On. sequences and limiting sets.
By
G. T. Whyburn (Virginia, U. 8. A.).

In this paper a study will be made of relations between eon-
vergent sequences of sets and their limiting sets when certain re-
strictions are placed on the nature of the convergence of the se-
quences. In the first section necessary and sufficient conditions will
be established in order that the limiting set 4 of a sequence of
sets [4,] should be (1) a y-continuum, in the sense that every
r-dimensional complete cycle in 4 is ~0 in 4, and (2) locally
y-eonnected, in a similar sense. The former of these results may be
regarded as an r-dimensional analog of a classieal theorem of
Zoretti which has as a consequence that the limiting set of a con-
vergent sequence of continua (y°-continua) is itself a continuum
(y°-continuum). The conditions here imposed suggest a type of con-
vergence which we shall call regural convergence relative to r-di-
mensional cycles. This is studied in section 2, and in the remainder
of the paper it is applied to sequences of arcs, simple closed cur-
ves, topologieal spheres, and 2-cells.

It will be shown that regular convergence relative to O-cycles
for sequences of arcs and simple closed curves gives limiting sets
of the same type. For sequences of topological spheres it gives
cactoids as limiting sets (see § 5), and in case the convergence is
regular also relative to 1-cyeles, these cactoids reduce to topological
spheres. For a sequence of 2-cells whose boundaries also converge,
regular convergence relative to 0-oycles gives as a limiting set
a hemicactoid whose base set is hounded by a boundary curve
which is the limit of the boundaries of the 2-cells (see § 6). The
hemicactoid reduces to its base set in case the convergence is also
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regular relative to l-cycles, and this base wet reduces to a 2-cell
in case the boundaries of the 2-cells in the sequence converge re-
gularly relative to O-cycles.

It will be assumed throughout that all sets used lie in a com-
pact metric space. For systematic treatments of the combinatorial
notions used the reader is referred to the papers of Vietoris and
Alexandroffl).

1. Connectivity of limiting sets.

All of our complexes and cycles will be non-oriented. A closed
set A is called a y"-continuum provided every complete r-cycle
in Ais ~0 in A. Similarly, A is said to be locally y”-connected
provided that for each £>> 0 there exists a >0 such that every
complete r-cycle in A4 of diameter <6 is ~0 in a subset of A
of diameter < & The distance from = to y is denoted by ¢(x,¥)
and, for any d >0, V,(4) will denote the set of all points @ such
that the distance from z to some point of 4 is <d. Finally, we
use the arrow —> to indieate conmvergence (and not to indicate boun-
ding relatiouships).

(1.1) Lemma. Let the sequence of closed sets [A,] converge to
the limiting set A. If for a given e >0 there exists a d, 0 <d <e,
such that for any & >0 there exist positive numbers 6 and N such
that if n>=N, then any r-dimensional 0-cycle in A, of diamcler
< 3d is 70 in a subset of A, of diameter < e, then any complete
r-dimensional cycle in A of diameter <d is ~ 0 in a subset of A
of diameter < 3e.

Proof. Let y"= (C,, ,,...) be any complete r-dimensional cycle
in A of diameter <d. We have to show that for any >0, there
exists an integer K such that for ¥ > K, C, v 0 in a subset of 4
of diameter <C3e. By hypothesis, given &/4, there exist positive
numbers 6 <& and . N such that for any »> N, any r-dimensional
d-cycle in 4, of diameter <C3d is 0 in a subset of A, of dia-
meter <Ce. Let us take K so that for k> K, C, is a d/3-cycle;
and with k fixed and > K, let C,= (#,,,,...,%,), where the x, are

1) See, for example, Vietoris, Math. Anmn., vol. 97, pp. b4D—b72, and
Fond, Math,, vol. 19 (1932), pp. 2656—273; Alexandroff, Annals of Math,,
vol. 30 (1928), pp. 101—187, and Math. Ann,, vol. 106 (1932), pp. 161—288.
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the vertices of C,. Take an integer / such that for 4> I, we have
A4,C Vg(4) and 4 C Vy(4) where ¢ = min (4/3, d). Take a fixed
j>I-+ N. For each s<Cg, let y, be a point of A4, such that
0[5, 75) = o[, 4) < ¢'. For each simplex (ay, #;,...,%,) in G,
let (44, ¥sy---» ¥;) be a simplex and let C# be the cycle composed
of all such simplexes !).

Now since (4, ¥,) << 0¥y %) + 0(@ %) + (@4 41) < &' +
+ 8/3 4 6'<C 6, it follows that CF is a d-cycle; and since ¢(ya, ¥5) <
< Q(?/rm 33,,,) + Q(xma xs) _]L' Q(xss ?/s) <4 + a '—l_ 6'< 3d} then OJ’Je is
of diameter <C 3d. Thus by hypothesis there exists an e/4-complex
ZM= (24, 2,...,2,) in 4; of diameter < e bounded by GF. For
each s<Ch, let w, be a point of 4 such that g(z., w,)==0(2, 4) < ¢’
and such that when 2, =y, 0<C¢t<Cyg, w,=2a,. For each simplex
(%3 Zyr ooy Zyy) 10 ZrH, et (wyy wyye-es 0,,) be a simplex, and
let K™+ be the complex of all such simplexes. (In other words, we
project Z** into the complex K™ in A by a d’-projection). Then
clearly K"+ is an e-complex in A of diameter <3¢ bounded by C,.
Thus C,0 in a subset of A of diameter < 8e, for any k> Kj
and our lemma is proven.

(1.2) Lemma. Let A,—~ A. If for a given ¢> 0 there exists
ad, 0<<d<e such that any complete v in A of diameter < 3d
is ~ 0 in a subset of A of diameter < e, then for any &> 0 there
exist positive numbers & and N such that if n> N, any r-dimensional
0-eycle in A, of diameter < d is 0 in a subset of A, of diameter < 3e.

Proof. From the hypothesis it follows that for &> 0 there
exists a d, 0 < d<C¢ such that any 7-dimensional d-eyele in A4 of
diameter < 3d is ;0 in a sobset of 4 of diameter < e Let us
take an integer K such that for £ > K, 4,CV(4) and AC Vi (4.,
where ¢’ =min (6/3, d). Let C==(%y,2,,..., Z,) be any r-dimensional
d-eycle in 4, of diameter < d, where the x; are vertices of C
and % > K. Now, just as in the proof of (1.1), C can be projected
by a d’-projection into a complex C* in A. Then clearly C* is an

YY) We shall call a complex (J* obtained in this way a &'-projection of Cp
in 4;, and we shall say that O projects into the complex (J,¥ under a 6'-pro-
Jjection when each vertex in Cj is replaced by a point at a distance <4’ from it.
It is to be noted that when a vertex of C, lies in 4j;, that vertex is replaced
by itself,
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r-dimensional é-cycle in 4 of diameter < 3d. Thus C* bounds an
g/3-complex Z'' in A of diameter e Similarly Z™* projects into
a complex K"t* in 4, by a d'-projection which is so chosen that
on C* itis merely the inverse of the previous projection sending ¢
into O* Then since 6 < ¢ and d < e, it follows that K"+ is an
e-complex in 4, of diameter < 8¢; and since K" is bounded by C,
our lemma i established provided we take = ¢’ and N =K.

(1.8) Theorem. Let the sequence of closed sets [4,] converge to
the limiting set A. In order that A be a y -continuum it is necessary
and sufficient that for any &8> 0 there exist positive numbers 6 and N
such that if n>> N, then any r-dimensional 6-cycle in A4, is ~0 in 4,.

To prove the sufficiency, we note that if we take e=>d= [ A,
the conditions of (1.1) are fulfilled. Whence, any complete 3" in 4
whatever is ~ 0 in A. Similarly for the necessity, taking e>d >d[ 34},
we have the conditions of (1.2) satisfied and our result follows.

(1.4) Theorem. Let A;— A as before. In order that 4 be
locally y -connected it is mecessary and sufficient that for any e>0
there exist a d >0 such that for amy &> 0, positive numbers 6
and N exist so that if n > N, then any r-dimensional d-cycle in A,
of diameter < d is w0 in a subset of A, of diameter <e.

Proof. Sufficiency: Let ¢/>> 0 be given. Taking ¢=¢/3 and
applying (1.1), we see that any complete y” in A of diameter <{d
is ~ 0 in a subset of 4 of diameter < 8¢ = ¢'. Accordingly, 4 is
locally y-connected.

Necessity: Let ¢ =¢/3. By hypothesis there exists a d’>0
such that any y" in 4 of diameter < d’ is ~ O in a subset of A
of diameter < ¢'. Applying (1.2), we see that for any &> 0 there
exist positive numbers d and N such that if »> N, any r-dimeunsional
d-cycle in 4, of diameter << d==d'/3 is 0 in a subset of 4, of
diameter < 8¢’ =—e.

2. Regular convergence.

Let the sequence of closed sets [4,] converge to the limiting
set A. Then [4;] will be said to converge to A regularly relutive to
r-cycles provided that for each £>>0 there exist positive numbers é
and N such that if # > N, any complete »-dimensional eyele in 4,
of diameter << 6 i3 ~ 0 in a subset of A4, of diameter < &
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In the remainder of this paper we shall be concerned almost
exclusively with the cases r=0, 1. It is most natural for us to
interpret a O-cycle as an even number of O-cells (points); and since
we are concerned only with questions relative to regular convergence,
it is clear that no generality is lost and the treatment is cousiderably
simplified if, as we shall do, we interpret a O-cycle (complete or
geometric) as being made up of a single pair of distinet points,
Regular convergence of [4,] to A relative to 0-cycles is then equi-
valent to the condition that for each &> 0 there exist positive
numbers ¢ and N such that if » > N, any pair of points @, ye 4,
with ¢(z, y)<J lie together in a continuum in 4, of diameter <e,
Thus we have in this case a sort of ,equi-uniform-local connected-
ness“ for the sequence [4,] ).

(2.1). Let the sequence of closed sets [M,] converge to the limiting
set M. Then in order that M,—> M regularly relative to O-cycles 4t
is necessary and sufficient that for each sequence of decompositions
M, = A, B,, into closed sets such that Ay,~>4, B,~B and
4, B,=X,—> X, we have 4-B=2X, i. e,

lim (4, - B,) = (lim 4,) - (lim B,,).
i 3 /3 /3

Proof. The condition is necessary. For suppose M,—>M O-re-
gularly (i. e, regularly relative to O-cycles) but that for some such
sequence of decompositions, there exists a point p of 4.-B—X.
Then, taking &= ¢(p, X)/4 and determining 6 and N for the regular
convergence, it is clear that for ¢ sufficiently large and > N, we
will have X;CV,(X) and 4, and B, will contain points a, and 5
respectively which lie in V,(p). But this is impossible, since we
then have ¢(a;, 5) <6 and i > N, whereas any subcontinuum of M,
containing a,-}- 5, must intersect X, and hence be of diameter >a

The condition is also sufficient. For suppose the condition satis-
fied and that the convergence is not O-regular. Then for some £>0,
- there exist sequences of points [a)] and [5], where ¢;-}5,( M

iy

such that a,—>p<—b, where peM and a4+ b;CVu(p)=V, but

!) Considerable similarity will be noted between this case of regular conver-
gence and the notion of an equicontinuous set of curves as used by R. L. Moore.
See his papers in Trans. Amer. Math. Soc., vol. 22 (1921), p. 42; and Fund.
Math,, vol. 4, p. 108; see also H. Whitney, Proc. Natl. Acad. of Sci, vol, I8
(1932), pp. 275—278 and 840 —342.
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such that any continuum in 2/, containing a,—l—b, is of diameter
> & For each i there exists a separation ]ll,,tV_ L, M, of
M,V into disjoint closed sets containing a, and b, respectively as
mdleated Let

A =M, —M,-V, B,=M,—M, 7.

Then for each i, we have
M, =4, -+ B, and A4, B, =X,= M—V-M,

Thus if we select convergent subsequences A”g» — 4 and B,,ij — B,

we will have lim X, =M—V. M, whereas clearly 4B JHpeV.
Thus our supposition that the convergence M, —> M is not O-regular
leads to a contradiction.

(2.11). If, in the notation of (2.1), the comvergences M,—> M,
X,=4d,-B,—~>A-B=2X are O-regular, so also are the conver-
gences A,— A and B,— B.

For let ¢ >0 be given. Using /3, select 6 and N for the
regular convergence X,—> X. Then with this 6 as a new ¢, select &’
and N/, (8’ <4, N'> N), for the regular convergence M,—> M. Let
x,yed,, where o(z,y)< ¢ and n> N'. Then there exists a conti-
nuum H with 2 -4y (C HC M and 6(H) < 6. Now H-A contains
continua U and V such that U Dax~+wu and V¥V Dy -, where
-4 v (C X, Then sinece ¢(u, v)< d, X, contains a continuum
W Du-t+v with 6(W)<e¢/3. Then U4 V4 W is a continuum
in A, of diameter < & containing x-y. Hence 4, — 4 0-regularly,
Similarly, B,— B 0O-reguldrly.

(2.2). Let the sequence [K,| of locally connected continua converge
reqularly relative to O-cycles and have limiting set K. Then K is
locally connected and every simple closed curve J(C K is the limiting
set of a O-regularly convergent sequence of simple closed curves
Jiy Jss..., where J,C K,.

Proof. That K is locally connected follows from the case r=0
of (1.4). To prove the remainder, take a sequence & > & >...—>0.
On J take a cyclicly ordered set of points gy, Z19yes Zisy Prpety=%11-
such that the arcs @y, @y are of diameter <&, /4. Let & =1/4
min [0 (Zy; Zyeqy, B1j Eyyeny)] for |6 — 7| > 1. Using g, determine d;
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and N,, 0, <&, for the regular convergence. For each i, take
a 0,/3 subdivision z,,=a};, #5,..., 20! =24y of By 2 4y, i e,
O(zf; 2f') < 6,/8. Determine N; >N, such that for »>=N,,
"EC Vé,IS(Kn) and K,,Cle,s(K). Take a fixed 2, > N;.

Then the points xf} project into points %3 on K, under a
0/3-projection so that o(yff, yi*") < 6,. Hence by regular conver-
gence, K, contains & — ares yfyi™. Now for each fixed 4,

mi

2 yi: yiT" contains an are y,; ¥y, where y;,=yl, Yrery = Y2 s
m=l

and sinee ¥y, Y100 C Vagg (1: Z10i40y), We have

O e < &a/2 and @y ¥y Yyl > 2,

for |¢—j7|>1. Thus if we let 2, be the first point of g, Yia
which is on y,5 5, let 2,5 be the first point of 2, y,; which is on
Y13 Y14, and so on to 2y, as the first point of 24y ¥y, which is
OL Y4 Y11, and let 244,44y == 2;; = the first point of 2, y,, which
I8 on yy; 2y, we obtain a set of ares 2, 2, B9 213y.-+y 21y, @y €ach
contained in the corresponding are y;; 4,44, and whose sum-is a
simple elosed curve J, (CK,. By (i) we have

(i) 0z 2e) <&/2 and  @(2 244, 21y f1pan) > 2 &

for |i—j| > 1.

Now, using &, let us make a similar construetion, choosing the
points z,; so that they include all of the points a, (. e., the sub-
division of J is monotonic), finding & and determining N, > N,.
Choosing 2, > N,, we construct similarly a simple closed curve
JuC K, consisting of arcs 2y, 2y, 2,, Z3g,. ..y %44, 2 Such that

() (o) <&/2 and (o2, 2 2auan) > 26
for |4 —j]>1, and
(iv) JuCVoy(7) and  JC Vi, (/).

Similarly for each i we make such a construction for &. This
gives a sequence of simple closed curves J,CK,, consisting of
rCS Zp 2is % %gy-vy 2,2 such that
™ 0(2 2ipyn) < &/2  and (2, 2450, 24 Zig1ny) > 28
for [p—g|[>1, and
(vi) o CVag(J) and  JC Vo (J,,).
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Now from (vi) we have that limJ, =J, since &> & — 0.
Furthermore, the convergence is regular. For let £>> 0 be given.
For some % we have g < s Then if we set 6=1¢, and N=n,,
the conditions for O-regular convergence must be satisfied. For
by (v), we have that if z, y e, and ¢(z, y) < d =¢;, thenx and y
are on eonsecutive Aares 2 Zuyy, ety 2wy of ;3 and since by
(v) the diameter of the sum of these arecs is <&, < & the con-
ditions hold for J,, . It is readily seen that, since monotonic subdi-
visiops are used in J, they likewise hold for any index > #,. Thus
Jn,—>J regularly relative to O-cycles.

Finally, if for each # with n, < n < Myp1, We construct on K,
a curve J, just as J, was constructed on K, 1. e, using &, and
if we neglect all indices < n,, it is clear that J,—> J O-regularly.

By exactly similar reasoning, we have

(2.21) Under the same hypothesis as in (2.2), every simple are ab
in K is the limiting set of a O-regularly convergent sequence of arcs
[, b,], where a,b,C K,.

(2.3). Let the sequence of y*-continua Ay, A,,..., converge regularly
relative to O-cycles and have limiting set A. Then A is a y'-continuum.

To prove this it suffices to show that the condition in (1.3) is
satisfied. Let € >0 be given. Determine & and N for the 0-regular
convergence. Now let Z!= (2, x,,...,,) be any 1-dimensional
d-cycle on A,, where the z, are vertices of Z! and where » > N.
Then for each 1-simplex (z,2) in Z!, by virtue of O-regular
convergence, we have in 4, a continuum x,2;, of diameter < e.
Each such continuum z, 2, carries a 1-dimensional semi-cycle Z,,1)
and the sum of all the semi-cyeles Z,; is a complete 1-dimensional
cycle Z. Let us write Z = (z,, 2,,...), where 2, is a d,cycle and 8,— 0.

Now since by hypothesis Z~ 0 in 4,, it follows that for some k,
%70 in 4, But clearly we have Z'vg,, since z, is merely a
subdivision of Z. In fact 2, breaks up into Og-semi-cycles 2% (C 2, )
and if we choose a point ¢, in 2,24, and form the 2-simplexes
(e1y, 21, @) and (¢, yi, yi;) for each l-simplex (y7, ) in 2}, clearly

1) That is, Z;; is a sequence of 1-dimensional complexes (@y, @y) = C,, C,,...
in @;2; each bounded by the 0-cycls -+ a7, where C; is a dz-complex which
is merely a finer subdivision of Ci-y and 48; — 0,

2
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the sum Kj;; of all suech 2-simplexes is an &-complex of dimension 2
bounded by (w,x;) -2}, Accordingly, ¥ K;; is an e-complex
bounded by

2(»’% ) +2z?i=zl+zk'
Whence, Z! , 2,70, so that Z10 in 4,, as was to be shown,

(2.81). Corollary. The same conclusion holds, if, instead of
supposing each A; fo be a yl-continuwm, we suppose merely that every
1-dimensional complete cycle in A; is 30 in 4, and that & — 0.

3. Sequences of ares and simple closed eurves.

(8.1). Let the sequence of simple arcs [a,b,] comverge O-regularly
to the limiting set C. Then C is a simple arc ab (or a single point),
and if the notation is suitably chosen, we have a,—>a and b, —> b,

For let us suppose C contains more than one point. Let
L=1limsup (@, 4 b,). Then L contains more than one point. For
otherwise we would have ¢(a,, 5,)—0; and this, by virtue of regular
convergence, would give d(a,d,)— 0, which is impossible since
6(C) > 0. Let a and b be any two distinet points of L, and let z
be any point of C distinct from @ and from b, Let x,ea,b, be
chosen so that x,—>x. Then for a suitably chosen sequence of
integers (n,) together with a suitable interchange of labels on the
endpoints of a, b, if necessary, we have

U, Zyy—> A, %, b,—>B, aed, beB, and A4+ B=C.

Now by virtue of the regular convergence and (2.1), we have 4. B=z.
Thus any point z of C— (2 4 b) separates C between a and b,
Accordingly, C is a simple arc ab.

Now sinee @ and b were any two points of L whatever, it follows
that I must reduce to a - b Consequently, if the end points of
the arcs a, b, are suitably labelled, we will have a,—>4 and b,—>b.

(?.).2). Let the sequence of simple closed curves [J.] converge regularly
relative to O-cyeles and have limiting set J. Then J is a simple
closed curve (or a single point).

Proof. Supposing J contains more than one point, let us take
any two distinct points @ and b of J. Let us select points a,, b,eJ,
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so that @,—>a and b,— b and decompose J, into simple arcs a,,b,
and a,y,b,. Then for a suitably chosen sequence (%), the sequences
(@4, %, bs) and [a, y, b,] will converge to.limiting sets J, and J,
respectively. Now J=dJ,+4 J,; and since a,-4 b,—> a0, by
regular convergence and (2.1) we have J,-J,=a -} b. Thus every
pair of points a,b of J separates J; and hence, by a well known
result due to R. L. Moore, it follows that J is a simple closed curve.

4. Characterizations of boundary curves and cactoids.

A locally connected continuum K is said to be a boundary curve 1)
provided every true cyclic element of K is a simple closed curve;
and such a continuum X is said to be a cacfoid ?) provided every
true cyclic element of K is a simple closed surface (topological
sphere). In this section we establish characterizations of these types
of sets which will be needed in the sequel.

(4.1). In order that u compact continuum K be a boundary curve
it is mecessary and sufficient that every conjugate®) pair of points
of K should disconnect K.

Proof. In the light of the ecyclic element theory of the
structure of a locally connected continuum, the necessity of the
condition is obvious. To prove the sufficiency of the condition, we
first show that K is locally connected. If this were not so, KX would
have a continuum of convergence H. But every pair of points of H
would be conjugate; and since H would contain uncountably many
such pairs which are disjoint and since each such pair would
contain a local separating point4) of K, H would necessarily contain 4)
a point of Menger-Urysohn order 2 of K. Clearly this is impossible,
and hence K is locally connected. 4

Now let C be any true cyeclic element of K. Then C contains
a simple closed curve J. Furthermore, we must have C=J. For
if not, ¢ — J would contain a non-cut point # of K, sinee the cut
points of K on C are countable, But then from our hypotbesis it

1) See my paper in Amer. Jour. Math., vol. 56 (1934), p. 301. )

%) See R. L. Moore, Monatsh, f. Math. u, Phys., vol. 36 (1929), p. 81.

%) Two points @, be K are said to be comjugate provided mno point separates
them in K. ’

%) 8ee my paper in Monatsh. f, Math. u. Phys, vol. 86 (1929), pp. 30b—8514,

Fundamenta Mathematicae T. XXV, ’ 27
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follows that every point of J is a cut point of the connected set
K — z, which clearly is impossible !) since J itself has no cut point.

(4.2). In order that a locally connected compact continuum K be
a cactoid it is necessary and sufficient that for every simple closed
curve J in K, K —J have at least two components each for which
18 bounded by J.

Proof. Again the necessity of the condition is obvious in view
of the structure of K relative to its ecyclic elements. In fact we
can make the following much stronger statement: If K is a eactoid,
then every simple closed curve J in K is contained in a uniquely
determined cyeclic element C of K, J decomposes C into two open
2-cells C; and G, bounded by J which lie in distinet components
of K —J, and every other component of K — J is g component
of K — C and hence is bounded by a single point of J.

To prove the sufficiency of the condition, let S be any true
cyclic element of K. We have to show that § is a topological sphere,
and for this purpose it will suffice to prove that Zippin’s conditions ?)
(4, B, C) are satisfied. Now condition (A4) states that S contains at
least one simple closed curve, and this is obvious. Condition ©)
states that S is disconnected by any simple closed curve J C8 To
prove this, let J be any simple closed curve in 8. By hypothesis,
K—J has at least two components K; and K, each bounded by J.
Since each component of K— S is bounded by a single point of 8,
it follows that S-K,4=0<=5-K,. Accordingly, J disconnects S,
and (C) is proven. We note also that each of the sets S - K, and
S. K, is connected and, in fact each of these sets is a component
of S— bounded by J.

Now finally, condition (B) states that no are azb of a simple
closed curve J in S can disconnect S. Let us suppose, on the contrary,
that some such are azb disconnects S. Then if we write J: =axb- ayb,
there will exist a component S, of S —azb which contains no
point of ayb. Now S, azb contains an arc wzv such that uzp-

1) See R. L. Moore, Proc. Ntl, Acad, Sei., vol. 9 (1928), p. 102.

?) Bee Amer, Jour. Math,, vol. 52 (1930), p. 883. These conditions of Zippin
are an improvement on, and yet they are based on, the original characterization
of the topological sphere due to R. L. Moore, See R. L. Moore, Trans, Amer.

_ Math, Soc., vol. 17 (1916) pp. 131—164. '
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caxb==wu--v and, by suitably choosing #, we have some such order
as a,%,2,0,b on axbd. Let C be the simple closed eurve uzv - are
uaybv of J By what was just shown above, § — C has at least
two components H, and H, each bounded by C. Now both H, and
H, must contain points of S; as well as points of § — §,, since
y+2CH,- H,. Accordingly, both #, and H, must intersect the
open are uxv of J. This is impossible, since wxv — (4} 2) is con-
nected and contains no point of C. Thus our supposition that ¢ # b
disconneets S leads to a contradiction, and hence (B) is satisfied.
This completes the proof.

5. Sequences of topological spheres.

(8.1). Let the sequence Sy, Sy,..., of topological spheres comverge
regularly relative to 1-cycles and have limit C. Then C has no cut
point.

Proof. Suppose on the contrary that for some ze C we
have a separation C— z= C, 4 C,, where ac¢C,, beC,. Let
£€=1/8 min [¢(a, x), ¢ (b, )], and determine ¢ = 25 and N(J’ < &),
for the regular convergence. Let C, = C, — C,- V,(x) and
C;=0y— Cy+ Vy(x). For d <6 sufficiently small, we have
Va(Co)» Va(Cy) = 0. Let G = V,(C,) + Vy(C;) + V(). Select points
a, b;e S; so that a,~>a, b;—>b. Then for i > some 1, we have
a(CVa(a)CG, b CV,(0)C @G and S, CG.

Let n be any integer > N+ I. Then V() - S, separates a, and
b, in §,, since V,(C;): Vy(C;)==0 and a, 6 non-¢Vy(x). Hence
Vs()- S, contains a simple closed curve J, separating a, and b, on
S,. But this is impossible in view of the 1-regular convergence,
since 6(J,) < 0’ whereas each of the 2-cells on S, determined by
J, must be of diameter > g since one of these contains a, and
the other contains 5,.

(5.2). Theorem. Let the sequence Sy, 8y,..., of topological spheres
converge regularly relative to O-cycles and have limit K. Then K is
a cactoid.

Proof. By (1.4), K is locally connected. Hence to prove K
a cactoid, by (4.2) we bave only to show that every simple closed
curve J in K disconnects K into eomponents at least two of which

27%
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are bounded by J. To this end, let J be any simple closed curve
in K.

By (2.2) there exists a O-regularly convergent sequence of simple
closed curves Jy, J,..., with limit J such that J,(TS,. For each
n, we have J,—d4,-} B,, where 4, and B, are 2-cells with
4,- B,=1J,. Furthermore for a suitably chosen sequence of integers
(n;), the sequences A, and B, will converge to limits 4 and B
respectively. This gives K= A4+ B, 4-B7)J; and by virtue of
the O-regular convergence and (2.1), we have 4. B =2J. Further-
more, by (2.11), the convergences 4, — A and B,,— B are 0-re-
gular. ’

Now by (2.8), 4 and B are y'-continua. Accordingly, J ~ 0 in
4 and also in B, i e, the essential complete 1-cycle carried by J
is~ 0in 4 and in B. Thus 4 contains an irreducible membrane
M carrying the homology J ~ 0. Let a e(M —J) and let K, be
the component of K — J containing a. Then we must have F(K) =/,
where F(X,) denotes the boundary of K, relative to XK. For if
not, then F(Ka) is a Ty-set!) disconnecting M into two sets
M-K, and M.(K—K,) intersecting in F(K,) such that
JC M- (K — K,). This is impossible by a result of the author ?),
Hence F(K,)=J. Similarly, using B, we find another compo-
nent K, of K —J bounded by J. This completes our proof.

(6.21). Corollary. For each n, let 8, be a 2-cell with boundary
C.. Let S,— K regularly relative to O-cycles and let 8(C,)— 0.
Then K is a cactoid.

Essentially the same argument applies here as in the proof of |

(52). The only essential difference is that now either 4, or B,
say B,, instead of being a 2-cell is a eylinder bounded by J, and
C,. Results (2.2) and (2.21) now apply just as (2.2) alone applied
before, since 6(C,)—> 0, and the corollary follows.

(5.3). Theorem. Let the sequence 81,82, 8.0, of topological
spheres converge to the limit S regularly relative to 0- and 1-cycles.
Then 8 is a topological sphere,

l).Thai: is,. a set earrying no essential complete 1-dimensional cycle. See my
paper in American Journal of Mathematics, Vol, 56 (1934) pp. 183—146.
1) See my paper loc. cit., p. 134.
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For by (5.2) 8 is a cactoid; and by (5.1) S has no cut point.
Hence S reduces to a single cyelic element and thus is a topolo-
gical sphere,

6. Sequences of 2-cells.

The study of regularly convergent sequences of 2-cells leads us
into the types of sets which have been called hemicactoids and base
sets by C. B. Morrey !). A base set is a locally connected conti-
nuum which is homeomorphic with a plane bounded continuum
not separating the plane. Clearly a locally connected continnum B
is a base set if and only if every true cyclic element of B is a
2-cell whose interior is open in B. If we delete the interiors of
all such 2-cells from a base set B, there will remain a boundary
curve J; and we shall say that B is ,bounded by“ the boundary
carve J obtained in this way.

A locally connected continuum H which is the sum of a base
set B and a null sequence of disjoint cactoids each of which has
exactly one point in common with B is called (with, Morrey) a
hemicactoid, ' :

(6.1). If the sequence [Z,) of 2-cells converges reqularly relative
to O-cycles to the limiting set 4 and if their boundaries J, comverge
to the limit J, then J is a boundary curve. In order that J,— J re-
gularly relative to O-cycles it is necessary and sufficient that J be a
simple closed curve 2).

To prove that J is a boundary curve it suffices, by virtue of
(4.1), to show that every conjugate pair of points of J disconnects J.
To this end let a,beJ be conjugate. Select points @, and b, on
J, in such a way that @,—> a and 5, — b. Denote the two arcs of
J, from a, to b, by a,x,b, and a,y, b, respectively. Then for a
suitably chosen sequence of integers (n,), the sequences [a,,,, b,
and [a,, ¥, by} will converge to limits X and ¥ respectively. We
then have J=X-}- Y.

Furthermore, we must have X'+ ¥ = a - 5. For otherwise there
would exist a point # belonging to X .Y — (a - b); and we may

1) 8ee Amer. Jour, Math., vol. 57 (1935), pp. 27—29.
*) We regard a set consisting of a mingle point as a degenerate simple closed
carve, boundary curve, hemicactoid, ete., as the case may be.
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suppose &, — & <—Y,. Now by the O-regular convergence of Z, to
Z, it follows that there exist ares @,,¥,, (CZ,, such that z,,y, — =,
For each 7, we have a decomposition

Zni = An,‘ + Bnia

where 4, and B, are closed, 4,,-B, =, ¥, 4, Ja, and
B,, Db,,. Furthermore, suitably chosen subsequences [A,,Ij ] and [B,,lj]
will converge to limits 4 and B respectively, so that

Z = A B, where 4 )a and BD)b.

But by (2.1) we must have A.B=u, since Z, — Z O-regularly.
J

Hence # separates ¢ and b in Z and therefore also in ; which is
impossible since o and b are conjugate in J.

Therefore X+ Y==a b, and thus a -5 separates J. Accord-
ingly, J is a boundary curve.

Now to prove the second part of the theorem, we first note
that the necessity of the condition results from (3.2). To prove the
sufficiency of the condition, let us suppose on the contrary that J
is a simple closed curve, but that the convergence of J, to J is
not regular relative to O-cyeles. It follows that there exists a se-
quence of integers (n;) and a sequence of pairs of points ¥, ¢ J,, such
that z,— 2 <y, where z¢J, and so that if 4, y; and x,b;y, de-
note the two ares of Jyn, from z; to y,, then the sequences (2, 2, 9]
and [«;b;y,] converge to limits J, and J, respectively each of which
contains more than one point. We may suppose, furthermore, that
the points @, and & are so chosen that a,—> aCJ,— z and
b;—>b( J, — 2. Now by virtue of the regular convergence Zp— 2,
we can find ares 2,4, Z, such that z,7,—> . And just as before,
%y, separates Z, into closed sets 4, and B, such that 4,. B, — z, Y3
and subsequences [4;] and [By] of these converge to limits 4 and B
respectively, where a¢ A and b ¢ B. Likewise, by (2.1), we have

{l-B=m; and x separates a and b in Z and thus in J, which is
impossible. Therefore J,-> J regularly relative to 0-cyeles.

' (6.2). Let [Z,] be a sequence of 2-cells with boundaries (Jo] Then
if Z,— Z regqularly relative to O-cycles and J,—> J, then Z is o he-
micactoid whose base set B is bounded by J.
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Proof. By virtue of (2.2) we have that Z is a locally connected
continuum. Also we may suppose that J contains more than one
point, since otherwise it follows from (5.21) that Z is a cactoid.
The rest of the proof we give in the form of three lemmas of
which the first follows.

(). If = is any cut point of Z and S is a component of Z4— =
such that 8-J=0, then S+ x a cactoid.

To prove this, let a e S and select points a, € Z, 80 that a, — a.
Let & be any positive number less than g(a,#) and d(J). Let
V=V (z). Since the sets S —S:V and Z — S —(Z — 8)- V are
closed and disjoint, there exist disjoint eneighborhoods G and D
respectively of these sets. There exists an integer 7, such that

Z,CG+V+D, aCG—G-Vad J,CD+V—-V-G

Consequently, the set Z, - @- V separates a, and J, in Z,; and
since Z, is a 2-cell, this set contains a simple eclosed curve C,
which also separates a, and J, in Z,. Then O, bounds a 2-cell
8,C Z,, which contains a,, and C; and J, together bound a cy-
linder H,( Z, such that S + Hy =2, and S, - H =C,.

Now since & was arbitrarily small, it is clear from what has
just been shown that we can select a sequence of integers (»,) and
a sequence of simple closed curves (C), C;C Z,, such that C,—> =z,

C; separated Z, into a 2-cell S; containing a,, and a eylinder H, con-

taining J,, and finally so that the sequences [S,] and [H,] converge
to limiting sets K and H respectively. Since d(C;)— 0, it follows
from (2.11) that the convergence S;—> K 1is O-regular. Therefore,
by (6.21), K is a cactoid. Furthermore, K must contain S-- z.
For KDaeS, H+K=Z and H-K = 2. Thus since S is a
component of Z— x, S is also a component of K — 2; and since
K is a cactoid, it follows that S is a cactoid.
We next demonstrate

(). If a, b and x are points of J such that = separates a and
b in J, then x also separates a and b in Z.

The proof for this is very similar to the first part of the proof
of (6.1). Just as in that proof, we select sequences a, —>a,

by, —> b(a,,+ b,,C J,,) such that J,, breaks into two ares a,, x,, b, and
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ani .7/1:1 bnﬁ where a’ni xn,- b"l "_>11’7 anl yni bni'_> Y7 and wni > X< y,,i 80 that
z( X+ Y. Then, choosing the arcs #,y, —> # just as in the former
proof and proceeding in the same way, we reach the conclusion
that = separates ¢ and b in Z.

As a final lemma, we have

(ili). 7f C is any cyclic element of Z intersecting J in more than
one point, then C-J is a simple closed curve W, and C is ¢ 2-cell
bounded by W.

Let @, be C+oJ. By (ii) it follows that @ and b are conjugate
in J. Hence there exists a cyclic element W of J which contains
C-J. Since J is a boundary curve, W is a simple closed curve.
Moreover, since W.CDa-b, we have W ( (. This gives
W C+J, and therefore W= C.J,

Now to prove that C is a 2-cell bounded by 7, by virtue of
a theorem of Zippin's), we have only to show that every arc
in C spanning ?) W separates C irreducibly. To this end we first
prove that any arc @zb spanning W separates C irreducibly bet-
ween any pair of points 2 and y, where x lies on one arc of W
from @ to b and y on the other.

Now from (2.21) it follows that there exist arcs a, 2, by(C Z, such
that a, 2, b, J, =a, + b, a,—>a, b,—b and a,2,b,~>azh regu-
larly relative to 0-cycles. For each #, we have Z, — X, 4+ Y, where
X, and Y, are 2-cells bounded, respectively, by @, 2, b, 4 an are
@, %, b, of J, and a, 2, b, + the other arc Y» by of J,. Furthermore,
we can select a sequence of integers (n,) such that (X,] and [7,]
will converge to limits X and YV respectively, where X Dz and
Y D y. Since Z,— Z O-regularly, it follows by (2.1) that we have
Z=X4Y¥, where X.Y =1lim a, 2, by==azb. Since also a,2,b, —> azb
O-regularly, it follows by (2.11) that the convergences X, —> X and

/ ;
l-f,,i——> Y are O-regular. Accordingly, by (2.3), X and Y are yl-con-
tinua.

Whenee (azb 4 azb) is homologous to 0 in X and thus also
in an irreducible membrane M, (" X (see Alexandroff, loc. cit.). Si-
milarly (aybd-a28)~0 in an irreducible membrane M, Y.

') Bee Amer. Jour. Math., vol. 55 (1938), pp. 201—217,

) :) An are  spans* W provided it has in common with W exactly its two end
points, :
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Clearly we have M, - M,(C (see my paper cited above in § b).
Let C, and C, be the components of ¢ — azb containing z and y
respectively. Then we must have M, — a2 b(C 0, and M, —azb (0,
so that @z b is the boundary relative to C of both C, and C,. For
otherwise azb would separate M, (or M,) into two sets one of
which contains azb--azb; and since azb is a 7)-set, this is
impossible (see my paper just cited above). Thus az b separates C
irredueibly between z and y.

Now we must have C — azb = C, -} C,. For if not, there would
exist an arc rus in O, where » and s lie on a2b in some such
order as a,r,2,s, b and rus-(C,+ C,~+ a2 b)==r - s This is im-
possible, because the arc ar --7us - sb spans W in C but clearly
does not separate x and y in C, contrary to what we have just
shown. Hence C, -+ C,=C — a2b, so that azb separates C irre-
ducibly. Accordingly, C is a 2-cell bounded by W, and (iii) is
proven.

Now to prove (6.2), we define the set B to be equal to J plus
all eyclic elements C of Z such that C.J contains more than one
point. Then B is an A-set!) in Z and, by (iii) every true eyclic
element £ of B is a 2-cell bounded by a true cyeclic element of J,
and the interior of £ is open in B. Thus B is a base set bounded
by J. Since B is an 4-set in Z, every component S of Z — B has
just one boundary point # in Bj and, by (i), S}« is a cactoid.
Therefore Z is a hemicactoid with base set B bounded by J, and
our theorem is proven.

(6.3). If, as in (6.2), the 2-cells Z,— Z regularly relative to
0- and 1-cycles, then the hemicactoid Z reduces to its base set B,

Proof. Recalling the proof of (6.2), this is equivalent to showing
that no such component S of Z— B as in (i) can exist. If such
a component S does exist, its boundary S — .S is a single point x;
and just as in the proof of (i) under (6.2), we can set up a sequence
of 2-cells §; such that S,CZ,, S;— K S, and 8, is bounded by
a simple closed curve C,, where C;,—x. But clearly this is impos-
sible, since by regular convergence relative to 1-cycles, the 2-cells
S; bounded by the curves C, would have to approach 0 in diameter
(since 6(C;) — 0). Thus S cannot exist and hence Z==B.

') See Kuratowski and Whyburn, Fund. Math., vol, 16 (1930), p. 809.
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(6.4). If, as in (6.2), the 2-cells Z,—>Z regularly relative to
0- and l-cycles and if J,—J regularly relative to O-cycles, then Z
is a 2-cell bounded by J.

For by (6.2), Z is a hemicactoid with base set B bounded by
J; by (6.3), it follows that under these conditions, Z reduces to its
base set B; and finally, by (6.1) [or(3.2)], J is a simple closed curve.
Thus B=7is a 2-cell bounded by J, and our theorem is proven.

In conclusion, we call attention to the fact that in all cases
considered in this paper, O-regular convergence for a sequence of
sets of type A has yieldled as limiting set a type of set B
which can be obtained by an upper semi-continuous decomposi-
tion ') of A4 into continua, or in other words, a type of set B which
can be the image of 4 under a ,monotone* transformation in the
sense of C. B. Morrey (loc. cit). This suggests that our results
above may be approached from an analytic or transformation
point of view. This is indeed the case, and a study of this method
of approach will be made in an article which is to follow the pre-
sent one.

1) 8ee R. L. Moore, Foundations of point set theory, Amer., Math. Soc,
Colloguium Publications, 1932, Ch, V.

The University of Virginia.
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Uber die Abbildungen von Sphiren auf Sphiren
niedrigerer Dimension.

Von
Heinz Hopf (Zirich).

Die Frage, fir welche Dimensionszahlen N und » mit N >
es moglich ist, die Sphire S¥ wesentlich auf die Sphire S§” ab-
zubilden 1), ist meines Wissens bisher nur in zwei Féllen beant-
wortet: 1) Fiir jedes N> 1 ist es unmdglich, die Sphéire SV wesen-
tlich auf den Kreis S' abzubilden; 2) es ist moglich, die Sphire S
auf die Kugelfiiche S* wesentlich abzubilden 2).

Die Frage scheint mir aus verschiedenen Grtinden der weiteren
Untersuchung wert zu sein. Erstens, versagt bei der Behandlung
der Abbildungen der S¥ in die S die tbliche Methode des Abbil-
dungsgrades; denn in S¥ ist jeder n-dimensionale Zyklus homolog
Null und wird daher mit dem Grade 0 abgebildet; infolgedessen
zwingt unsere Frage dazu, nach neuen Methoden zu suchen. Zwei-
tens, weisen eine Reihe bekannter Sitze darauf hin, daB sich in der
Existenz einer wesentlichen Abbildung eines Raumes B auf die S

') Eine stetige Abbildung f; des Raumes A4 auf den Raum B heifit ,wesentlich¥,
wenn bei jeder Abbildung f,, in welche sich f, stetig @berfithren luft, das Bild
fi(4) der ganze Raum B ist. Ist B eine Sphire, so bedeutet die Unwesentlichkeit
von fy, dal sich f; in eine solehe Abbildung f, stetig iiberfithren ldBt, bei welcher
fi(4) ein einziger Punkt ist.

®) H. Hopf, Uber die Abbildungen der dreidimensionalen Sphire auwf die
Kugelfiiche, Math., Ann. 104 Die Keantois dieser Arbeit wird fiir das folgende
vorausgesetzt, Kinen neuen Beweis fiir die wesentliche Abbildbarkeit der 8% auf
die S* hat W. Hurewicz gegeben: Beitrdge zur Topologie der Deformatiopen,
Proceed. Amsterdam XXXVIII (,Anwendungen®, 8. 117).
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