Memoir on the Analytical Operations
and Projective Sets (II).

By

Leonidas Kantorovitch and Eugen Livenson (Leningrad),

CHAPTER II,
Generalised Souslin’s Operations.
§ 1. Definition and Immediate Consequences.

29. We have studied in the preceding chapter the properties
of the ds-operations of Mr. Hausdorff, which are, as we have
seen, the most general positive analytical operations effected upon
a countable infinity of sets. There are however certain particalar
classes of these operations which present a special interest. Such
are, for instance, the generalived Souslin’s operations which are de-
fined as follows:

Definition 181). Let
{E‘n,,n,,...,m} (b ==1, 2., n=1, 2,..)

be a system of sets depending of corteges (m, ny.., 7),
Naset of irrational numbers, W~ N the correspon-
ding set of sequences of positive integers. Then

(29,1) QN({Enh"n--vnk}) = 2' _”-E”h”zr"? Ty
(11, Mgy ) M T

The corresponding operation upon classes (see def. 4) we shall
denote Sy, 1. e

1) Cp. Sierpixiski VI. (List of Literature, K'und. Math. 18, p. 218),
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Sy(¥) is the class of all the sets of the form

Oy ({E"u Ngyeesy ”k})
where all the

Enl,n,,...,n,, € o,

Remark, In case N=J (i. e. if # ~ N is the set of all the
sequences of natural numbers) the operation 2, becomes the well-
known operation (4) of Mr. Souslin

2 ”E"n”zr-v M

(1, 09....) E

By Theorem I Cor. (Art. 6) the operation Qy is equivalent with
a ds-operation @y,. We shall prove now that we can suppose N’
homeomorphic to N.

Theorem XIX. Let all the corteges (ny, gy, W) be enumerate@
and let v(ny, Ny, ny) be the natural number corresponding to (ny, Mgy, 7).
Then there exists such N’ homeomorphic to N that

‘(29: 2) 'QN({En,,n,,..., nk}) = QjN, ({Enl, Pyyenny nk})-

"}("’la nﬁ)"‘a My,

Proof. Let | "
}n +[722+”'EJ
Denote [ L
1
¢P§ l"’( +l”(”u "x)+“' ’

Then N’=g@N is evidently homeomorphic to N and satisfies
{29, 2).
Corollary. For any & we have
S (9) = St (56).

30. Here are some simple properties of £,-funetions.
1. For any N and &% we have

(30,1) I () C Sy (). ,
Let, in fact, H ¢ Hy(¥). Then H= Oy{E,}); E,¢ .
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Denoting E:,,ng,‘.., n, = Ly, we have
H = On({Eny ) € Sy(P) g @
(80,2) 2. 'Qz:Ng({Enl,n,,...,n,,}) == ZQNg({Enl,nz,...,m})
N &
(30, 3) | QN({Enun,,...,nk' P }) = -QN({En,,ng,...,n,,}) - P
(80,4) QN({Enl,nz,...,nk’l‘ P}) = 'QN({E"n%gy---,m}) ~+ P
(30,5) Qn(En, Mgy tty X L )= QN({En,,ng,...,n,)) X P

(30,6) 3. 2 QNI({E:EI,WE,..., n,,})z ‘QN({H"l:"zr-u"k})
' i

where
—
Hgi— (2n,—1), g gy My, = Enl,n,,...,n,,

and N is the set of all the numbers

1 |, 1], 1]
B = T T T
such that
1], 1]
e Mo

The proof is immediate.
On the contrary in general there is no theorem analogical to
Th, VI (see Art. 34 below).

4. Definition 10bis. The scheme for {Bny ngyynyt 18 de-
fined by the formula

(30,7) S({Enl,n,,..., n,‘}) =” 2 Enl,u,,..., fy X 6n,,n,,..., Ny

k TR TR

Theorem V bis,
(30,8) QN({Enl,n,,...,m}) = Pre(8 ({Enl,ng,.‘,,m}) “ (B X N)).

This theorem is analogical to Theorem V (Art. 9) and the proof
is the same.

31. We shall give here some definitions that will be needed later on,
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Definition 19. A class &% of sets is a declass if it pos-
sesses the following two properties:
1) ZEGJ[. It is evidently the greatest set in o
Eed .
2) If Aedr and Bed then ABeox
The family of all the d-classes we shall denote [d].

Definition 20. A class o of sets is an s-class if it pos-
sesses the following properties:

1) ”Eec%'. (In all important cases ”E:O)

Eedt Eedfl
2) If Aes¥ and Bed then A+ Bedr,

The family of all the s-classes we shall denote [s].

Definition 21. A class % of sets is a ring if it is a d-
class and an s-class simultaneously?y).

The family of all the rings we shall denote [7]

(. e. [r]==[s] - [d]).

Evidently if a class o of subsets of R is an s-class then &,
(see notations) is a d-class and vice-versa.

* Definition 22. Two systems of sets {En”ng,_‘_’nk} and
{En,,ny,...,m} 2T € equivalent if for any N

Cn{EBn, ..., ne}) = QN({E;&,, Ty M)

Definition 23. A system {Enung,---,m} is reqular if we have
always (whatever be n, n,,.., n, yyy)

Enl,ng,...,nk, nk_l_l C Eﬂl,ﬂ,,..., Hy*

If Jeld] then every system {EBny,m,,...ng Of sets belonging to I
may be substituted by an equivalent regular system {Bnyy,..ym) of
scts belonging to S It is sufficient to suppose Enny,..n, =

k

E
=0 gy

) Cp. Hausdorff, p. 77,
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§ 2. Equivalence and Inclusion Theorems.

32. Theorem XX. In order that for every d-class I we should
have.

Sy () C Su(9)
it is mecessary and sufficient that N be a continuous image of M:
‘N= oM.
Proof A. Sufficiency. Let N=¢M and let ¢ denote the
inverse function® (see Art. 21 and formula (21, 2a—d)). Denote "

(32,1) Aty gty = W Oty gy NYCH

We shall now construct a system of open (in J) sets hy, n, .,m
so that o

(82,2) 1) hnyng,gne M= 2n; 0y 00my

(32,3) 2) Jongnyig, mggs C Bty

(82,4) 3) Py, gy gy 1" Py gy gy =0 i 1 Fn
Observe first, of all tha

32,2 1) ﬂ"nn”m---y”k is open and closed in M simultaneously

(82,3) 2) Ang ey C Ay

(32,4) 3) an,n,,‘...,n,,_l,nk'ln,,n,,...,nk_l,n;=0 if m=f

Denote for any @ e An,,n,,...,m,

(32,5) o =}olw, M— '%nl,ng,..., ny >0

(because Ay, n, is open in M)
8 = (@ — o, 5+ of)

‘ — (k)
h“u”h---,"k = E Sz
(32, 6) Mﬂ'n,,nﬂ,..,,n,,

lemk

’
hnl,n,,...,n,, m”hnl,n,,..., "

Lol
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The sets ky, n, . n, satisfy all our conditions. In fact (32,2) and

(32,3) are evidently satisfiied. (32,4) is also satisfied: for suppose
the contrary i. e. that for certain {n} '

’ 4
hnl,ng,..., My gy My ” hnl 3 Mgyereg Mgy, My F0 (g :f: )
Then take £ ¢ AT A P gy gy, mi- There exist such

xel < / ’
€Ay nyyty_ym, B0 T 6'1"'1;"2;---;”1&4,”1&

that
Ee SP.S8¥
whence (by 32,5 and 32,6)
o(m &) <polw, M— }vn,,ng,...,nk_l, ny) Sk O(%, 2')
o, §) <o, M—"%n,,ny...,nk,_l, )
Hence follows
o) <<o &)+ o6 v) <ho(m o) +iol, o)

which is impossible. This contradiction proves that (32, 4) is satisfied.
Let now Pe Sy() 1. e.

ol o).

(32,7) P= QN({E721,712,..., nthi Enl,ng,...,nk € .
We may suppose moreover that
(32,8) Loy gy iy Mgy C By gy

(% being a d-class; see Art. 31, end). '
% has the greatest element (set) Z (Art. 31, def. 19).
We shall now define a system of sets {Hml’mz,___’m[} as follows:
1) If dmhmm___, m, 18 not contained in any hn, tyy..,m, then

2) If dm“mz’__'?mi is contained in a finite number of A’s viz.

5m1, Mgy m, o - hnl, Ny * hnl,ng,..., T

sy gy = Py Byyery iy, j 47 0 for any j
then

.
Hm],m,,..., m; = B ny. n,

3) If Omy,my,..,m; is contained in an infinity of A's iz


Yakuza


60 . L. Kaﬁtorovitch and E. Livenson:

. .1
51141,m2,...,m,chn1 hog,mg* ... )
then

Hml,m,, 5”7’1 Lnl,ng, ,n,
Evidently in all cases Hp, my,..,m, €. If we now prove that
P= QM({Hmz,m,,...,m,}) =0

then the inclusion Sy(d¥) C Sy(d%) shall be demonstrated.
a) PC Q. Let
e QN({En,,nﬂ,...,n,,})-

Then there exists such
__1]

—

rE”L“H”ﬁ) o My
Let zewy (wK is non vacuous for any K N)
~ i+

Then (for any i and k)

+ | n2 e
that

2e€ dm‘,), my,...,m? * 171‘1’, Mpeeey MY C ‘sm‘l’, Myerey MG * hnf, Nyoesy Mg
and consequently (comsidering 82,4) we can have
| Omd, m3,...,m3 C by, Ty My
only if n, =n}; n, = n;..; m,=n}. Hence in all 3 cases -

0 0 0
Te Hm,,mz,..,,m,

o I Bty C OulBimy )
i

%) Evidently (by 82,8 and 382,4) if Oy, mgyrym;C Py gm0

, ; L o M — . e Ly
Oy gy ity C o oy miyy (B ) then sy oy == g0y M =1y,
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B8) QC P Let
x € Qy (Hm,, my,..,m))3

then there exists such

that
(32,9) xeﬂHm‘l’, MHerny MY
let l
1
Ppr=y= l"‘ ..€N.

Then for any k: ze i, ..., g and consequently (hn‘l’,ng,...,n,‘l being
open) there exists such j that

(32,10) ' 51»‘1’, Gy C ol ..., nl-

But then (by the definition of Hp,, m,,..,m) we have (see 32,8;
32,9)

0 0 0 = F,0 0 0,0 0 0 0 0
re Hm,, Myeeey My Enl, Ngerny Mgy My 13000y Wi C En,,na,...,nk
Al
Ze ” B 1,...,n C ‘QN({Enl,n,,...,nk}) q. e d.
&

33. B. Necessity. Let M/ and N be two sets of irrational
numbers such that for any d-class o of sets

Sy (%) C Su ().
Denote o, the class consisting of:

1) The whole interval (0, 1) which we shall denote &
2) The vacuous set 0

3) All the sets 6:1“,32’_"’,% (see notations, Group C).

Evidently o is a d-class; therefore
N = On{0n,,ny,...,n}) ) € Sn(I) C Su (%)

1) This follows i diately from the definitions of 2y and
) 0 s immediately fro efinitions of 2y 6;1,1,”2,.__7”‘,
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or
(33,1) N= QM({Hml, Mgyuy m,})S Hy,, Mayyey Wy € .
Let
1 1
PRI
Denote wy the set of all sueh points
o1,
|ml+ |me +

that
ye”Hml,m,,..‘, my
I

(this set is not vacuous for y ¢ N= Q2 ({(Hm,, mq,.., m))
Denote now ¢y N=2»M, (v K denotes i Py).
Ye

We shall prove that M, is closed in M.

In fact let
I i _
(83,2) 7=y T, e M
then
(38,3) Hm1 'Hmlamn =0

because if this set contained a point y we should have xewy(C M,
in contradiction with (33, 2).
Every non vacuous set Hy, m,..., m, is of the form

s
H === Ol sl i
Mgy Mg guusy MYy dn],nz,...,n,”

(=1 2,.; bs=0, 1, 2,..; if k;=0 then Hp  m, . m,~=0=(0,1)
(88, 3) implies that eitheir
1) There exists such i that Hmbmm‘__,ml =0
or
2) There exists such natural 4, j, I (6> 43 1 <<ks I<Ck;) that
nt = 0.

In both cases (as one may easily see) we have

M-y g, C M — M,

icm

Analytical Operations and Projective Sets 63

Thus the set M — M, is open in M and consequently Jf; is
closed in M.

We shall prove now the following two properties of

DYy-vy.=0; (nFun)
2) if K is open in N then y X is open in M

(3334) 1)‘. Yoy =0 y =y
Let

11 1]
| |
=—+—+..€
,m1 + 'mz -+ Y
then y, ¢ II Hup,,m,,.,m; and we have as above
—
Hml. Myyors, My == 6n1,n,,..., .

We can prove that the numbers %, are not limited for other-
wise they would have the greatest among them (denote it k,) and
we should have

/ —
6n1, — -—” Hpy,, Mg yury By CN
‘

which is impossible, because N contains no rational numbers.
* Now it is evident that

1 I

h= +

J”l

”Hmn Mg gouey My = (1)
]

and thus can not contain y, so that znoneyy, q. e d.

and that

2) If a set K is open in N then ¢ K is open in M.
Let K be open in N and let

1], 1]
Iml ¥ [y T
' Then it follows from what just preceded that

M Bryym=)C K
i
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from which follows easily that there exists such i, that

N- Hm” Mgy My CK.
Let

/\I .
@ Ed'”vmz:---,mz,, M,

we shall prove our proposition if we show that 2’ ¢ K.
In fact let
1]

I3
my

x =r—~,+l~ +...

We have then m, =my; my =m;;...; m, =m, further

T Eonimiymiy= @) C N
z
but evidently

(%) =”Hm§, gy my C N« Hol oy o, C K
!

or y' ¢ K whence
2Zepy CywkK

It follows that if K is closed in N then ¢ K is closed in M,,
In fact N— K is open in N, therefore ¢(N — K) is open in M,
But it follows from (33,4) that ¢(N-— K)= M, — ¢ K whence
YK is closed in M.

We shall denote y = pu if x e qpy.

By (33,4) to every ¢ M, corresponds one and only one point
Y=oz

Besides ¢ is continuous in M;. For let

q. e d.

gy =limz, (z,eM;i=01,2,..).

We must prove that ¢, = lim ¢ z,.

Suppose the contrary. Then we can find a neighbourhood ¥V of
@, and a subsequence {pz,} of {pa} such that V contains none
of the points @, [i==1,2,...]. But then (N V) is an open in
M, set which contains z, but none of the points z,,. This is in
contradietion with our assumption that u, = lim ;. Therefore our
supposition that

P, % lim g
is false q. e. d.

icm
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Therefore ¢ is a continuous function defined in M, and having N'
for its set of values. '
~ But we can now apply a lemma due to Sierpifiski?), which
states that if @ is a continuous transformation of a set M, closed
in M C J into another set N then there exists a continuous in M
function @* which coincides in M, with ¢ and is besides such that

9*M=N
i. e. N is a continuous image of M. q. e. d.

34. Corrolary. In order that two Q-operations Qy and Q, be
r-equivalent with resp. to [d] (i. e. in order that for any Jfe[d] we
had Sy(f) = Sy(); see def. 6 bis and 19) it is necessary and

sufficient that each of the sets N and M be a continuous image of

the other or, using a notion introduced by Sierpinski?), that M and
N be of the same type (c).
This implies some interesting consequences. First of all there

is a countable infinity of types (¢) of countable closed sets and

consequently there is a countable infinity of noun equivalent Q-fune-

‘tions having for their base a countable closed sets. These types we shall
-call for the moment ,inferior types“ and the corresponding 2-func-

tions — ,inferior functions“. Outside these inferior types there are

-only. five types (¢) of (4)-sets of irrational numbers?), These are:

1) the type of a countable non-closed set, 2) the type of a perfect

set, 3) the type of a sum of two sets belonging to preceding types,
-4) the type of an & not belonging to 3), 5) the type of J. Conse-

quently there exist five Sy(d%) classes (J'e[d]) whose bases are
{d4)-set viz.: :
1), 2) My B) T 4) gy B) A

where the meaning of d, o and s see in notations group B; ;..
‘means the class of all the sets of the form A4 -4 B where ‘4 ¢ %,

and Bed; A(%) is the class of all the results of operation A

effected upon. sets belonging to %
As is easily seen, for rings these five Q-functions and all the
inferior Q2-functions are reduced to three, viz.: Jf;, ¥, and A(%).

1) W, Sierpiniski, Fund, Math, t. XX, p. 118.
%) Fund. Math, t. XXV, p. 34b.

‘Fnndamenta Mathematicas. T. XX. - b
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These are the only Sy(J¥)-clusses whose base is an (4)-set. If we
now remember that

N= 'QN({dnnn!r") "lz}) = QN {dnhn‘h“'a ?1«,,}) = QN({?V"bnm"'v ”/c})

we can say that: If o is a Borelian class (& 8, &, 9; ete) in J
or in I then the only Borelian classes that can be represented in
the form Sy() are %, and J,, (e. g. if J =& then they are &
and &, if H'=9 they are §; and §,,). So e. g &, is not an
Sn(F)-class though &, is one, and &y is an Sy(&,) class. This shows
that there exists no theorem corresponding to Theorem VI (i e.
Sy (Sne(%)) is not always an Sy (o).

3b. Theorem XXI. I order that for every ring 9 be Sy(9)(C
C Su(Ir) it is necessary and sufficient that N be a continuous image
of M X A

Proof. A, Sufficiency. Let
N=¢(M X 4).
Denote 3, the set of all sueh points
Ay 1, 1), 1]
. T+, T T, T
that
1), 1
) I'r”/ +Im + M
2) my<? [i=1,2,..]
then evidently J, is homeomorphic to M X 4 (to any point
1
e
of M, we may correlate the point

( |+|1"‘|— O,Mzé,mi,...)eﬂ[xd where my =my, — 1)

m,

and therefore N is a continuous image of M,.
It follows from Theorem XX that

Sw(9) C S ()
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for any e [d]. We have only to prove that for any e lr]:
(86,1) Sie(H) C ().

(Remark. It is evident that S, (%) Sy,(*) so that we shall
have Sy, () = Sy (%))
Let Pe Sy, (%) i e.

P = ‘QMn({Eml, Myyeny m,}) 1)1 Em” .y My €H.
Denote

2 2
2 2 Eml,m,,._., My — Hml,m,_,...,m,,__l-

my=1 my,=1

This set being the finite sum of sets belonging to (¢ e[r])
belongs to o itself. Let now

0= 'QM ({le’f’z;-"v.pi})'
Evidently Q ¢ Sy (); we shall prove that Q — P,
@) Q D P. Let x¢P then there exists such o i I f e M,
that « € I Em‘i’ mg mo-
; 3 Mgy My
We have by the definition of 17,.

1]

}m,+!m‘!+'“eM; my <2 for any k.

Hence

“IIZ ZEm,,mZ m,.. )mm‘—‘_”Hmlzm?n amzt_1CQ q. e d.

i my=1 my=1
1|

|P eM

B) QCP. Let xeQ then there exists such F !-{-—

that xe Hp) 9 ., po for any <.
Consequently for any i there exists such a cortege of rang ¢

(7{’ 1‘;,-.-, Tﬁ); Yi“—"l, 2

regular (see def, 23 Art, 31).
B*

1) We shall suppose the system {Emnmz,---ymi}
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that
(85,2) we Bpg rh o, rhyytyrt C Bt opbirty (SO

We can now apply the following lemma due to Denes Konig®),
If we have a set S of corteges (ry, 7y,., 7:) possessing the following
three properties:

1) there exists such sequence of natural numbers 7, 7y .. that
for any cortege (ry, 7., 74) € S we have r, < =,

2) if (ry, 7yyeyr)e S then all its segments also belong to S:
(ry, Tayoy 7)€ S for any & <4,

3) the rang of the corteges belonging to S is not limited;

then there exists a sequence #{, 73,..., such that all its segments
belong to S: (1), 74,., #{) ¢ § for any i,

Denote now S the set of all the corteges (r{, 74,., 7%) (see above).

This set S evidently satisfies all the conditions of the lemma
(the sequence 7y, ... demanded by condition 1) being 2, 2, 2,..).
Therefore its conclusion must be also true, i.e. there exists such
sequence 7¢, rJ,.. that whatever be i’ we may find such iZ>i" that

| R Y (| Sy 2N . 0 . g
7%——1’1, Tn—?g,..-, Ty == Yy

It follows then from (35,2) that
xe‘”Epg’,‘g,_", p‘l)’:r(t)’ C 'QMO({Emlvmh“'r ml}) =P q e. d
ll
The relation (85,1) is now wholy demonstrated,

86. B. Necessity?®). We shall begin with the following

-
Lemma. If to every cortege (ny, Mg,.., %;) we correlate an inieger

78 By, Ngguury W) 22 2
and if M, is the set of all the numbers

Hydly

lml My

1) We must not forget that the system { Emb My, ",mj} is rug‘ul‘ur.

%) Fund, Math, VIII, p, 120. (S8ur les coorespondences multivoques des en-
sembles, th, E.), The lemma is stated there in a somewhat different form. bub the
o8 sens is the same, .

%) Necessity follows also from Theorem XXIIX below (p. 77). We give here
this direct proof because it possesses some interest of its own,

icm
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sych. that

" li'-f-l:z;’q—...eu

my
2) my << m(my, My, Mg;_y)

then M, is homeomorphic to M X A.

Proof To every point

we shall correlate a point
dz=(x, y)e U X A

where
_]_._]
|my

T my

s y=0, ¢ ¢4

where g,—0 except when
k

) e
1—_—-2 min (Mg, 78(my, Mg, Mgy 1) — 1) and my, << 75 (my, Mg,..., Mgy_y)
Je1

in which ease ¢;=1.
We must prove that ¢ is a homeomorphic transformation. Denote
W the inverse transformation i e. if (w,y)=392z then z=494(x,y)
We shall prove the following properties of 9.
1) To every point z e M, corresponds one and only one point 9=
This is evident.
2) To every point (z, y)e M X A corresponds one and only one point
z="3(z,y)
* In fact let
11,1
r=—
|y +

'—I—---; y=0, ¢ -

[y

We shall now define the numbers m,, m,,.. by induction.
Let all the numbers m,, (& < k,) be defined and let i, be the least
index i greater than

2 min (my,, 78(My, My, Mgy g) — 1) =1,
Kk

such that ¢;=1. Then

Moy, == min (ig — by, (g, Mggeny Myyy)).
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One may easily see that
I AI'
z——lm1+' +"'€ 0

is the only point such that 32z ==(z, y).
3) The transformations & and & are continuous.
In fact if
ze Amn Mg yersy Mgy
then
Vze d'ml,m,,..., thypg X A911 Gasens Y

k
(where i == 3 min (m,,, 76(m, my,.., Mg;_y) — 1) and gy, gy,... are defined
Jm1

as above) and vice-versd.
These properties show that & is a homeomorphy, q. e. d.

Proof of the theorem (necessity): Let SN(&K)CS () for
any ring o4 Denote J%,, the class of all the finite sums of 6,,"”” oy Ty

(including T and O == vacuous set). Jf, being a ring we have
Ne SN(%:) C SM ("?{Os)

N=8y({Hy,,n,,..,n,)
where any non vacnous
TE(yy Ngyeney M)
v
(36,1) Hn;,”m-q ”1“_:'2 6"7{71 N yony '77/{;,
p=1
nf and k, depending also of n, #y,.., %

(in case k,==0 we have Hy n, . n,

= =1I)
denote
— — ! oY
Eml) ml)"-) mzj - Emlv ma;m, m21+1 6"7;”9])"') n"‘m,/

where 27/ correspond to n; =m,; ny == my,..., n,==my, ; (see 36,1) if

Mo <5 n(mn Mgyerey 'mﬁj——l)
and
Eml, My yory Mgy = 0
otherwise (i. e. if my, > 7w (my, my,..., my;_,) or if Hy,
Evidently

Y 1
Y= 3 8= 3 L e
M i My i

ms,..., mzj_l
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where M; denotes (as in the preceding lemma) the set of all the points

lmll'{'l -+
such that

1|
|m1 ! +-

and mg 7w(my, my ..., My, ;). We may besides suppose TE (Mg Mgy Mgy )22,
Thus N e Saf,(d%) from which follows as in Th. XX that N is a con-

{innous image of MO or, which is the same (see lemma), of M X 4, q. e. d.

Corrolary. In order that two operations 2y and Qy be (r)-equi-
valent with resp. to [r] (see def. 6bis and 21) it is necessary and
sufficient that N X A and M X A be of the same type (c).

In fact if N A and M X 4 are of the same type (c) then
N X 4 is a continuous image of M X A and consequently N (which
is a continuous image of N X 4) is a continuous image of M X 4.
The same for M and N X A. If on the other hand N is a conti-
nuous image of M X A then N X 4 is a continuous image of
(M X 4) X 4 (homeomorphic to M X 4). The same for M and
N X A. Hence the corrolary.

§ 3. The Sy(&F)-Classes in a Compact Metric Space.

87. Of all the Sy()-classes the most interesting are Sy(&#). We
shall begin their theory with the following

Theorem XXII. Every set closed in R X J is the scheme for
a certain system {Fyp n, . n} of sets, closed in B1) (see def. 10 bis).

Proof Let P(C RP=R X J be a set closed in B X J.
Denote

Fnl, Tigyeny Mg = PTR ['P : ('R X 6”1, ns,-.., n,,)]
Fnl, Hggeay My BTO closed in R.
It remains to prove that

P=8(Fn,npsn )=l 3 Ty nyyems X Oy, ngy e

k (g 1gyey 1)

1) The converse is also true, See def, 10, remark (Fund. Math, t. XVIII, p. 237).
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) ” 2 Fpgy gyt X Oy, gy O P

k (g gy tt)
ag one may easily see.

f) ” 2' Fnl’”ﬂﬁ‘"!”k X d”n”m‘v”ﬁ Crp

F (119500 2)

because if
(2, ¥) G” 2 Fpy gy iy X Oty gy
ke (myygpy )
and
! l 1] iy
l I s +|m°
then for any %
re F”I: M 3ers = Pre[P (B X 6”’%1”37"',712)]

i. e. whatever be the neighbourhood V{ of x there exists such

ms‘a) € V;“) and ‘l/ & € 6n1, nm ,no

k
(wia), y&d)) e P .

But the point (x,%) is a point of accumulation of the set of alf
the points (zf®, y{®) whence, P being closed,

that

(zy)eP q. e. d.
From @) and @) follows that
P = 8({Fn,, ny,., nsh) q. e d.

Corrolary 1. Sy(&) is identical with the class & of projections
of sets closed in R X N.

Corrolary 2. (in a compact space). The class Sy(F) possesses
the following property: if Pe Sy(F) and @ is a continuous image
of P (Q=9P) then Qe Sy(#).

In fact, as we already know, P is the projection of a set closed in

B X N= RO
P=PrgPO; PO ¢ g0,
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Denote ¢(x, y) = (@, y) and QO = ¢ PO,

Then (1) Q‘°’e FO, We shall suppose that the pseudo character of
B is =8 ?) i. e. every point of R is the commun part of a countable
infinity of open sets. The case when it is greater than N, .vill be treated
in an Appendix.

Let then (z,y) e @® and
ViDWhD..

be a sequence of open sels such that

”Vk = (%)

and let

Then in any set
Vi X dng, G yueny PR
there exists a point
(2 ya) € €°;
denote 7, a point such that @(&;, ¥;) = (%, ;) and let @ be an accu-
mulation point of the set of all the wx,. Then, taking into account that

(®xy yu) € P® and that P® is closed, we have (%, y)eP,. But it is easily
proved that (%, ¥) must necessarily be (%, y) whence (2, %) € @y, g.e.d.

@ Pr@y=2¢

this is evident. v
From (1) and (2) (and Cor. 1) follows that Q e Sy(&).

38. Theorem XXIIL. If R is a compact metric space then
Sy(&F) is identical with the class & of continuous images of the set
N X A

Proof a) #C Sy(#F).

Let Pe& i o. P=¢(N X 4).

Denote

Fopy gy 1y =P(N - O 1,....m, X A) € &F

Q == Qn( {]’nl,n,, ,n,,}) € Sn ().
We shall prove that P = Q.

and

1) P, Alexandroff, Memoire sur les espaces topologiques compacts,
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o) PCQ Let ze P i, e 2==9(2, ) where

IT +| |+...el\7 and yed
then
2e (N 09 ng..,mp X 4)

for any k, whence z¢ @, q. e d.
B) QCP. Let z¢Q; then there exists such
i
=t e
that

26 Fg nl,.on) =N 0nd nd.. .np X 4) for any k;
i. e. there exists for any % such
zre (N« Opt, NG yory By X 4)
that o (2, 2) << /%
2=, ¥3); e N:0n0 . ni; Yaed
Let {y,} be a convergent subsequence of {y,} and
y=limy, A

then ' )
‘ (2, ) =lim (z, y) 1 e.

2 = lim 2, =lim ¢p'(w,,,, Y) = @lim (@, yp) =@ y)e P q e d
b) Sy(F)C P. Let Qe Sy(#) i e
Q= On{Fn,ngymd)s Fngyngpuym € &

R being a compact metric space, there exists a continuous trans-
formation ¢* of 4 into RY)[R = ¢*4].

Denote ¢z (2 ¢ @) the set of all such points (z,y) e N X 4 that
z=¢%y and

ze.”Fnl,,,” " where ~|—}—| =z,

) Hausdorff, p. 197.
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Then to every point (x,y)e N X A corresponds not more than
one such point z ¢ @ that

(@ y)eye
‘We shall denote such point 2 (if it exists) (=, y).
(A) @ is defined in a closed subset M of N X 4 and is conti-
nuous in M. In fact let
(®, y) =lim (2, y.); (2, y)) e M.

Denote 2, = @ (x;, y,).
Then:

1) 2,=¢*y,;; hence
(38,1) 2 =1lim z,=lim ¢*y, = @* lim y, = p*y

2) 2 E_HF"{,”;:---,"/« where 2, = | 1+| |
3

But whatever be % we have for ¢ great enough (i >4,) n{=mn,,
0§ == Ny, Wi ==my; Whence
2re 'y ng,.ym, (1>14) or

for any k;

2 == lim 2 € F"n”z’"') Ny

therefore
(38,2) ¢ E”Fn,,n,,..., )
i

(38,1) and (38,2) show that z = ¢(x, y) which proves the assump-
tion (A)

Now ¢ being defined and continuous in a closed subset M of
NX A there exists 1) a function g, defined and continuous in N X 4
and such that

1]
=

2

PN X AN)=pM=10 q e d
39 Remark. It is easy to see from the proof given above that if

_ 1] 1]
’ {nl+| +o

1) This follows easily from a lemma of Sierpinski cited on p. 65,
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and if

T g}
”] Mgy Pogguny g 0
[}

oL (@X4) = JT By, .,
k

then

We may deduce whence eagily the following:

Theorem of Sierpinski?): Denote (in a compact space) Sy the class
of all the sets which can be represented in the form:

On( {Fnl,'n,‘, ..,n,,})

where Fnl,n,, ,meéf possess the following property:

For any 1|
w.eN
|n1+l Foe

lﬁI F"n”z,---,”k consists of not more than one point,

The class Sy is the class of all the continuous images of N.

Proof If
Pe 8y C Su(@)

then by Theorem XXIII and remark, P is a continuous image of N 4
(P=@(N X 4)) and we have

P(M-((x) X A))‘—"”Fnl,nﬁ,..., "y

which consisls of not more that one point.
Denote M, the set of all the poinls 2 = y—}— '+ such that

HF"n”m }nk:#:O evidently M, is arelatlvely closed subset of N ho-

meomorphlc to M and @ M =P. It follows that there exists such con-
tinuous (in N) function @, that o, N=P 1 e,

P is a continuons image of N, q. e. d.

If on the other hand P = (pN (@ being a continuous transformation)
then denote @, (x,%) = @x for any y e 4; then we have P = (pl(NX 4)
and ¢, ((«) X A) consists of a single point, But denoting

Fnl,n,,..., ny (P(N' dnl,’ﬂg,..», nﬂ) = ¢ (N. dnl,ng,u-, Py >< A)

1) Bierpidski VI
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we have (see the beginning of the proof of Th. XXIII, art. 38)
P=Oy{In,ngsm)s ¥ ing,m, € F

and Hﬁ,”l,”za---,"k consists of the single point
k

=5+t

because

Y ] KR

k

1]
(|"1+| +- )
and therefore

Pe Sy.

Proof of Necessity of the Conditions of Theoreme XXI. (See
p. 68).
If for any ringe ¢

Sw (%) C Su(¥)

then in particular Sy(&F)(C Sy(F) (where & is the class of sets
closed in I) But

N= QN({énl,nz, ,nk}) & Sn(F) C Sul(¥F)
therefore (by Theorem XXIII) N is a continuous image of M X4,
q. e d.

40. We shall conclude this chapter with the following theorem
(which shall be used in the second part of this memoir).

Theorem XXIV. If N contains only such numbers
1]
i"t T

that the sequence (ny, ny,...) contains an infinity of different elements, then the
classes defined by the operations?) '

(40,1) 2 o, ({ V/i Eﬁul’na---:?x})

(Z’uPz, ) i

|”1

1) The operations (40,1) and (40,1%) are the operations considered in § 3 of
Chapter I (See art. 22, p. 266). Therefore from theorem XXIV follows that if N
satisfies the condition of this theorem then the classes of projections of sets belon-

ging to J{N(&’) and ¥, (&) are classes SM(J') and S, (9).
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and

R 15 E |
(P1yPa3) i

where Ef: L P Pi 9 Of being a ring, are the same Sy(J() class.

Proof. We may evidenily suppose that N is in its »reduced com-
pleted< form (def. 9, art. 7). Let now &and & be the classes defined
by the operations resp. (40,1) and (40,1%) and let &, and &} be the
classes defined by the operations:

' wq
(40,1,) Y o ({JTEs g::wi})
(!lnqh---) P1y¥ape Vg j 3!
and
(4201 1.2)6) 2’:‘ QN ({ HZI, g}a”::qa‘j)}
(91’92,««)'”1"”""'7% F, 1y Vares Vi
Where

g GBrs U o gp
Y1y Vagey Vi

Our theorem will be proved if we prove that:

A P=8,; Fr=F
B. §,—=&*
C. &, is an S, (¥)-class.

Aa) The inclusions &#C &, and F*(C F¥ are evident.
We have only to set

H e U — plodaym 4y
Y1y Voo Vi Vi

b) &C& Let Ped, i e
Al
— 4 Qaa---agf}). Aodes 9 o o
P 2 » f"’ v,({I.I Dy, Vagy Vi ! By, Vayoony Vi €
(CRY B J
Jf being a ring we may evidenlly suppose

Ly - y 2 EASK LR
V1) Yoy Vi V15 gy Vit

for any k, 4, &', j satisfying the relations &' <Ck, /<.
We shall define a system {E£ DParPry of gets as follows:

@
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1) if i << 2n then Eﬁlﬂf’?""’Pi:R

2) it 1:/2 2# and Pgn > 1 then Eplaph...,pi:()
n

8) let iZ=2n and p,, = 1. Denote

Viy Py Yo (0 < <<...<<wp= )

79

all the positive integers <n such that Pop, =1 and let gy, gyy.., ¢; be

the sequence 1)

P1y P2 —1, Py, o — Ly, Prs—ty Prs—— Lyuy Pyys, Daveprseey
Pays—1s Pouytrye; Pan-sty Pona— 1, pany.

Now denote

EPuPrnPi g Qe O
n '”1;'”2’"':'”1:
and

=3 o\ st

(P1: Pgyen) i

We shall prove that P = Q.
Denote the number of integers 2%, <z by k()

@) PCQ. Let ¢ P. Then there exists such

1, 1]
— 4 —4-...eN
m T
and such gy, gp,.. that
x g%t
e” V1) 25 1 Vi
ke

Define p, as follows:

1) s, =1 (for any 4)
2) Pos==Qsr@y-+ 1 in all other cases
8)  Pots = Qosprtpspyy fOr ANy 8.

Then we have

k

Vyy Vg ooy Uy

Eﬁliph""}h — R if ’L< 2'”}'
k

1) In strict conformity with our notations we should use the word ,cortege*

instead of ,sequence®,
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In both cases !
1)11 pﬂ)' '1.pl
€ Eq}l¢ .

So that we have
Py Dgrony D1
xe”EVk CQ
ik
B) QC P. Let ze . Then there exists such
1], 1]
g T |24 +-
and such sequence py, Pgy., that

1P1s Py Pi
xe”lfzm , '

ik

q. e. d.

It follows that for any % p,, == 1 for otherwise EIZ t’p w1 Pl ould

be vacuous for i 5= 2m,. Denote #;, ¥y the sequence of all the num-
bers such that p,,, =1 and let gy, gy, be the sequence

Pry Pe—1, DPgyey Pap—1r Pautrr Procts ™ L, Dauetsres Pav—1r Pourtrre

then

1| |
O et gled

because the sequence

va

Py, Py [ <2y <o

contains all the numbers 7, and N is in its reduced completed form;

(2) ve HIvDr 9 for any k and j.

V15 Yoy Vi
In fact there exists an m, ==, > j - #,. Let
i> 2
then
2917202, wPi __ gy Qe 4y 15 dayrey 97
er = H H .
V1; Vggeon V! C— V13 Vayou Vi
So that
q. e d.

Q1s Qareenr 4y
xeﬂﬂ'ﬂuvm 1VkCP
1J

icm

) #*(C &* can be proved in the sam
1) Instead of the inclusion e way. Only:

9 Bre 4y Qs Gryeen 4 : . 70
'”1:'"27 1'”I¢ CH”l ”;1 ’:'”k' fOl‘ J’>/'7,’ k>k

we have the following

H Gernds C H Qa9

. . 7
”1! ’}2!"') Yy 7)1, 1’1,0.’ Vi for ] g" H k > k'

D1y Poyee .
2) B v P20 in case 1) as well as in case 2).

B. &”_J‘*, a) §,(CFF Let Ped, then

=2 2

1y Jayeee 1
i ¢ i|+ll,+ YL

:2 2 -”—H;’lngs»---» ‘;1}1: —
1y 73y Vg
y Gayeee 1 1
T Gare 1] +I | Iy ok

=3 3 Iy

HQU Qarer 47 =
1}1}")!7’"1 Vi

Q1) G5 1 |+ 1 l+ N ]
[y " [
where
%4 if 4
V12 V19y Vi 0 i j<k
and

ﬁQH Ty 97 _H.(hx Qoo e  ip -
V11 Vgyeos P Y1y Vo503V it j =k

b) &¥C &,. Let Pe P¥, then

r=3 3 H¥En=

Girgsy- 1] 1] k oj
l“’1+l Foel

=2 2 & MmN

Qus Qo Jrodayes |+’1|+ N

s
-3 X
V1, Vs ""lz l"

'la 7"21 1 I ] 8
Ly, vk
oy Ty T

2
Fandamenta Mathematicas t. XX,
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where

H’El, Ty yeeny Ts — I{’
Yy Voyeeny Vi

ifs<2k—1 or 222k —1 and 5 < 27y, and

00T s
1)1, 'yx) -., wk

if $222k—1 and § 22 274
C. &, is an Sy(d¥)-class. This is almost evident.
We have only to suppose M to be the set if all such points

Tay Tayeen 1212,,...1’
V1 Py Vi

SR R N BN Y D
g"im |q1+ln.+lq1+'
that 11 11
3”1\+fﬁz+meN

and ¢, gy, are arbitrary,
Then evidenlly &, = Sy(d), q. e. d.

CHAPTER IIL
'The Operations of Mr. Kolmogoroff?).

41. The present chapter is consecrated to one particular kind
of operations introduced by Mr. A.Kolmogorotf These operations
will be found useful in the theory of projective sets.

We shall begin with the following remarks:

Let @({E;}) be a positive analytical operation effected upon a sy-
stem {E;} of sets, depending of a certain set E ={&} of indices.
Then the operation @ is wholly determined by the set X of all
such subsets A of Z (these subsets we shall call ,chains“) that for any
system {E we have

JIB.C o6z,
el

In fact from the definition of a positive analytical operation it

" follows that if
xe (D({Eg})

1) Most of the results of this chapter belong to Mr, Kolmogoroff and are
printed here with the kind leave of the author. In particular to Mr, Xolmogo-
roff belongs the definition of B dy-operations and theorems XXV, XXVII, XXIX,
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then, denoting A the set of all the indices {& such that xe L we
have A ¢ X' because otherwise there would exist a system {Bg} of
arguments and a point z’ such that

%' e ” b
el
o' non e B({K})
which contradiets the definition of a positive analytieal operation
(see def. 2, art. 1).
Thus we have

(41,1) JUNEDNY | B

AeX Eel
and the operation @ is wholly defined by the set X.

42, Let now @ be a positive analytical operation effected upon
a gystem {Z,} of arguments depending of a certain set Z of indices
and let X be the corresponding (see the furegoing art.) set of ,chains
(i. e. of subsets of &)

We shall define a new operation

E m({EEI ’ gﬂv") gn})

effected upon a system {Eg, ¢ . &} of sets depending of the sei &,
of corteges (see notations) group D) of indices £ e Z.

Instead of defining directly the operation B @ we shall define
the corresponding set of chains as follows:

Definition 24, If & is determined by the set X of
chains of indices £e¢Z then R® is the positive analy-
tical operation which is defined by the set X, of all
the chains A, of corteges of & which satisfy the follow-
ing conditions:

1) if a cortege (&, &,., &) belongs to A, then all its
segments also belong to Ay (i e. (&, &4y E)e Ay for any
w < n);

2) if a cortege (&, &,.,E)ed, then the set Af £ £
of all the indices £ such that (&, &,., &, &) e Ay, belongs
to X.

6*
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In the same manner the set Aof all the £ such that

(E)ed, belongs to X.
We may write

w2y RogE, . H=23  [I

AOEXO (61 5:,-"7 £,) ed,

In the case most important to us when @ is a ds-function Py
we may define B Dy as follows:

Definition 24 bis.
(427 2) R @N({Enla Higyuy nk}) = 2 _” E”in nll,lg,‘“‘, nlhiu,m, &
ne e (i'n ilv"-) 1'/,)
where @ is the set of all such systems 7 of corteges

E§11 g”"'l gll,

{("il‘ Ty dgrens Py, gy ik)}

that for any 4, 4., 3 we have

1 .1 ~|+eN1)
Py 1y 2

and in the same manner

2,3 1. i e

™ 1
43. Examples of B @y operations:
1) Let N consist of the single point

1] 1
f + 2 —{—l -+
Then, as we already know,

Oy(EY) = [ B.

The set ® of the preceding article consists in this case of all
such systems of corteges which contain all the corteges and we have

BOy({Ey, ny,...,n) =_”-En1,n2,..., g

Ty Pggun , Ty

(42’ 3) ]nil’ izvﬂ; 'iln 1

1) N denotes the completed form of a set N; see def. 8, Fund, Math, t, XVIII,

p. 233.
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2) If Ox(E,) =.”§’E,, then N (supposed complete) coincides

‘with J. The set @ in this case contains all the systems of the type

(), (g, 1), (5, 2y, My )yen.]

(nA-chains“). On the other hand evidently every system contained
in @, contains an A-chain,

Hence follows

B mN({Enll “21'"»”1:}) 22' _”En17”2:"" My

gy Ngpee K

i. e. the operation R is A-operation of Mr. Souslin.

44. Definition 25. If & is an operation on classes of
sets corresponding to a positive analytical opera-

tion @ then R denotes the operation coresponding
to R ®.

45. We shall prove now some theorems relating to B & opera-
tions. We begin with the following remark:

In def. 28bis we can substitue conditions (42,3) and (42,3')
by the following:

45,1) 1 |+ 1 |+...eN
\ni“ gy Upy 1 Inil' fayeathy 2

and

(45, 1) i o+ |n21 +e

Theorem XXV. If T is a positive analytical operation, & the
corresponding operation on classes of sets, then we have for any class J&

(45,2) H () C B IH(Hk).
Proof. Let Ped%(¥) i. e
P=U({Ey); Egedx
Denote
Efl; £y £, =L (e ).
We have evidently
P=RU{E = e Ek}) e R Jt ().
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Theorem XXVIL If T® and W® are positive analytical opera-
tions on a countable ) infinity of sets, HY and H are the corres-
ponding operations upon classes of sets and if

HO(2) C HP(D) (see def. b, art. D)
then for any d-class £
R%(2)C B (2)
Proof Let T'® depend of a system of arguments {&; depen-
ding of a countable set &= {£} of indices and in the same manner

let T® depend of {Z,} depending of a set 6 == {n} of indices.
Enumerate all the indices {£}:

v, £,
and also the indices {n}
oy®, g, .

Then, as we already know (Theorem I), there exist two ds-
functions

?Nl({Eg(")}) = ?(”({Es})

?Nn({E 7® }) = %)‘(2) (£ n})

and

Evidently ‘
R @Nl({Egux), g, g(!,,)}) =RUIV{E - fk})

R Oy, (B, .., ) = B U2 (B, ., i)
Consequently for any £

5.3 Rty (£)=RHM(£) and Ry, (L) = RHD(L)
45,3 g (5) = HO(0) and Iy, (8) = HA(2)

We shall suppose I, complete (N, = N,). Therefore, by Theo-
rem IV (art. 8.) there exist a function %(n) (n and k(n) being posi-
tive integers) and a set N; equivalent to N,, such that

Fir

s

+...¢ N1

Iy

1) The analytical operations on an uncountable infinity of sets shall be con-
sidered in an appendix,
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if and only if there exist such m, that

1) m=k(m,) for any i and
{4b,4) 2) — 4= +...eN,.
|y
Let now Pe Ry, (£); £ being a d-class, i. e.
P=R Oy (En, ngnny))s Eny ngyn, € £

E’”n gy vy Mgy Mg C E’H-. Tigrerny P *
Denote
(45,6) Koy, gy iy = Ble(my), Te(my) o Te(my)
and
¢=0~R djNa({Kml, My yorsy m,,}) € B Hy,(£)
we shall prove that £ = ¢.

o) QC P. Let Q. Then there exists a system of natural num-
bers {m, iy ik} such that for any iy, ty,.. 4
11 "8y

1| 1

i—-}-—...eN2

m. . . m. - .,
[ By lgyeybay 1 ’ z11137-'-:'%;2

and that xe K’nl“ ml,.lg!"’: My i,

We have thus

T
re ” Km,‘,m,u,,,...,m,h,,,_",,h-—— _” -Ek(m,‘), Te(my, ) m k(mzx,h,-ml,)'

Ty oy ¥ Tyy gy Ip

ey for any k; iy fa,n e

But for any ij, dgym, 4

1 | 1 | ,
-+ +...e Ny
olm; i il) O G 0)
Whence follows that x e P.

8) PC Q. Let we P. The there exists a system of ‘natural num-
bers {ni,, i,,..., i, such that for any i, %, A

|
1 | 1 L. e Ny

N s . N s .
( "17%1--»1%1 l ’11’11-»7%2

(45,6)

and that z e By n,.. for any k; 1y, figyny M.
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By (4b,4) there exists such system {mj, i,,.. i} of natural num-
bers that for any il?éz,..., A

1) k(minim"'» iy 1) = Mgy gy 4

g L+ 1y 1 1y .,

' 11yl L Ty Gy onny Gy 2

It follows from 1) and (45,5) that

[m

Byt e Mty Bty 1y gy LW
Whence ¢ ¢. So we have proved that

P= Qe Ry (%)

if PeR diy(8).
Thus B &y, (£)C BIy(£) and then from (45,3) follows

RAO (L) CRHO(L) q. o. d.

Theorem XXVII. For any N and £ containing the greatest
set K©
Fn (B Hy(£)) = B Iy (L)

Proof. It is evident that

R 36(9) C Ity (B Ity().
So we have only to prove that

Iy (B Iy (£)) C B Hyy(2).
Let P e dty (B Hy (L) then

P=0y({E &y (B n,. 0l

n Thyy Mgyeecy Ty,
Denote
.
Ty Mgy My, Ty ey My, (k> 1)
and

Hy = K© (for any n,).
Then it follows immediately from the definition of B that
P=R Dy ({Hnl,ng,..,,nk}) & B Jty (),

gy Pgyensy My
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Remark. If the condition that £ contains the sum of all its
elements is not fulfilled then the theorem sometimes ceases to be
true. Let, e. g. £ be the class of all the sets of diameter not gre-
ater than 1 (in Euclidean space) and N the set comsisting of two
numbers only:

1, 1 1,
Tf+Tf+ and |—2—+|—§—{-—

Then, as we may easily see, Ry (£) is the class of all the
sets which are the sums of two sets each of the diameter not gre-
ater than 1. Whille (R H#y(£)) is the class of all the sums of
four sets each of the diameter not greater than 1. Thus we have

by (B 30y(8)) = B Ity (9).

However our theorem remains true even without the condition
that £ contains the sum of all its elements, provided that the ope-
ration @y be normal. '

Corollary. B Jy(8) D) Jy(Hx(L)).
The above remark may be applied to this corollary.

4.6. Theorem XXVIII. The operation B R Oy is equivalent with
the operation R Dy.

Proof We must prove that for any class £ of sets

(46,1) B R Ity (£) = R dty (%)
As we already know (Theorem XXV)
Ry (£) C R R Hy(£).

If we now prove that
(46,2) RR Iy (£) C Rox(£)

then Theorem XXVIII will be eompletely demoustrated.

Let
Pe R R HHy(£)

P=RROy({EY); E,ef

{£, being a system of sets depending of the set of all the cor-
teges of the second order (doubles corteges) i. e. corteges having
for their elements the corteges of natural numbers. (In fact @y is
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the function of a sequence of sets, R @y is the function of a system

of sets depending of the corteges of the first order (see notations

group D, 2) so RR @y must be the function of a system of sets

depending of the corteges of corteges i. e. of the double corteges),.
We shall now define a system of sets

By py )i =125 =12,
as follows: let
(46,3) i=24"1+7',—|-—...—|-—'ru———1 + 27'2—§—1‘,-|-...+7’u—1+m+21‘”—1=
= U(ry, Tgim Ty)
and denote by ¢(»,, 2,,., #,) the following double cortege
Pu(ly Yu(@), . . . . . Pulry)

(46,4) oy, vy, ¥) = Pulry 1y Yu(ry, 2), - - Pu(r,r)

.

VU (1) Vgany Tty Lo VU (1, g 0y 7)

Then we

(46,5) Kful, Vg oy ¥y — Ea(*u,, Vayouny Vi)'
We shall prove that

(46,6) Q= ROy({Ky,, u,,.,9))=P.

We shall suppose that N = N.
@) QCP. Let ze Q. Then there exists an R By-chain

T= {(“’sla P8y, 8303 V85, Sgpensy s}

of corteges, such that

= J] %
Vo1 Vsq, 837 V51,8350 8,

(87, Sg4eeny 57)

“’E]IEU(’”sly V3, 897 ¥8) ) Sg000y ) (see (46,5)).
(Sl, Sgyees 'st)
If we now prove that the set of all the
o(vg,, V1. 8gme0s V84, 8330y s)

constitutes an B E @y-chain then the inclusion ¢ P will be proved.
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The set

T ={0(s,, Vs, 3,0 Vs, 85,8
gatigfies all the conditions which definie an R R @,-chain viz.:

1) if ¢’ is a segment of o(»®, ¥®,.., 1) ¢ T then ¢’ ¢ T. In fact
if o' is a segment 1) of o(»®, 2™ »¥) then o = o(¥®, 2@, +)
(7" < i) (though the converse is not true: o(»®, »®,..., »%) is not, gene-
rally speaking, a segment of e(»®,»®,0M), But if o(»®,2®,.,10)eT
then (»®, 2. @) ¢ T' whence (»®, #@,.., #) e T’ and consequently

o' = o(¥®, 2@, ) e T.

2) if 09 ¢ T and if oM, o®.. is the sequence of all the double
corteges which: &) belong to T; §) have the same rang % (i. e. number
of elements)?) as 0'®; y) have all their elements except the last iden-
tical with the corresponding elements of ¢!; then, denoting X0, the
last element of o (i=0,1, 2,..), the set of all X0/s is an R Oy-
chain. '

In fact let

0@ = (0’; X00)

where o’ is a double cortege of the rang k£ — 1 if k> 1 and is
vacuous if k= 1. Then for any ¢

o = (0'; %0,).

To prove that {¥0,} is an R @y chain we must demonstrate
8) that if YOO ¢ {x0,} then any segment of YO” also belongs to {¥0};
b) that if YO’ belongs to {¥0} (or is vacuous) and {n} is the se-
quence of all such numbers that (X0',n;) e {¥0;} then

1, 1], 1]
A A e N
[y T |7 t |3 +
8) If X0, = (y, tigoy ) and if YO'=(py, 3 ..y ) i8 8 Begment
of Y0, then we have (¢/; ¥0)e¢T. 1 e

(03 X0;) = o(a®, 92,.., ¥O); (1, 2D, p0) e T.

1) A segment (of ramg k) of 'a double cortege o is another double cortege

coneisting of the first k corteges of 0.
i) We must not forget that the elements of a double cortege are corteges

(of the first order), not numbers.
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but then evidently

(o"; X0") = o (2 W; 2@, ¥ (' <)
or
(0';%0") e T, because (¥, 2@, »@) ¢ T.

Therefore Y0’ = Y0, and we have proved that every segment
of a cortege belonging to {¥0} also belongs to {YO,.

b) Let Y0 =20, and consider the sequence ¥O,, Y0,,.. of all
the corteges YO, which do not differ from ¥V, except in their last
element; and let #; be the last element of Y0, (j=0, 1, 2,..). Then
if M0, = (W', n,) and consequently m,j_.(m )

We have (o';%0,) ¢ T or

(U’; mfg) — O’(ﬁ} )’ 'V(z),..., ,v(l,); (’)“), fp(’),‘"’ rp(")) € T
whence

(05 90") == o (¥, 93, W) = 0 (Vs Dy ey Vspsyonsy) (1 < 9)

if we now denote §,.; = $p3=...==8y_,==1 then (by the def.
of a(»®, 49, »9), (46,4) and (46, 3))
(o' X0, V8,89, Sg1158) == O(Vs,, Vs, 5000 Y81y 8gpeney Byprayy 5eT

for any s. Hence and from the definition of the numbers , follows.

that all the numbers Y3y, 8gyn, S9i0q, s Bre found among the num-
bers n;, 1. e.

:n,.

Y81y Soyery Sqir1 s

whence by the definition of the £ @y-chain {ws,, 75, 5y (RS

1
Inj|+[ I—I—...eN
or, N being complete,
1, 1]
[” +inx+l T

b) is proved and with it is proved that {W0,) is an R @,-chain
i e. we have proved the property 2). But the properties 1) and 2)
constitute the definition of an R R ®y-chain, and thus inclusion )
is proved.

icm
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47. ) PCQ. Let z¢P. Then there exists such RE & y-chain

T that
ze ” E,.
06T
Denote 7' the set of all the corteges (»™, »® ., »@) such that
(47,1) o(v, 2@ 2 e T
for any i’ <Ci.
Evidently

xe II Kym po ot
(@, 2D M eT
We shall prove that 7' is an R @y-chain.
In fact: 1) evidently if Ye7 then any segment of YO also
belongs to 7'
2) Let
@0, ¥Q,.., e T;
i+ L=u(r, 1., 7,) (See (46,3)).
Denote
Gy ==2" +rtotr,—2 4.+ o2 — (T, Toyeny yry T~ 1)
if #,> 1 and

g == U1y, Tayny V)
if r,=1,
Evidently 4, <(i. Consequently

(,,,go)’ '”go)r": "’Sg)) el
oV ¥P ., D) e T,

and therefore
but (46, 4)
wf;)(l)’ 71::)(2), e e e . "’S:)('rl)
¢ y((i), ,‘}((3,'“, ,ysg)) —_— D T
(”2)("‘],..., Py 10707 "’2)(1', yoooy Fogy T~ 1)-

T being an R R @p-chain there exists a number

RETRE AT

1?’1+1 Vi

§=
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such that ©
() (0
qjua), 7}%(2)1 e e e e e e e Yy, (1.1)

Gu’):...........-...-.em

Wt ey 4.
V(g gyenny Ty y 113 Py sy 10 gy 1—1) Vi1,

for any 4.
But one may easily see that

oW = g (1D, 9,., ¥, WA,
(0 0,y o, wha) € T,
because o' and o(»{, o,.., v) (¥ <C4) belong to T. So that
Whatever be cortege
(¥, iy ) € T
there exists such number

1| 1 :
P T T
that

(12, Y5y ¥}, vh) e T for any A.

In the same way we could prove that there exists such number
1, 1
I 9

..6N

that (¢) e T for any 4.

These properties taken together with 1) prove that 7' is an
R @y-chain, q. e. d.

Theorem XXVIII is now completely demonstrated.

48. Theorem XXIX. The operation R @y is rnormal with
resp. to [d] (see def. 12bis art. 15 and def 19 art. 31).

Proof If £¢[d] then
B 3y (£) = BRIy (L) D Rty (B Jn(L)) D RHy(£)
(Theorems XXVIII, XXVII) and therefore
RHy(2) = RUy(R Iy (8) g o. d.

Remark. If £unone[d] then R oty (R 5, (£)) does not always
coincide with B &, (£). See remark to Theorem XXVII.

icm
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49. Theorem XXX. R®y-operation is equivalent with a ds-
operation @y, the base N' of which can be obtained from N and J
by the operations of multiplication, homeomorphic transformations and
countable intersection,

Proof Denote Ni* . ; the set of all the numbers

19 Ygyeey T
i, 1
; P e T

such that Pu(iy,i,,..., i) ¢an be represented in the form

Pu(iy, g,y 1) = U0y, My, 1) (See 46, 3)
and
PU(iyy iy, By, 8) = (1, Mgy 1y, 1¥)

1, 1
[ﬁ?_l—gn—é* ...Elv:

One may easily verify that N;f’ iy is homeomorphic with

R ik
N X J. In the same mauner we denote N* the set of all the numbers
_ 1
5_1}’1—}-!?: +e
guch that
1), 1]
Pu(s):*u(”?, W‘i‘ln_;*'{"eN

N¥* ig also homeomorphiec with N X J.

Denote now
*
1 Nk T .
N=n* JIN i,
(ih i? L] ik)

we must prove that @, is equivalent with B @y, In fact it follows
from the definition of N’ that N’ is the set of all such numbers

_ 1
§= }P1+

1]

T

that

Pu(iy, gy i) = Wiy R dgeny Wi, )

and for any 4, iy..., i
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|9y, 1,,1 i 1| |3y, 1,1 g 2| tored;
also
%+%+JM

Now if
49,1) P=R QN({EnI, Moy n,,})
then denoting
(49,2) Hu(nl,n,,..., ng) = L, gy
we shall have evidently (see 42,2)
49,3 P= B, ({H)).

If on the other hand
(49,3) P= 0y ({Hy})
thén denoting
(49,2) -Enl, L Hu(nl, Ngyeury M)
we shall have evidently
49,1 P = ROy({Ep,,n,,...n-

Both these formulae are too evident to require any proof.
But then it follows from the equivalence of (49,1) and (49, 3)
that for any £

R 4y (£) = 9ty (£)

whence R @y and Py, are equivalent, q. e. d.

50. This chapter stands somewhat apart from the other two
chapters of this part because it deals with operations upon operations
and not operations upon systems of sets. Of course the operation
which we considered in this chapter is only one particular operation
of many, and it might seem strange why we considered it at all
in this work. But we have put it here because we shall need it
in the second part of this work and because in the construction
of this first part we were guided chiefly by the considerations con-
cerning the second part. It seems however (though we do not know
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it for sure) that B is only the first of a sequence of operations

(upon operations) possessing some very remarkable properties which
can not be explained without mentioning projective classes,
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