216 : A. S. Besicovitch.

Therefore by Lemma 2
c?

mU>4w ™

As U is included in H we conclude from (10) that

m(By X U)>0

which is impossible since by the definition of E; no point of E
can belong to a rectangle of diameter <6 on which mean value
of fi(#,y) is = M. Thus the first of the sets (9) cannot have a po-
sitive measure. Similarly it can be proved that the second of them
is also of measure zero, and in this way the proof of the theorem
" is completed.
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Note on the differentiability of multiple integrals.

By
B. Jessen (Copenhagen),
J. Marcinkiewicz and A. Zygmund (Wilno).

§ 1.

Let f(a;, @y,..., ) = f(P) be an L-integrable function defined
in the cell

) 0<zn<1 a<

We shall say that the integral of the function f is strongly dzf
ferentiable at the point Py, if

o o m f f(Pyap
exists and is finite; here / denotes any cell with sides parallel to
the axes, contained in §, and containing P,; |I| denotes the measure,
and 6(1) the diameter of /. The Limit (1) will be called the strong
derivative of the integral of / at the point 2,.

The following results have recently been established 1).

Theorem A. There is a function f(P)e L such that its integral
is nowhere strongly differentiable.

*) Theorem A was proved by 8. Saks, Théorie de Pintdgrale, Warszawa,
1933, pp. 1—288, esp. p. 232, Fund. Math. 22 (1934), 257—261, and independently
by Busemann and Feller, Fund. Math. 22 (1934), 226—256. Theorem B, for
bounded functions, was proved by Saks, Théorie de Vintégrale, p. 232, Busemann
and Feller, loc. cit. . Riesz, Fund. Math. 22, p. 221—226, and, for functions of
the class L7, p >1, by A. Zygmund, Fund. Math, 23 (1934), 143—149 (see also
Corrigenda at the end of this paper).
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Theorem B. If f(P)els, p > 1, the strong derivatz‘w‘ of the
integral of f(P) exists almost everywhere, and is equal to F(P).

The object of this paper is to generalize and complete the above
results, and to apply the generalizations to the theory of multiple

Fourier series.
Given a function f(P)e L, we write

1 >
@ (k) =Su f fP)lar,
) PyCIL
@) fu(To) =Limsup -7 ,f |[7(P) d.P.

We shall require the following lemmas due to Hardy and
Littlewood!).

- Lemma A. If the function [(z), 0S2<<1, belongs to 17,
p>1, so does the function

@ P = sup f 6|

§1<*<§n ‘gz - §1
and

f{f*(w)}ﬂdx Cf|f V|? dx, where C-~2(p I)p

Lemma B. If fs)log* | f(#)], 0 <z <1
f* (), and

, 18 integrable, so is

1 1
/ @) do < A J |f|log* || da+ B,
where A and B are absolute constants.

§ 2.

We shsll-first consider the case %&==2, and shall write z, y for
%y, #5. The letter S will denote the square

8) <<, 0y<<,

') Acta Muth., b4 (1980), 81—116; seo also Hardy, Littlewood and
P6lya, Inequalities, Cambridge, 1984, p. 291,
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From Lemma A we deduce the following

Theorem 1. If f(P)e I7, p > 1, then f*(P)e L’ and
6 J@yar<a, [iprar,

with A, = G}, where C, is the constant of Lemma A.
We put

©) 9 9= Sup f |fla, )] do
(D h(z, y) -—gf’?@ '§;-—_§— fg(u, y) du.

It will be shown in a moment that g(x,y) is integrable, so that
h(z,y) is finite at almost every point of S. Using Lemma A, we

may write
JQP(PJ(ZP—/ 1o [ 1) dy <

<fdw OJIf(w,z/)l"dy—-Oflf(P [ ap.

Hence g e L?, and therefore
®  [revar<e [pear<c finepar
N S 8§ .

Observing that, if § <z <<§, n, <y <m,, then

& ;p

ﬂ)ff]f(u )| du dv <

s
gm fy(“a y) du<< h(z, !/)7
we obtain that ;

(10) L PPISSK(P),
which, together with (8), completes the proof of (b).

®) & —51
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Theorem B is an easy consequence of Theorem 1 1),
The following theorem econtains Theorem B as a special case,

Theorem 2. If f(P) log* |f(P)| is integrable over the square S,
then, at almost every point P, the integral of f is strongly differentiable
and the derivative is equal to f(P).

7

The proof will be based on the following

Lenmuna C. Under the hypothesis of Theorem 2, the function
[«(P), defined by the equation (3), is integrable, and

)  [h@ar<a [P fP)ar+ 5,

where A and B are the constants of Lemma B.

For, if g(P) is defined by the equation (6), then, by Lemma B,
’ 1

1
f 9@ ) dy < 4 / fi@, )] log* |f(a,y)] dy + B.
Integrating this inequality with respect to a, we obtain
a2 fo®)ar<afifp) g |fP) aP+ B.
§ 5

It follows that, for almost every value of y, g(=, y) is integrable
as a function of x. Since, at almost every point (z,y),

Lim sup 1
bh<xcts Gy —

&
" fg(u, y) du = g(z, y),
&

the first inequality in (9) gives

| f(P)<g(P),
whiel, in view of (12), gives (11).

1) 8ee A, Zygmund, loe, eit,

Theorem 1 can alio be established by the argument which had previously
been uwsed to prove Theorem B (see Zygmund, loe, ¢it.). That argument is
independent of Lemmas 4 and B, and may even be applied to obtain those lemmas.
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Passing to the proof of Theorem 2, we observe, that applying
(11) to the function 4 f, where 4> 0 is a constant, we obtain

a8 [rpyip<a [ife) 05t fP) 2P+

Given an £> 0, we take 1 so large that B/4 <} ¢, and put
f(P)=9(P)+¢(P)

where @ is a continuous function, and

(14) f lw(P)] dP <¢,

(15) 4 flp@) gt 2w(P) aP+ 7 <o

Applying the inequality (13) to the function (P), we obtain
from (15)

fzp*(P) iP <.

This, together with (14), shows that the set Z(¢) of points P
where either |w(P) > }e, or w*(P) > Ve, is of measure < 2)e.
Since

ui;ff(P)df”f(P"):{;f}" fqp(P)dP—tp(Po)}+
I

I

1
+{g fv@rar—ww),
I
where P, ¢ I, we see that, outside the set E (&),

|}—] [r®rar—r )| <wi2)+wiE<2Ve

Lim sup
8 —0

Since the number ¢ may be as small as we please, and the
measure of E(g) tends to 0 with & the theorem follows.

Theorem 8. Under the hypothesis of Theorem 2, the function
f*(P) belongs to L* for every 0 <e <<1.
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For the proof we need the following

Lemma D, If the function f(x) of Lemma A is integrable, the
function [*(x), defined by (4), belongs to every L% 0 <<a<<1, and
satisfies the inequality

(f]{f* (w)}adx)]/a< 4, 1,f(x)| iw,  (0<a<1)

0
where A, depends on « only Y).

From Lemmas B and D, and using the functions g,h, defined
by the equations (6), (7), we obtain

00 [ { [l "y <a, (4 [irencgt |fpyar+ B).

Now, in order to complete the proof of the theorem, it is sufficient
to observe that, by Holder's inequality,

S Srmar<| f { f () da) dy,
- and to épply (10) and (16).

§ 3

Now we shall consider the case of arbitrary k. The reader
will have no difficulty in verifying that Theorem 1 (with 4,=C}),
and so also Theorem B, remains true in the general case. More
interesting is the following result.

Thet.n'em, 4. If |f] (log™ |f])* is integrable over S, the integral
of f(P) is strongly differentiable at almost every point of S 1o the

value f(P).

f[jhe proof is wholly analogous to the proof of Theorem 2,
provided we can establish the following

1? Tl.1i5 lemma, although not stated explicitly by Hardy and Littlewood,
loe, c?t., is a simple consequence of their results; ses e, g A Zygmund, Trigono-
metrical Series, Warszawa, 1985, pp. 1—3881, esp, p, 245,
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Lemma E. Let f(x) be a function defined over the interval
0K, and let f*(x) be given by (4). Then, if |f|- (log™|f]),

cr=1,2,..., is integrable over (0, 1), so is f*.(log® f*y, and

an [ (ogt oy aw< 4, 171 Qog* |fIy do+ B,

where A, and B, depend on r only.

This result is true for every positive » 1), but the special case
just enunciated is sufficient for our purposes. Let

@ () = =z (logt ).

It is wellknown that it is enough to prove the lemma in the
case when the function f(«) is non-negative and non-inereasing ?).
Then, the left-hand side of (17) is equal to

w  folt froa)m= (% fotrorar

by Jensen’s inequality. Since ¢{f(#)} is a non-increasing function
of #, the right-hand side of (18) does not exceed, in view of
Lemma B,

Afoifiogrg{fydot B =

—4 f £-(logtfy-log*{f- (og*f Y "yda+B<Ar [ f-(log*fy dz+B,

0 0

and the lemma is established.
The proof of the following theorem may be left to the reader.

Theorem 5. Under the hypothesis of Theorem 4, the function
f*(P) belongs to L* for every 0 e <l.
If f-(logt|f|) is integrable, so is the function f*.

1) If 0 < ¢ < 1, we must replace logtf* by log (2 + f*).
) Hardy and Littlewood, Joc. ¢cit. Hardy, Littlewood and Pélya,

Inequalities, p. 291.
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§ 4

Let f(P) be an integrable function defined in the k-dimensional
cell S. The fundamental theorem of the Lebesgue theory of integra-
tion asserts that the integral of f is differentiable, in the ordinary
sense, at almost every point Py, and the value of the derivative is
equal to f(F,). By ordinary differentiability we mean the existence
of the limit (1), where, however, the ratios of any two sides of
the cell I containing P, do not exceed a finite number, which may
vary from point to point.

The following result completes Theorem 4 as well as Theorem A,

Theorem 6. Let a,(t), ay(t),.. ap(t) be arbitrary non-decreasing
functions dejined to the right of t==0, vanishing and continuous for
t=0, and positive for t > 0. If the cells I containing the point P,
are of the form

(19) E<<e<<E, & —&i=ual),

then the limit (1) exists and is equal to f(Py) at almost every point P,

i==1,2,.,k

So far as we are aware, this theorem has never been stated
explicitly, although its proof is similar to that of the Lebesgue
theorem mentioned at the beginning of this paragraph. This is not
surprising, since Theorem 6 becomes interesting only in connexion
with Theorem A, which result was obtaived only very recently.

We shall not give the proof of Theorem 6 here, for this would
be a mere repetition of the usual proof of the Lebesgue theorem.
It is sufficient to observe that the Vituli covering lemmsa, which
plays the most fundamental part in the argument, remains valid
for cells I of the form just considered, and the proof is similar 1).
We leave it to the reader to fill in the details of the proof.

') See e. g. the proof in Carathdodory's ,Reells Funktionen®, p, 299 sqq.
The sequence W'(P), W/(P,),... of that proof (L ey p. BO1) may now he
arranged in the descending order of magnitude of the sides parallel to the o -axis,

Once Theorem 6 has been established, it is not difficult to see that it holds
even when the cells I do not contain the point P, provided the ratio |1’|/| 1| does
not exceed a mumber w(P), where I’ is the smallost coll with sides parellel to
the axes, having P, as centre, and containing I,

We add that Theorem 6 is & special case of a more general theorom concerning
the differentiability of functions of hounded variation,
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The following theorem is an intermediate result between The-
orems 4 and 6.

Theorem 7. Let f(P) be a function in the k-dimensional cell S,
and let e, (t), ag(t),..., @.(t) R<<r<Ch), be v functions having the
properties enunciated in 1heorem 6. Suppose that f-(logt|f])" is
integrable over S. Then, at almost every point Py, the limit (1) ewists
and is equal to f(P,), provided the cells I contain the point Py and
are of the form
f<zm<E (=12..,k
(20) v g .
s — & = (%) (J=12..7.

Let us suppose, for example, that k=3, =2, and write #,y,2
for y, y, @, and a(t), B(¢) for a,(t), ay(2). Let fil@,, yy, 2) =
= f«(Py) denote the expression (3), where J is of the form-(20)
(=3, r=2). It is sufficient to show that -

@) [h®ar<a(Ifp)iogt|f(P) aP+ B,

with A4 and B independent of f, for then Theorem 7 may be
obtained by an argument similar to that used in the proof of
Theorem 4. '

Let
cfl

‘ 1
gl )= Sup wr—p ; f |/ (@, y, w)| dw.

Since
1 1 .
[ ot u2) az <4 [1f(o, 2)og* | (&, 9| do + B
0 0
we see that the function ¢ is integrable over S, and
@) [opyap<d [i7P)logtfP)| aP + B
s H

A moment’s consideration shows that

(23) fulzy 9, 2) < gu(, 9, 2),
where
1 rr & E=aft)
=Li 77 7 7] 7 u, 0,2 dudﬂ{ 1 r—
9x(2,9,2) 5}255‘3? E—=m—n)/, 9(w,0,2) 7' —1'=p().
11:<y<’7u £ u

Fandamenta Mathematicae. T. XXV. 15
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By Theorem 6, we have g4 (®, 9, 2) = 9(&, ¥, 2) at almost every
point (z,y, 2), and this, together with the inequalities (23) and (22),
gives (21).

’ § 5.

We shall now prove that Theorem 4 cannot be strengthened.
Let @(f), 0<{t<Coo, be an increasing function satisfying the con-
ditions

(24) p@=0, Liminf 2>,

{—00 ¢
and let L, denote the class of functions f such that @(|f]) is inte-
grable over S.

Theorem 8. If for every [ of Ly, the integral of f is strongly
differentiable almost everywhere, then @(t) > ct (log™ &% for some
constant ¢>0, In other words, f- (log* |f|)f~" is integrable over § 1)

We shall only consider the case k=2, the proof in the general
case being essentially the same.

- Lemma F. Let E be an arbitrary bounded and measurable set,
and let 0,(E), 0 <<a<Cl, denote the sum of all the rectangles I
for which

(25) |B1)> alI].

Then, if the differentiability theorem is true for all functions of
the class Ly, the inequality

: 1\ .
e o @< Op (3 2
is true for all B and all , the constant C being independent of & and E.

The proof is indirect. We suppose that (26) is false, and prove,
on this assumption, the existence of a function f of L, for which
the differentiation theorem is false.

1) This result is due to Saks and to Busemann and Feller, Saks has
shown that, for every function p satisfying the hypothesis of Theorem 8, there is
Jt gk

an integrable function f(x,y)e Ly, such that Lim sup y Suv)dudp ==} o0

Dk e o) Lh ko
Kl Yk
at every point (z,y) (cf. this volume of Fundamenta, p. 285 sqq), The wrgument
of the text ig due to Busemann and Feller.
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Let the numbers C,> 0 be chosen in such a manner that
1

By our assumption, there exists, for every u, a bounded and meas-
urable set Z,, and a number a,, 0 <C @, <C 1, such that

@) 100, (B2 > Cu @ (ai) E,).

We write o, (&,) = H,, and choose, for every n, a sequence of
sets Hy of diameter < 1/, which are homothetic to H,, cover S

-except for a null set, and satisfy the condition

i <2|8|=2Y.

Let £} be the set derived by the same homothetical application by
which H, is carried over in A% From

1
4> () 54
it follows that
I
B> Cup () (B2

1) That this is possible was shown by Busemann and Feller, loc. cit.
p. 232, A somewhat simpler proof is the following. )

We fix #, and write H for H,, Let K be a closed subset of H, such that
|H} < 2| K|, and let I be a square containing K. Let S be divided into a finite
number of gquares I7: of diameter < 1/n, and consider, for each p,, the sets Hr1
and KA derived from H and K by the same homothetical application by which I

is carried over in Im, Writing % = |K][/|I], and S = §—~ I K7', we have
m
clearly |S,|=1—x We now divide S, (except for a null-set) into a finite or
enumerable number of squares and proceed with each of these squares in exactly
the same manner as we proceeded with S, We arrive then at two systems
of sets Hrs and K7, so that, if we write S,= S, — 2 Km, we have |8,|=
P
=(1—x)|S,| = (1 —%)2. Continuing this process, and denoting by H* and K*
the sets Hm Hm, .. and K/, Kps .., respectively, the sets H* will satisfy the
conditions, since already the sets Kk will cover S except for a null-set, J|K#|=1,
&

and | H#| < 2| K*| for each k.
16*
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Now put
fn (l)) = 1/0&”
in the set
sy
&
and '
fu(P)=0

at the remaining points of S, and let

f(P) = Sup f,(P).
Then

@ fererir<y [otnrrar<
<X Xol,)im<
SSRGS

%o s,
|

"

and so f belongs to L, On the other hand, for every , almost
every point P of S lies in at least one of the sets My, and hence
(by the definition of o, (£,) = H,) in a rectangle [, such that
\I, E¥| > @, |L,|; also the diameter of [, tends to 0 as n—» oo,
since I, is contained in Hj and the diameter of Hf is <C1/n.
Since f(P)>=1/a, for P belonging to S, we find

1 1oL, .11
mff(]))dp>\'m‘aunl’ﬁf?m'a;‘%ll;]:l.
In

Supposing that the differentiability theorem holds for f, we
obtain f(P)>1 for almost every point, and so

[otr@yar= o)

which is in contradiction with (28), and 8o proves the lemma.
The proof of Theorem 8 in the cass k==2 is now immediate,
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If for E we take the square (S) 0<Cz<C1, 0Ky <<, then o,(B)
contains the subset

1< e /e, 0<<ry << l/e.
Hence ‘
Fiw 1, 1
“adx
Oa(E)>/ o=l - 1El,
, 1 v
and 80

1.1 1\
al°gz<"‘f’(;)

for all @ Thence @(f) > ¢t logtt, and this is the desired result.
From Theorem 8 we obtain the following

Corollary. Let e(t), 0<t< oo, be any bounded positive
function tending to O as ¢ — oco. Then there is a function f(P) such
that f-(log*|f)* e (f]) is integrable, and yet the differentiation
theorem does not hold for f.

Considering, for simplicity, the case k=2, We obtain from
Theorem 2 and Lemma F the following elementary proposition.

Theorem 9. For any 0 <<a<<1 there is a constant C(a)
such that, with the notation of Lemma F, '

(29) |0 (B)| << Cle) | B

for any bounded and measurable set E. If C(a) is chosen as small as
possible, we have

C(a)

-
<G

0< Lim inf - 2% < Lim sup
a->0 1 | a—0

1
a5

1
%8y

so that élog% is the exact order of C(e) as a—>0.

The inequality (29), without the order result, was proved by
Busemann and Feller (I ¢) and F. Riesz (I ¢.), who on it
based the proof of the differentiatiun theorem for bounded functions.
It is, perhaps, worth while to mention that (29), without the exact
order of C(a), is an immediate consequence of Theorem 1. In fact,
since instead of a given set E we may consider homothetic sets, let


GUEST


230 B. Jessen, J. Marcinkiewioz and A. Zygmund:

us assume that £ and o,(Z) are conbaineri in the square (S) 0<Ca <1
0<Cy<Cl. Let f(P)=1 in K, and f(P)=0 in §— K. Then:ile’
set 0, (H) is precisely the set of points where /*(P)>a. Hence,

from (5) |oo(B)| << 4, 7" |E.

§ 6.

The methods which we used to prove the differentiability of
multiple integrals, can also be applied to the problem of summabilit
of multiple Fourier series. For simplicity we restrict ourselves t:z
the case of double Fourier series. ‘

Let K,(x)220 denote the Fejér kernel. If f(x,y) is a function
of period 27 with respect to each of the variables ,y, the Fejér
means of the Fourier series of f(z,y) are i -

aom
1
(80) am'n(x,y)z—_am’n(w,y;f):::né/ff(u,v) K,,,(w—u)](,,(y-»—v)dudv.
b
Theorem 10. If flogt|f| is integrable, then o,,, (2, ) tends
to f(2,y) at almost every point as m,n — co. A

ZTheorem 11. For every increasing functio
: tion @(t), 0
satysfying the conditions ! PO OSt<es,

(31) 9(0)=0, Liminf-2& o
f=r00 t lOg‘ t

there is a function f(x,y) belonging to Ly, and such that o,, (x,vy)
does not converge almost everywhere 1). m

Theorem 10 could be deduced from Th o
i eorem 2, but
simpler to hase it on the following , but it is much

hlolie');zma' G. Let hix) 0<Sa<<2m, be o function such that
' {,;P | ] is mtjegmble. If ©,(%) =1, (z; h) denote the Fejér sums of
e ozfrzer series of h(), and v*(x) = sup |Tn(x)|, then

-

2
/ @) do << A’ f B log* K] doz 4 B,
'mwhere A’ and B’ are absolute constants o),

+ 1) Thence it is not difficult to ded i
i uce the existence of o [
that opm,, (2, y) diverges almost everywhere,  feton 1(6,2) b
) Hardy and Littlewood, Joc, oit.
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In the case of f(x, y) everywhere continuous, the expression
Oma(®, y; ) tends to f(a,y) as m, n~>oo1). Thence, arguing as in
the proof of Theorem 2, we see that, in order to establish The-
orem 10, it is sufficient to show that

e [ Tw, y)dw dy < 4 ffm log* || d dy + B,

- — Co=—;x —7 -
where A and B are absolute constants, and

0y (@, y) = Lim sup |G (2, )]

Let, for fixed ,
g (%, y) = Sup 7, (; |f)).

Integrating this equa'tion with respect to », applying Lemma G,

* and then integrating with respect to y, we obtain

69 [ [ oty asiy<ems [ [ fimy)losfisg)ddy+-27B.

- =7

From (30) we have

omnles DI < [ Enly— ) 2 )| Ko —

1 FL2
<: [Kuy—ns@vd
-

By the classical result of Lebesgue, the last expression tends
to g(x,y) at almost every point (z,%); thence .

(34) 0.2 y) < 9(, y) almost everywhere,

and (32) follows from (34) and (33). .

The existence of lim 0, ,(«, %) may be deseribed as summability
(G, 1,1). Let Kg(#) be the (C,a) kernel. Replacing the product
K, (x —u) K,(y —v) in (30) by Ko(x — u) Kf(y —v), we obtain
expressions 028 (x,y) which may be called the Ceshro sums of

‘ 1) See, . g., Tonelli, Serie trigonometriche, p. 494
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order.a, . of the Fourier series of f(x,y). Without essential changes,
the argument given. above shows that almost everywhere

O, 4) = [, 9)

as m, n —> co, provided that ¢ > 0, 8> 0. We omit the details of
the proof !). Similarly we can prove that, under the hypothesis of
Theorem 10, the Fourier series of f(x,y) is summable almost every-
where by Abel’s method 2) to the value f(x, y). oo

Passing to the proof of Theorem 11, we observe that, on account
of Theorem 8, there is a function f(z;y) of L,, whose integral is
not differentiable (in the strong sense) at every point of a get B of
positive measure. This function is non negative, and so at almost
every point of X we have

XA|-h? pelet?

f/'(u, v) du do <<

-l -k

{ xebh! pke?
<< Lim —

nineshe G EHY G o) f f 1, 0) du dv,

X Yl

' . 1 ‘
GO flon ) <, Mt o w Ger )

The first inequality in (86) follows from the fact that, for

every ¢ >0, we can find a bounded fanction g(z,z) satisfying the
inequalities ' '

(36) [, y) —e<glw y) < flz,y)

except in a set of measure < ¢, and from the fact that the differentia-
tion theorem holds for bounded functions. " We may of course
suppose that the second inequality of (86) is satisfied everywhere %),
Taking & small enough, and substracting g from f, we obtain a positive

1) The argument is similar to that of the text, if we use a lemma analogous
to Lemma G, the kernel Ky, (%) being replaced by [Km(x)|. The fact that K, (a)
may assume negative values when 0 <C e <C 1, is not essential for the proof,

) A double series 3 Ja,, is said to be summable by Abel's method of
summation if

lim 2 2 gy o, gn
exists for # — 1,01,

?) In view of the Lebesgue theorem mentioned at the boginning of § 4,
the first inequality in (35) is, in fact, an equality, .
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funetion, which we shall again denote by 7, such that in a set E,
of positive measure

xh’ ytE!
1 ¢}
i P S— ) du do > 4 ,
B7) Lim sw W) (k+’ﬂ’>,:,[ ,./ fnsdudo>4u1ey)

where u>0 is an arbitrary, but fixed, constant. From (37) we see
that, for (z,y) belonging to E,, we have

b ytk
(38) Lim SUP Th% [ f(u,0) dudo > yf(xa Y).
X~ p-

Taking into account that K, () is non-negafive, that
|
(39) , K, (x)>Cm for ;x;(;l»,

where C>> 0 is an absolute constant, and putting m=[1/h], n=[1/k],
where the numbers %, k& are those of the inequality (38), we obtain
from (30) and (39) that

1 x+h y+k
(4'0) Gm,n(x;y)>'ﬁ§f ff(ua 'D) Km(u_x) Kn(v_y) dudv>

x—h y-+k

) x+h itk
>01m ff(%”) du dv,
x—h y—k
C, denoting a positive absolute constant. Supposing that the number w

of (38) exceeds 1/0C;, we deduce from (38) and (40) that
(41) Lim sup o,,,(z,y) > /(2. 9)

at almost every point of E;. This shows that, at almost every point
of E;, 6,,(x,y) does not tend to f(z, ). Since, in view of (30),

¥ o
ffs [Om (@, y; [)—fldx dy < 0,,(0,0; F)~>0, (m, n—>00)
where F'(u, v) = f fj f(z~+ u, y+v) — f(2,y)| dr dy is a continuous
—n =7 "
function vanishing at u==0, v==0, the sequence o0, , tends in mean
to f. From this and (41) we deduce that the sequence o,,, diverges
almost everywhere in Z,, and Theorem 11 follows?).

1) It is easy to see that, for the Saks function f(x,y) mentioned in footnote 1)
on p. 226, we have Lir'g’slup Om,n (2, y) = J o0 at every point (x,y).
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We add that the funetion
0¥ (x, y) == %‘ip |G, (2, )]

satisfies theorems analogous to Theorems 1, 2 and 5, The same may
be said of the Abel and (C, &, 8) (&> 0, § > 0) means.

Corrigenda to the paper ,,On the differentiability of multiple integrals«
by A. Zygmund (Fundamenta Mathematicae, vol. 28, p. 148—149).

Prof. Banach kindly called my aitention to the fact that the proof of the
lemma on p. 14 is incomplete, for the argument on p, 146, line 15, is valid in
the case % =1 only. The proof may be completed in various ways, and, in parti-
cular, as follows,

We have to show, that, given any functions h==h(x, y), k ==k (o, y), the expression

w(, v) = f f L@ —w) Luly — v) da dy
s

satisfles an inequality Ip[s] < 4y, where 4, depends on ¢ only. In tho first place,
1

we observe that, given any function g == g(x), the function A(u) =.f‘Lg(u-—-m)dm

belongs to every L9, and the integral of A9(u) over 0 <Cw <1 does not exceed

a constant Bj. This is an analogue, for the one-dimensional space, of the result
which we have to prove; the proof follows by an argument similar to that of
section 4 of the paper. Assuming this, let us consider any of the terms of the
sum 3 {ITW,.. 170,

M_l{‘_l s .} on p, 146, line 9. Supposo first that k<7, e. g. k=1,
1=2. Integrating first with respect to &,,...,®gy Yy,..., ¥, ond then with respect
to %,,%,,%,,Y,, Wo obtain

‘101 1 1
f f duw, dy, w2 (3, y,) / Lty (00 — 20,) oo, f Lok (s — ) dy,.-
L 0

Applying Holder's inequality with the three exponents ¢/(g —2),q, ¢, We see

that the integral does not exceed I *[u ]Bg. If k=1, e. g. k=1==1, the integral

is equal to f f w1 (e, y,) doc, dy, < I ). Collecting the terms, we finally obtain

L) < T (] + 2772 ],
where C, depends on ¢ only. It is plainly sufficient to consider the case when
h(x,y) and k(x, y) bave a positive minimum, Then I,[4] is finite, and so does not

exceed the largest root of the equation £7— Cp(#9~14 #9—2) == 0, This comaplotes
the proof,
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On the strong derivatives of functions of intervals.
By ‘
S. Saks (Warszawa).

Introduction. Given a set of 2p numbers a, (b, a3 <Jby,...
a,<<b, the set of points (z;, #,,..., %,) such that ¢, <z, <Jb; for
i=1, 2,.., p, will be denoted as the interval [a, b;; ay, by a5, b,
of the p-dimensional space R,. If F(I) is an addditive function of
intervals and I, an interval in R, then V (#7;1,) will denote the total
(absolute) variation of F over I,. If F(I) is a function of
intervals of bounded variation then it may be extended as a com-
pletely addditive function of sets to the family of all sets measu-
rable 1) (B); accordingly, in this case, V(F; A) for any set 4 mea-
surable (B) will mean the total variation of Fover 4.

If (2,, 2y5..., %,) is a point in the space i, and F(I) a function
of intervals, then the lower and upper limits of the quotient
F(I)/meas I, where I is an arbitrary interval containing (%1, Zay.) %)
and d(Z)—>0, will be called the lower and upper strong
derivates of F(I) at the point (2, %,...,%,), and denoted by
F*(x,, 24,..., ,) and F*(z,, xy,..., x,) respectively. In the case
when they are equal we shall write F* (2, #;,..., #,) for their
common value, that will be called the strong derivative?)
of F(I) at the point considered. F’(x, @,,..., %,) will as usually
denote the derivative of F(Z) in the ordinary sense. In the case

1) See for instance de 1a Vallée-P oussin, Intégrales de Lebesgue, Fonctions
d'ensemble, Classes de Baire, 2° 4., Paris (1934), pp. 88-—-95 Saks, Théorie
de Vintégrale, Warszawa (1933), p. 250

3) Bome problems concerning the strong derivation of additive functions of
intervals have been recently discussed in a series of papers published in these
Fundamenta; see the list at the end of this note.
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