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As we have already noted in Theorem 1 of C.P. B, a compact
continuum which cuts Z, is the common boundary of two domains .D
and H. If for every & > 0 there exist s-transformations of C into
subsets of both D and H that do not meet ), we shall say, for

brevity, that C is two-way free. Concerning such continua we

may state:

Theorem 4a., In E, where n is odd and > 1, let C be
a compact continuum which cuts ,, is two-way free, and is locally
i~conmected for 0 i < (n—3)/2 (=j). Then if p™*(C) is finite,
Cisagoec (n—1)»m

Theorem 4b, In K, where n is even and >2, lt C be
a compact continuum which cuts ,, is two-way free, and is locally
i-connected for 0 =i (n— 2)/2. Then C is a g.c. (n— 1)-m.

Theorems 4a and 4b are proved by proceeding, as in the proof
of Theorem 1, to obtain local connectedness properties of both the
complementary domains, and by applying the results stated in the
reference given in footnote **).

In O. B. P. it was shown 17) that for » =2, 8, a compact conti-
nuum which cuts Z, and is continuously deformable without meeting
*itself is a closed (» — 1)-manifold. This result is contained in the
following theorem :

Theorem 5. In E,, a compact continuum which cuts £, and is
continuously deformable without meeting itself is a g.c. (n— 1)}-m.

Proof. Denoting the continuum by C, and the complementary
domains of which it is the common boundary (Theorem 1, C. P. B.)
by D and H, we may suppose the deformation of C to take place
in H If D is not uniformly locally i-connected for an ¢ such that
0=i=n—2, there exist an >0, a point 4 of C, and a sequence
of i-cycles y; of D whose diameters converge to zero and have the
point 4 as topological limit, and each of which links C in S(4, &).
By practically the same argument as given for the case i==0 in
the fourth and fifth paragraphs of the proof of Theorem b in C. P. B,,
we may show a contradiction, The theorem then follows from
Principal Theorem C of G. C. M,

11y P, 165, Corollary, and Theorem 7.
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The theorem proved in this note gives an answer to a problem
put forward by S. Saks*).

Denote by »(u, v) a rectangle (and its area) with sides parallel
to the coordinate axes and containing the point (4, v). Given a fune-
tion f(#, ) summable in a domain D denote by D,,, ff f(z,y)de dy,
. the upper limit, the lower limit and the limit
(if it exists) of the ratio

- 4'”.‘ f/f (w,y)dudy, as dr(u, )
)

r(u,v)
where dr(u, v) is the diameter of r(u, v). ‘
It is well known that for a bounded function f(x, y)

Dy, f f Fw, y) dw dy

exists and is equal to f(u,v) at almost all points of the domain,
In the case of an unbounded function this is true only with an
additional cendition that the ratio of the larger side of r (4, v) to
the smaller side remains bounded. If this restriction is not 1mposed
then the inequality

D,,,fff @, ¥) dmdy>l),,_ fffx,y dmdy

may hold on a set of positive measure. Saks' problem’ is: May both
terms of this inequality be /i’mte on a set of positive measure?

1) 8. Saks. Remark on the difer d”ilabihtj o/' tha Labasyue mdaﬂmta mtagral
Fund, Math, T, XXII, pp. 267261,

Fundaments Mathematicne. T, XXV, 14
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210 A. S. Besicovitch:

To solve this problem I must first prove two lemmas.

Lemma 1. A function f(x, ), summable in a rectangle R (whose
area is denoted also by R) with sides parallel to the coordinate axes,
satisfies one of the two conditions,

cither fle,y) =0, or |flz,y)| >4
and

f f(m,y)dxdy:BR
R

where A>>B>>0. Then there exists a set of non-overlapping rectangles

‘ . B
with sides parallel to the coordinate awes, of total area g}f R,
in each of which the mean value of f(z,y) is equal to A.

Introduce the operation O == O(R) on the rectangle I, in the
following way. Divide the larger side of E (or any side in the case

when R is a square) into equal parts of length =>__.l and <-12— of

the smaller side and through the points of division draw lines pa-
rallel to the smaller side, If the mean value of f(x, y) on each of
the partial rectangles is <CA then the operation O is finished. If, on
the other hand, the mean value of f(z,y) on some of the partial
rectangles is = 4, then we spread the sides of such rectangles pa-
rallel to the smaller side of B until all these rectangles are included
in rectangles R, on each of which the mean value of f(x,y) is
equal to A. Rectangles B, are defined so that none of them can
be enlarged. Denote by R; the aggregate of the partial rectangles
of R or of the parts of these rectangles which do not belong to [y
go that R = R, -+ R;. The formation of the sets B, and R; is the
operation O in the general case. Obviously the mean value of f(z,y)
on each of the rectangles of By is <CA4.

Applying now the operation O to each rectangle of Rj we shall
again arrive at two aggregates R,, R, of rectangles such that
Ri=R, + R; and that mean value of f(x,y) on each rectangle
of R, is equal to 4 and on each rectangle of B, is <CA. Applying
the operation O on each rectangle of R; and so on, we shall arrive
at the set U= R, + R, -+ By +... of non-overlapping rectangles
on each of which the mean value of f(z,y) is equal to 4. Consider
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now rectangles »(u, v) for which the ratio of the smaller side to

. 1
the larger is > i At almost all points of B

. 1
1) llmm—)fff(x,y)dwdyr-f(u,v), as dr(u,v)~>0,

rm,y)

Any such point for which f(z, y) > 0, and Jortiori > A, belongs
to U. For otherwise it must belong to each of the sets ],1? R;

and cm;sequently it must belong to a sequence of rectangleshr(: v)
decreasing to zero, on each of which the mean value of S, y)’ is:

< A4, i e
1
mfff(x,y)dxd!/<4,

(u,v)
which is impossible by (1).
Thus at almost all points of R — 17

=
and cOnsequently f(z'l 3/) = 0,

. //f(w,y)dmdygBR

On the other hand, the mean value of Sl o
i n an t
is equal to A. Consequently ' Y) y rectangle of U

f f(x,y)dxdy=A-mU
U
. B
L e. >
m U=4.R,

which proves the lemma.

Lemma 2. For a plane set U and a set G=3r of rectangles r

with sides parallel to the coordinate ames the Sollowing condition is
satisfied :

the mean density of U on every rectangle r is greater than a, 4. e,

m(UXr)>a-mr;
then
@) mU>ﬁga’-mG.

14*
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212 A. S. Besicovitch:

We write G= @, + G|, where G, is the set of those rectangles
of G, in which the vertical side is greater than, or equal to, the
horizontal side. One of the two inequalities

, 1
mG,_>_.=%mG, mGlgrz-mG

is troe. Suppose it is the first one
1 Y,
(3) ' m = 5 m G.

For every rectangle of Gy define the integer by the condition

d d

where ¢ and d (¢ < d) are the sides of the rectangle; divide the
side d into n equal parts and correspondingly divide the rectangle
into # equal rectangles by lines parallel to the side ¢ through the
points of division of d. It is easy to see that the ratio of the larger
side to the smaller side in every partial rectangle is < 2. Take
a positive number § <C &. Define a lower bound for the number %
of partial rectangles on each of which the mean density of U is > §.
We have obviously

| k(v — B p=na

] ' a—f
>t
i e. kml,—-ﬂn
Putting ‘3=;13-a we shall have
1o
)} Icg———?—————n>lan.
1 2
1.""'5'“

Thus the total sum of vertical sides of the partial rectangles on
yvhich the mean density of U is >~;—a, is > % ad. ,

Denote by G, the set of all the partial rectangles with the mean
density of U greater than l—a corresponding to all rectangles of G,

2 ‘
and define m G;. Denote by I, 4; the intersection of the line x==§
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respectively with the sets &; and @, and let a,b be the extreme
values of z for the set G so that

I} b
6) m Gy =fl,,dx, m G, =f].,,dx.

Obviously there exists a set of rectangles of G; covering the
set 7, and such that no three of them have points in common *). Then
we can choose a subset of non-overlapping ones whose intersection

. . 1 . .
with 7, is _g§ l,, i. e. the sum of vertical sides of the reetangles

of the subset is g%lx, and consequently we conclude from (5) that
the sum of the vertical sides of the rectangles of @, corresponding

to the rectangles of the subset is >21~al,,, i e
1
lx > Z o lx;
and consequently by (6) and (3)

) mG2>—i—amGl>%amG.

Take now any rectangle A BCD for which the ratio of the
larger side to the smaller is <2 and let A’ B'C’ D’ be a similar
rectangle with the same centre, and with sides parallel to those of
ABCD and b times greater than these. It is easy to see that no
rectangle with sides parallel to those of 4 BCD and of area less
than, or equal to, that of ABCD and with the same condition
about the ratio of its sides, can have points in common with A BCD
and at the same time with the exterior of 4’ B'C'D’. From this
remark it follows by the well known Vitali argument that the set G,
has a subset Gy of non-overlapping rectangles such that

1
® : : mG8>§EmG2.

1) We can clearly suppose that the set G of rectangles is finite,
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We write now
mUZm(UX Gy) > m Gy
and by (8), (1)
m U > 1116 atm @,
which proves the lemma.

Theorem. For any summable function f(x,y) in a domain A
there are at almost all points of the domain four possibilities with
respect to the differentiation of ff f (=, y) du dy

@ D, / f flo,y) dody eists

@) Dy [ [F9)dady=-+oo, D,, [ [ fio,y)asdy =fuv)
@) Duy [ [fen)dwdy=fum), D, [ [y dsay=—oo
@) By [fem)dndy——+co, Dy, [ [fas)dedy=—co

From the fact that at almost all points

.1
hmm fff(w, y) dw dy = f (u, v)
r(t,v)
as dr (4, v)— 0 under the condition that the ratio of the larger side

to the smaller one remains bounded, it follows that at almost all
points of A

ﬁu,vfffdmdygf(u,v)g_D_u,ufffdwdy7

and thus the theorem will be proved if we prove that each of the
two sets

O B(f0) <Dy < ool Bl o< Dy < flty )

Is of measure zero. Suppose that this is not true and let the first
of these sets have a positive measure. Then there exist positive
numbers ¢, M and N> 2 M such that the set

E1=E{f(u?v)+c<B,&,v<f(“,?))+ﬂ’[
—N<fwr)<+N }
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also has a positive measure. Write now
S@y) =1y +fil= y),
VACY) =](;(w, ) i [fEyl>N

otherwise.

where

Thus f, (z,y) =0 at all points of Z,.
Now at almost all points

D,, f ff(w, y)dzdy=D,, f f Sa(®,y) dedy + fi(u,0).
Consequently at almost all points of &, ’

B, [ [F @9 dvdy=D., [ [y dndy+ fw o)
Denote the set of these points by E,. We have
c<E,,‘,,/ffldxdy<M.

fi=0

Given & positive number J denote by Z; the subset of the points
(u, v) of E, at which

mBE,=mE,, E,—£FE

v

Si(w, y) dedy < M-mr(u,v)
r{(u, v’
if only dr(u, v)< 4. Taking 0 small enough we shall have m E;>0.
Include now. the set E; in an open set H such that

(10) mH—m Ey < Es.

1 o
1664 2% "
BEach point (u, v) of B; can be included in a rectangle »(u, v)(C H
of diameter < J and on which the mean value of f; (% %) is >e¢.
(It will, of course, be < M). Denote the set of points formed by
all these rectangles by G. By Lemma 1 on each rectangle of @
we can construct a set of non-overlapping rectangles with mean

value of f (x,y) equal to 2M and of total area > §Eﬂ times the

area of the rectangle. Denote by U the set formed by all such
rectangles corresponding to all rectangles of G. We have

the mean density of U on every rectangle of G is > —2%1
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Therefore by Lemma 2
c?

mU>4w ™

As U is included in H we conclude from (10) that

m(By X U)>0

which is impossible since by the definition of E; no point of E
can belong to a rectangle of diameter <6 on which mean value
of fi(#,y) is = M. Thus the first of the sets (9) cannot have a po-
sitive measure. Similarly it can be proved that the second of them
is also of measure zero, and in this way the proof of the theorem
" is completed.
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Note on the differentiability of multiple integrals.

By
B. Jessen (Copenhagen),
J. Marcinkiewicz and A. Zygmund (Wilno).

§ 1.

Let f(a;, @y,..., ) = f(P) be an L-integrable function defined
in the cell

) 0<zn<1 a<

We shall say that the integral of the function f is strongly dzf
ferentiable at the point Py, if

o o m f f(Pyap
exists and is finite; here / denotes any cell with sides parallel to
the axes, contained in §, and containing P,; |I| denotes the measure,
and 6(1) the diameter of /. The Limit (1) will be called the strong
derivative of the integral of / at the point 2,.

The following results have recently been established 1).

Theorem A. There is a function f(P)e L such that its integral
is nowhere strongly differentiable.

*) Theorem A was proved by 8. Saks, Théorie de Pintdgrale, Warszawa,
1933, pp. 1—288, esp. p. 232, Fund. Math. 22 (1934), 257—261, and independently
by Busemann and Feller, Fund. Math. 22 (1934), 226—256. Theorem B, for
bounded functions, was proved by Saks, Théorie de Vintégrale, p. 232, Busemann
and Feller, loc. cit. . Riesz, Fund. Math. 22, p. 221—226, and, for functions of
the class L7, p >1, by A. Zygmund, Fund. Math, 23 (1934), 143—149 (see also
Corrigenda at the end of this paper).
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