrable T over (a,b) and over (b,c),
then it is. also integrable T over (a,c). The’ integral over (a,c) 18
equal to the sum of the integrals over (a,b) and (b,e¢).

Let M,(x), my(®), M), my(x) be majorants and minorants
of.f over the intervals (a,b) and (b, ¢) respectively. Let M (2)=M,y(®)
for a<<o<<h, M(z)=M(b)+ My(») for p<z<c and let m(z) be
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defined similarly. Then M(w) is & majorant, m(x) a minorant, of f
over (a,c), and it is not difficult to see that M(e¢)—m(c) may be
arbitrarily small. Hence f if integrable T' over (a,c). The proof of
the second part of (6) is obvious.

§ 47. We shall now suppose that the function f(@), and so
also the set P, are continued outside (a, b) by the condition of per-
iodicity: f (o+ko)=f(z), k=+1, +2,...,, where w=b — a. :

From propositions (o) and (¢) we deduce

(¢} If | is integrable T(P) over (a,b), and if a+ueP, b+ueP,

then | is integrable T(P) over (a--u, b+u), and
. b-+u

b
(1) [ fdw=(1) [ 1 do.

a--u

We shall now prove that

(#) If the series (4) comverges everywhere to sum f(x), then, for
almost every w, f(x) is integrable T over (u, 2n+u). Moreover (4) s
the Fourier series of f, that is '

2r4-u 25-u

(104)  mae=(T) [ f(a)coskwde, mb=(T) [ Ha)sin ko do

u

for k=0, 1,.., and almost every wu.

Let F(x) denote the sum of the series

1 o @, Si 0 & — b, cOs N @
s Jaar 3 uire—hons
n=1
wherever the latter converges. Let P denote the set of points where
F(z) exists and is m-continuous (it is obvious that every L-integrable
function is m-continuous almos everywhere). Let ue.P; we shall

‘show that G(x)=F(z) — F(u) is a majorant and minorant of f in

the interval (u, %+2n), with respect to the bagis P. Conditions
. (1), @), (i), (I'), (ii'), (iii") are plainly satisfied. Let @(x) denote
the sum of the series (4) integrates twice. Since, by Riemann’s clag-
sical theorem, D, D(z)=f(x), an application of Lemma 28 gives
B, ¥(x)={f(x), and proves (iv) and (iv’). Therefore f is integrable
T(P) over (u,u+2n), and the value of the integral is equal to
| Flu427n)—P(u). In view of (105), F(u+2n)—F(u)=na,, which gives(104)
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for k=0. In order to prove the formula (104) for @y k>0, (the proof
for by is similar), we multiply (4) by cos k z and replace the products
cosnwcos kx, sinnxcos ke by sums of cogines and gines. It is
not difficult to see that we obtain a new trigonometrical series,
which converges everywhere to f(x) cos k. (This is a special case
of the Rajchman theory of the formal multiplication of trigono-
metrical series; see Rajchman [1]; Zygmund [1], p. 279sqq).
The constant term of the new series is Ty, S0 that the formulae
(104) are established.

The following proposition, enables us to simplify the definition
of the basis in the case of trigonometrical series.

§48. Lemma 31. If |a+|b]—0, the sum F(z) of (105) is
m-continuous af every point where it exists.

For let @ (x) denote the sum of the series (105) integrated
term by term. It is Fatou's well-known result that

(B @+ h) — & (2 — h)}/2h— F(x),
whenever F(z) exists 1). This implies that {@(x-h)— O(x)}/k->F(z),
since, by Riemann’s classical theorem, @(z+h)+®(z—h)—20(z)=o(h)
for every .

Hence, for the basis P we may take the set ¢ of points of
convergence of (105). In particular,

(4) If (105) converges for m=a, x=p (a<f), the sum f(z) of the
everywhere convergent series (4) is integrable T over (a,f) to the value
F(8) — F(a).

It is not difficult to see that for « in (104) we may take the numbers be-
longing to . If k=0, this follows from (). Now let us consider, for example,
the case of ay, k> 0. Let us denote by s the series (4), and by s* the series

o0
(106) Lag+ 3 (af cos nz+bf sinnz)

n=1
obtained by multiplying (4) by coskxz. Let 8 be the series (105), and S§* an an-
alogous series formed for (106). By s, sf,, 8. Sﬁ we denote the n-th partial sums

of the series s, g, §, Sk respectively. Since sf‘,(m)‘-—-— cos k . 8,(z) tends uniformly
to 0, we obtain that

X ) X N
107) f {oh — cos kt - &, dt=[S5 ()]} —[cos B+ 8, (O]; — & f sin Kt - S, (2) dt
I u

}) Bee e. g. Zygmund [1], p. 272,
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tends to 0. Let v be such that § and 8k ‘converge for xz=v. Since the last
integral on the right of (107) tends to a limit, S* converges for we(, Observing

that aﬁ:ak in (108), we obtain the required result.

§ 49. The definition of integrability T raises a number of problems. to
which we will retien in another paper. Here we shall make some additional
remarks.

(1) If Jy(m)=fy(x) almost everywhere in (a,b), and if f, is integrable T(P)
over (a,b), so 18 fy(x), and both integrals are equal.

The proof is the same as for Perron’s integral, and need not be repeated
here ). Hence, the T-integral of a function f may be defined, even if f(z) is only
defined outside a set E of measure 0. For, if e. g. g(x)=f(z) outside B, g(z)=

: b b
in E, we may put (T) / fde=(T) / g dx, provided the last integral exists.

a a

(») If the partial sums of (4), where lan|+|bul—>0, are finite for every =z,
the series (4) is swmmable (0, 1) almost everywhere to o function f(z), If O is the
set of points of convergence of (105), f(x) is integrable T' over any interval (a, 3) with
«eC, e C. Moreover, we have (104) for ue C.

The first part of (v) follows from Theorem 3. If & is the sum of the
series integrated term by term twice, then — co< D,#<D, #<co and so, by
Theorem 1 and Lemma 30, D, &(z)= B,F(x) exists outside a set B, |[Bl=0. Let
9(z)=BF(x). Then, if u ¢ C, M(x)=F(x)—F(u) is a majorant of g over (u, 2z +u),
with respect to the hasis ¢. We put h(z)=B, F(z) — B, F(x); h(v) is finite every-
where and vanishes almiost everywhere, 80 that heL. Let u(zx) be a minorant
of h over (u,u+27): Beu(x)<h(zm), 1(u)=0, p(u+27)>—e (since h(x)<0, u(x) is
non-increasing). A moment’s consideration shows that m(zx)=F(x) — F(u) 4 pu(x)
is a minorant of g. For we have Bm-<B;F+R;u <B,F+h=B F-—g Since
M(u+-27) — m(u+2m) e, g is integrable T over, (u, u--2x), and. so is, in view
of our convention, f. The proof of (104) and of the fact that the integral of f
over (a, ), eeC, feC, is equal to F(f) — F(a), is the same as before.

We mention, without proof, that proposition () holds even if the partial
sums of (4) are unbounded at an at most enumerable set of points. -

It can be shown that (v) remains valid even if (4) is finite (O, ), <3
for every «. The basis P, however, need not coincide then ‘with the set C.

1) See Saks [1], 1834.
26. VI. 1935.

Added in proof (19. I. 36) Theorem 8 of this paper has meanwhile
also Been established by Denjoy (Fund. Math. 25, p. 2938).

icm

Differentiability and summability 43

Bibliography.

A. F. Andersen, [1] Studier over Cesaro’s Summabilitetsmethode, Co-
penhagen, 1921, p. 1—100.

A. Denjoy, [1] Caleul des coefficients d’une série trigonométrique par-
tout convergente, 0. R. 172 (1921), 1218—1221; [2] Sur une propriété des séries
trigonométriques, Koninklijke Akademie te Amsterdam, XXIII (1920), 220—231;
[3] Sur le caleul des coefficients des séries trigonométriques, . B. 196 (1933),
237—239; [4] Mémoire sur les nombres dérivés, Journal de Math (7), 1, 105—
240 (1915).

G. H. Hardy and J. E. Littlewood, [1] Contributions to the arith-
metic theory of series, Proc. London Math. Soe. 11 (1913), 401—478; [2] On Young’s
convergence criterion, Ibid. 28 (1928), 301—311.

G. H. Hardy and M. Riesz, [1] Dirichlet’s series, Cambrigde 1915,

A. Khintchine, [1] Recherches sur la structure des fonctions mesu-
rables, Fund. Math., 9 (1927), 212—279.

E. Kogbetliantz, [1] Recherches sur I'unieité des séries ultrasphériques,
Journal des Math. 5 (1924), 125-—196.

B. Kuttner, [1] A theorem on trigonometric series, Journal London
Math. Soc. 10 (1935), 131-—140.

J. E. Littlewood, [1], The converse of Abel’s theorem On power series,
Proc. London Math. Soc. 9 (1911), 434—448.

N. Lusin [1] Integral and trigonometrical series (in Russian) p. 1240,
Moscow, 1915.

J.Marcinkiewiez [1], Sur les séries de Fourier (to appear in Fund.
Math.).

A. Plessner, [1] Tmfronometusche Reihen; in Pascals Repertorium d.
hoheren Analysis, Vol. I;, Leipzig und Berlin, 1929; [2] Uber das Verhalten ana-
Iytischer Funktionen auf dem Rande des Definitionsbereiches, Orelles Journal,
158 (1928), 219—227.

J. Privaloff, [1] Intégrale de Cauchy (m Russian), p. 1—100, Sara-
toff 1918.

Rajchman, {1] Sur le principe de localisation de Riemann (in Polish)
0. R. de la Soc. Scientif. de Varsovie.

A. Rajchman and A. Zygmund [1], Sur la relation du procédé de
sommation de Cesaro et de celui de Riemann, Bull. de U'Acad. Polonaise, 1926,
p. 69—80.

5. Saks, [1] Théorie de I'intégrale, Varsovie, 1933.

Sargent, [1] The Borel derivatives of 'a funection, Proc. London Math.
Soc., 38 (1934), 180—196.

E. C. Titchmarsh, On conjugate functmns, Ibid. 29 (1929), p.49—80.

8. Verblunsky, [1] On the theory of trigonometric series, Fund. Math.
23 (1924), p. 193—236.

A, Zygmund, [1] Trigonometrical Series, Warsaw, 1935; [2], Einige
Siitze tiber divergente Reihen, Bull. de I’Acad. Polonaise, 1928, p. 309—331.



GUEST




