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de F, se trouve située sur la i-éme face (n— l-dimensionnelle) du
simplexe 1).

6) Lo membre droit de 1'égalité (2) est nommé par . Boole (en Algdbre de
1a Logique) ,constituant de Punivers du discours 52 relatif au systdme Ag,..., A,".
A chaque constituant correspond évidemment de fagon biunivoque un systéme
d'indices 1,,..., % (qui peut d’ailleurs &tre vide). Le théoréme permet d'interpréter
géoméiriquement cette correspondance: le systéme d'indices étant considéré comme
simplexe géométrique, la correspondance représente une fonction continue satisfai-
sant A la formule (3) ou, ce qgui est équivalent, les simplexes étant disjoints,
4 Pinelusion

) f(4iu'---'Aik'“"fzj-fig)c{o...ik.

L'hypothése quo 1'dgalité (1) a lien, ¢. 4 d. que le constituant égal au produit
des complémentaires des eneembles A; est vide — est essentiolle, puisqu's ce ¢on-
stituant correspond le simplexe vide.

7) Nous avons supposé jusqua présent que les chiffres 0,..., n
désignent les sommets dun simplexe s-dimensionel non-singulier,
¢. & d. quils ne sont pas situés dans un espace euclidien & n — 1
dimensions. Si l'on ne fait pas cette restriction, c.dd. si 0... n est
un simplexe arbitraire singulier ou non, le théoréme reste encore vrai,
lorsque Dégalité (2) est remplacée par Vinclugion (6) (cela est indispen-
sable puisque les simplexes ne sont plus nécessairement disjoints).
Pour s'en convainere on répdte presque textuellement la démonstra-
tion du théordme (on peut aussi, en sappuyant sur le théordme,
appliquer une transformation simpliciale du simplexe ordinaire en
le simplexe singulier en question). '

1) (Yest une transformation ,duale” i celle du systéme y. Elle intervient dans
la: démonstration du théor. de M. Hurewicz sur lo ,plongement* d’espaces ar-
bitraires dans des espaces compacts de méme dimension, Cf. Mon. f, Math, u. Ph,
37 (1930), p. 202.
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On Continuous Curves Irreducible about Subsets.
By
Leo Zippin?) (Princeton)

Some years ago; confining himself to the plane and using argu-
ments valid there only, Gehman proved the following theorem:
If C is a compact (plane) continuous curve and H a closed subset,
then in order that C shall contain an acyclic continuous curve con-
taining H it is necessary and sufficient that H have the following
structure: 1) the compounents of H are acyclic continuous curves
or points, 2) not more than a finite number of these components
exceed in diameter a preassigned positive number. We have had
oceasion to require analogous theorems in special applications where
the curve C was of rather arbitrary nature but the point set H,
on the contrary, sharply delimited: for example, totally disconnected
or, again, what we have called a Moore-Kline set. More recently
Whyburn has needed a complete extension of this theorem free
of the restriction that C be planar. We communicated to him that
the result held and inasmuch as he has since used it, crediting it
to us?), it is proper that a proof now be given. We shall approach
a more general problem, which we solve only in part, but whose
partial solution includes as very special case the desired extension.
This part solution appears to us to include the most likely appli-
cations of our ,projected“ theorem (see I, under section 1). Noue
the less the problem is fairly fundamental in the field of continuous
curves and seems to call for a definite answer.

Preliminary: We shall make the definition that a continuous

curve C is irreducible about a self-compact subset H provided no

1} National Research Fellow.
%) _ Decomposability...*, Am, Journ, of Math,, vol. 54 (1932), p. 173 (footnote),
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proper continuous subcurve of C contains H. Now if a continuouna
curve, even the most gemeral (i e. one in whose definition com-
pleteness is allowed to replace the more usual compactuess) con-
tains a self-compact subset H it contains a compact continuous curve
containing H (and differing from H, in faet, by a subset of a coun-
table sum of arcs). This is known, and follows readily by an argu-
ment which differs but slightly from one given by Whyburn
and Ayres in another, related, connection?). Then if ¢ is irre-
ducible about H in the sense above, we must suppose it compact,
If any point z of C'— H fails to separate two points of H C-x
contains a component whose closure is a continuous curve contai-
Ping H. Then this must cvincide with C and z cannot be a eut-
point of C. But in this case there exists a neighborhood of  whose
complement is & continuum (Kuratowski) which we may sup-
pose to contain H, since z is not in H. By the theorem of Why-
burn and Ayres, above, this must belong to a continuous curve
of C not containing #. This again is impossible, and we conelude
that every point of C— H is a cutpoint of ¢ and that € is irre-
ducibly connected sbout H. We have further that every cyclic ele-
went of € (not a single point) must belong to H. It follows that
the components of H are continuous ecurves (or points) and that
not more than a finite number of these exceed in diameter a pre-
assigned positive number 2),

_Deﬁnition: A self-compact point set A having the properties
@) its components are continuous curves or points, ) not more than
a finite number of these exceed in diameter a preassigned positive
aumber, shall be called a curve-set,

1): We are interested in the following proposition:

I: Every curve-set of a continuous curve C belongs to a conti-
nuous subeurve G of C which is irreducible about it.

We do not intend here to settle this proposition completely, We
propose to effect a considerable simplification of it and finally to
prove it in case the curve-set is of dimension one (Menger-Ury-
sohn). This case embraces curve-sets whose components are acy-

1) wOn continuous curves in n dimensions*, Bulleti
orem I, page 350. ) Bulletin Am, Math, 8oc, (1928) The-

2) We are aanuming an ae i wi e Aubj ect
) qumntunce ith th b f C
“ ). Al O }'0“0 Olﬁmentﬂ,
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elie, regular, perfect, or rational and in each instance the ,irredu-
cible* continuous eurve G is of the same character. It is these
continuous curves principally which have been the objects of highly
specialised study.

Definition: A curve-set which consists of a countable set of
components, F, Fy, F,,..., such that if (z,) is a sequence of points
of the set converging to a limit point 2 then either « belongs to F
(which we shall call the principal curve of the set) or all but a finite
number of the points of (z,) belong to some one of the other con-
tinuous curves /' we shall call a restricted curve-set.

2) We show first that I is implied by

II: Every restricted curve-set of a continuous curve C belongs
to a continuous subcurve G of O which is irreducible about it.

For, let H be an arbitrary curve-set of the continuous curve C
and let #, be a countable set of components of H .which is dense
in H and includes all components not single points. Let §,==
==S(H, 1/n) and E,=C—8,"). Let K, be the set of points of H
which cannot be (1/n)-chained to a point of F, but which can be
(1/n — 1)-chained 2). The set K, is open and closed in H?). We
cuan define a countable set of mutually exclusive continuous curves
T, such that K, C 3@ _ 41 7:C S,, where iy = 0. It is readily seen
that H' = F, + 3 T} is a restricted curve-set with #, as principal
curve. Then, by IL C contains a continuous curve C, irredacible
about H'. C, contains H.

Definition: A continuum G will be said to be perfect about
a point set K provided every subcontinuum of G which contains K
has every point of K for regular point (i. e. for a point at which
it is locally econnected).

It is clear that C, is perfect about F; and perfect about every
point of C,- E,. We can continue inductively on the curves F, and
establish the existence of a monotonic decreasing sequence of con-
tinuous curves C, such that C, is perfect about F, (and about %},
i <n, as subcontinuum of () and perfect about every point of
C,-E,, and contains H. The infinite product of these curves C, .

1) Sy is the set of points of ¢ whose distance from some point of H is less
than 1/n. )

1) 'We use this in its customary sense.

3) The proof of this is quite simple, and e suppose it to exist some where.
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contains a continuum G irreducible about H (Wilson) and & must
be perfect about every point of G'— H and about every component
F, of H Now it G could fail to be a continuous curve it would
have to contain a continuum of irregular points (Mazurkie wicz).
This continuum would have to be a subset of H, and therefore uf
some component F, of H. This is impossible, and we have proven
that II implies L

3) Definition: A restricted curve-set all but one of whose com-
ponents are single points we shall call a special curve-set.

We prove that II is implied by

III: A special curve-set of & continuous curve ¢ belongs to
& continuous subcurve G+ irreducible about it.

For, let H be a restricted curve-set and 7 its principal curve,
#y, Fy,..., its other components. We subject the curve ¢ (which
Wwe may suppose compact, as always) to an upper semicontinuous
decomposition in which every component /', hecomes u single point
J/» while all other points of C (including the points of #') remuain
points ). Then under this transformation (' becomes a continuous
curve (' and the set H a special curve-set H’' of ¢, By III ¢/
contains a continuous curve G’ irreducible about H'. HEach point
J» of H' is an isolated point of H’' and in its pneighborhood% G is
a finite acyelic continuous curve. Let z be a finite set of points’
of @ which irreducibly separate f, from every other point of FI’
and which, further, (1/n)-separate f, (Ur ysohn). Let @, be the
component of G'— X, which contains J» and let I be u continuous
curve of C' which has f, for inner point, whose diameter does not

exceed 1/n, and such that K. G' =(J,. We may suppose, procee-
ding inductively, that the curves &) are mutually exclusive. Now
G+ 2K, is a continuous curve containing ' and irreducible
about F” (the transform of F) plus ZK,. If G is the image of G
under the decomposition ot ¢, it is not difficult to verify that @
contains H, that it is a continuous curve, that it is perfeet about J,
and that it is irreducible about # + 3 K, (these being the image
sets of the K, of (')%). Nor is it difficult to see that if in & (in €)
'we replace each continuous curve K, by a subcurve M, irreducible

') Our formulation, while not the most rigorous, should be understood,
%) We are dispensing with necepsary but not doubtful details,
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about F, 4 X, (the image in ¢ of the point set X, of € this
image is uniquely and continuously defined for every point a’ of
C' which is not a point of H') there results a continuous curve &
which iz irreducible about H.

We now abandon the general proposition I, and prove the fol-
lowing lemma: If, in a one dimensional continuous curve C, His
a special curve-set with F' as its principal curve and P the coun-
table set of its remaining point-components, then C contains & finite
set of continuous curves M, M,,..., M, such that

1) the diameter of M, is less than a preassigned positive num-
ber, say e,

2} M,;- 7 is a continuous curve,

8) My~ M, is contained in F, i = j,

4) all but a finite number of the points of P belong to 3 M.

We know that we can express F as the sum of a finite set of
continuous curves 4;,..., 4, such that the product of any two of
these is totally disconmected and such that we may associate with
each of these a set D, open in C, containing 4,, and of diameter
less than ¢ (Vanek). These sets A, have the first three properties
of our lemma, but certainly not the fourth: no point of P belongs
to any of them. It is not diffienlt to show (we skip the slight ar-
gument) that there exists in C' a finite set of continuous curves
Bys..., By such that: 1) A, C B,C D,, 2) if « is an inner point of
A, relative to F, then it is an inner point of B; (in C), 3) B;+ B;=
= 4,- 4;, 4) the boundary of B; is totally disconnected. Now the
boundary of B= 3B, is totally disconnected. Therefore (' — B is
the sum of a countable set of components (whose boundaries are
totally disconnected) the set of whose diameters comverges to zero,
and such that each has at least one point of some B, on its boun-
dary. We are interested, of course, only in those components which
contain points of P. We observe that of the components of ¢ — B
there can be an at most finite number which do not have this pro-
perty that they belong to some D, and have as a boundary point
at least one point of the corresponding B;. Let us designate these
exceptional cnes by 7%,..., 7,, and for the moment disregard them.

The remaining components we shall separate conveniently into
two sets, a set (f,) such that uo one of these has any point of &'
on ity boundary, and a set (#,) such that each of these does have
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some point of F on its boundary. We shall treat them separately,
the latter set (with some modifications) we shall at?d bacl'c to F for a
ofresh start’. Let P,==P-1, Itis clear that F, is a finite point set.
Let for a given #,let i be the least integer such that #, belongs_a to D,
and has some point b, of B, on its boundary. Clearly b, is arc-
wise accessible from #, and £, b, contains a continuous curve g
which contains P, 4-b,. Now g& has no point in common with any
B, excepting B,. We may suppose that with each 1, we ha?re' a880-
ciated a g, as above, and write M,= B, 39, where i in the
last term is fixed and the summation extends over those sets for
which & corresponding # exists. We ommit the simple proof that M,
is a continuous curve, and that the set of these curves satisfies again
the first three conditions of our lemma, Their sum includes all
points of P not in 4 or in 2.

Among the sets 7, (which we previously set aside) there may
be some which have no points of ' on their boundary. We shall
disregard these entirely, their sum contains at most a finite num-
ber of points of P. The remainder of these and the components
we wish to modify and to add back to F. It is convenient to re-
name all of these components so as to have a single ,handy“ se-
quence: (f.). Then every #, is either a component #, or one of the
T, with points of F' on its boundary, and every such component is
some f,. Let P} ==t P: this may be a finite or countably infinite
point set. If it is infinite lef P! denote, as customarily, its closure.
This will differ from F;, of course, in a closed totally disconnectgd
subset of # But if P, is finite, let us make the convention that P,
denotes P, + a, where a, is an arbitrary point of /' on the boun-
dary of #,. Then in any case, P! is self-compact and contains a point
of F. We assert that ¢, -+ P, contains a compact continuous curve
go which contains P,". To show this it is sufficient to know that
i/ P, is a generalised continuous curve: i. . a complete metric
separable connected and locally connected space. Now #, - P, dif-
fers from fy, the closure of #;, by a subset of the boundary of ¢,
and this subset is easily recognised to be an F,. It is immediate
that £ 4 P, is a Gysubset of C and therefore complete (Ale-
xandroff). Certainly it is connected and locally connected at all
points of #/. That it is also locally connected at all points of P”
is readily deduced from the fact that this is a totally disconnected
point set.
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Now if g;" has been defined for all the components ¥, it is al-
most apparent that F'-|- 3¢ is a compact continuous curve B,
and that #*. M, is contained in ¥. Moreover, all but a finite num-
ber of the points of P belong to F*/ 4 X M,. Now to eomplete the
proof of our lemma it merely remains to show that we ean find
in /" a finite set of continuous curves M,,,..., M, such that these
are mutually exclusive, of diameter less than e, intersect F in a con-
tinuous curve, and contain all but a finite number of the points
of P which belong to #”. Hastily regarded, this is the same pro-
blem as our lemma. There is this important difference, of course,
that if @ denotes the (closed) set of points of F which are limit
points of F«F", then Q is totally disconnected. Now with each point
g of ¢ we can associate a continuous curve of F*/ which is of dia~
meter less than a preassigned positive number 4, which has ¢ for
inner point (relative to #), and which intersects ' in a continuous
curve. Out of the totality of these ,covering® sets we can extract
a finite covering set, and assemble this into a finite system of mu-
tually exclusive continuous curves. That there exists a d such that
the resulting ,covering” continuous curves of such a system are of
diameter less than ¢ is obvious, and our lemma is established.

We can now prove:

If H is a special curve-set of a one dimensional compact conti-
nuous curve C, then C contains a continuous curve G irreducible
about H.

For, let H = F'-|- F, as in the lemma. Let M}, M},..., M} be
the set of continuous curves of that lemma, where e is taken as 1/2,
and the superseript is introduced to facilitate the statement of an
inductive argument, Let P, be the finite set of points of P that do
not belong to M= I M} There exists in C a finite set of arcs
L, which irreducibly connects the sets F, and M?; i. e. if 2 deno-
tes any point of P, there exists one and only one point 2, of M?
such that I, contains an arc z;, and L, contains only one such
arc. For a given point x of P, the corresponding point z, of M?
will be called its projection (on M':x, may, of course, be a point
of ¥). Let (), denote the set of projection points (on M?1) of F,.
Now H,==F - P- M1+ () is vbviously a special curve-set of M.
With M replacing C let Mi,..., M2 be the set of continuous cur-
ves of our lemma for ¢==1/2% Let P, be the finite set of points

of P+ M1+ @, not contained in M*= 3 M} Let L, be a finite
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set of ares irreducibly connecting the set P, to M%. If a; is any
point of P, there is associated with a unique point x, of M? its
projection on M? and a unique arc x;x, of Ly. We may suppose
L, to have been defined for all values of », M" being defined by
the lemma, given M"* and ¢ taken as 1/2 and we let G=F-}L,.
We assert that G is the desired continuous curve.

'We shall give the proot in some detail since this will make
clearer, if that is necessary, the exposition which has gone before.
First, then, G is closed. For if y is a point of @ — @, it cannot
be a point of F. Therefore there is an integer n such that it is
not a point of M": we have only to take n so large that the dis-
tance of y to F' is greater than 1/2". Then y must be a limit point
of 3¢ L, But this is closed and belongs to G. Second, G is con-
nected. For, let z be any point of P. There exists a first integer #
such that = does not belong to M”: then it belongs to P, (defined
by analogy with P, and F,). Then in L, there is a unique arc a,
where x, is the projection point of 2 on M* If x, is a point of F,
we have shown that x may be arc-joined to #' in G. If not, there
is a first integer n, such that @, is not a point of A" In L, there
is a unique arc ,w,, where x, is the projection of x, om M™. If
at any time we arrive at a point of F, we have an arc joining
to F in G. If not we can continue indefinitely to discover a se-
quence of ares (whose sum is connected clearly) such that two non-
consecutive arcs are mutually exclusive and consecutive arcs have
an endpoint only in common. The diameters of these arcs converge
to zero at least as rapidly as the sequence (1/2%): this requires
a word of justification. Since x,, above, belongs to M” it belongs
to one of the continuous curves M/ and it cannot belong to more
than one of these unless it is a point of F. The second possibility
no longer interests us. Therefore we may say that the arc z,z,
belongs to M7, and its diameter is less than 1/2 Then it is clear
that the eclosure of the sum of these arcs is an are joining 2 to
a single point of F. Now any point of L is arcjoined in I, to
a point of P,, and this ultimately in 3% L, to some point of F.
We see then that & is arcwise connected.

Now if we suppose the points of P to be enumerated, p;, pysy Payrs
we have shown that in G there is associated with each p, a unique
are p,f,, where f, is a point of #. And it is clear from our de-
finition of the sets L, that every point of ¢' not in F belongs to
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at least one such arc. Therefore G'= F# -} I p,f,. We can see by
the argument above, that as » becomes indefinitely large, the dia-
meters of the arcs p, 7, converge to zero. It is an immediate con-
sequence of this that G is a continuous curve. There remains to
see that ¢ is irreducible about #'+ P. But it is irreducibly con-
nected about F'— P==H. For let 2 be any point of ¢ — H. z must
belong to some arc p,f,. If 2 does not separate p, from F in @,
then there isin G'—z an are p,f which is different, at least in some
points, from the are p,f,. But we have seen that with each point
P, there is associated one and only one arc conneeting i, in G, to
a point of F. Our assertion is proved.

Now it will be appreciated that the implications which we esta~
blished in the first part of this paper are valid, even when we
restrict ourselves to some special class of curve-sets. For it is essen-
tially merely a method quite independent of any ,class of curve-
sets“ for carrying out the desired construction (of the irreduecible
curve () upon general curve-sets when une already has a method
for doing this upon the special curve-sets. Such a method we have
given, above, when the curve-sets are one-dimensional. We may
then state the

Theorem: if H is a one-dimensional eurve-set of a continuous
curve C (even the most general) then H belongs to & continuous
subeurve & of C which is irreducible about H.

We may remark, finally, that this theorem can be slightly extended,
on the basis of this paper, by designating as the kernel of a curve-
set F the set of points K == (x) such that x belongs to a compo-
nent X of H and also to H— X. It is sufficient to require that
this kernel be one-dimensional.

We have left open the following problem: is every curve set H
of a continuous curve C contained in a continuous curve G irre-
ducible about it?
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