Ce dernier théorème résulte d'ailleurs directement du théor. du N 4 : si l'on décompose l'ensemble \(N \) en ensembles \(N_1 + \ldots + N_n \) fermés, disjoints et tels que \(d[f(N_i)] < \varepsilon \), l'égalité
\[
A = f(N_1) + \ldots + f(N_n)
\]
presents la décomposition demandée. De plus, si à la place de \(\varepsilon \) on considère une suite \(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n \) tendant vers 0, on obtient une suite des décompositions du genre envisagé de façon que les termes de la décomposition \(k + 1 \)-ème proviennent d'une subdivision des termes de la \(k \)-ème décomposition \(^1\)). Il suffit, en effet, de subdiviser les ensembles \(N_1, \ldots, N_n \).

\(^1\)) Pour les décompositions de ce genre, voir Hurewicz Annals, l. c.

Sur un théorème de Hessenberg \(^2\)).

Par

Gabriel Sudan (Bucarest).

G. Hessenberg a démontré le théorème suivant:

\[\text{"Tout nombre initial est un nombre principal additif".}\]

Dans cette note on va généraliser ce théorème pour une certaine classe de fonctions tranfinées: \(f_0; f_1; f_2; \ldots; f_i \ldots \) définies comme il suit:

Soient d'abord \(\beta \) et \(\gamma \) deux nombres ordinaux quelconques et \(f(x) \) une fonction de la variable \(x \). On désignera par \(\varphi_\gamma(\beta, f(x), v) \) la fonction qui satisfait à la récurrence suivante:

\[
\begin{align*}
\varphi_\gamma(\beta, f(x), 0) &= \beta \\
\varphi_\gamma(\beta, f(x), n + 1) &= f(\varphi_\gamma(\beta, f(x), n)) \\
\varphi_\gamma(\beta, f(x), \lim \{\gamma\}) &= \lim \{\varphi_\gamma(\beta, f(x), \gamma)\}.
\end{align*}
\]

Les valeurs de \(\varphi_\gamma \) sont donc des suites répétées de la fonction \(f(x) \), la valeur initiale étant \(\beta \). On pose maintenant:

\[
f_{\gamma} = f_\gamma(\alpha_\gamma, v) = \alpha_\gamma + v;
\]

et pour \(i > 0 \):

\[
f_i = f_i(\beta_i, \beta_{i-1}, \beta_{i-2}, \ldots, \beta_1, \alpha_i, v) = \varphi_\gamma(\beta_i, f_{i-1}(\beta_{i-1}, \beta_{i-2}, \ldots, \beta_1, \alpha_i, v), v)
\]

\(^1\)) La présente note est en étroite liaison avec un travail publié dans les Math. Annalen Vol. 105: "Zur Jacobsthalischen transformierten Arithmetik" et qui sera dédié dans la suite simplement par Z. J. tr. A. Pour tout ce qui concerne les notations que nous employons ici, le lecteur trouvera, dans le travail mentionné, les explications nécessaires.

\(^2\)) Z. J. tr. A. Pag. 40.
On va démontrer que

Tout nombre initial est un nombre principal pour toute fonction \(f_i \), s'il est plus grand que tous les nombres de la suite \(\beta_1, \beta_2, \ldots, \beta_i \).

Pour \(i = 0 \) c'est le théorème de Hessenberg. Pour \(i = 1 \) et \(i = 2 \) on obtient encore des résultats connus: Tout nombre initial est un nombre \(\delta \) et un nombre \(\varepsilon \).

Il suffit de démontrer le théorème pour le cas où

\[\beta_1 = \beta_2 = \ldots = \beta_i = 2. \]

En effet, la fonction \(f_i \) satisfait au théorème suivant: Tout nombre principal de \(f_i(\beta_1, \beta_2, \ldots, \beta_i, \alpha, \nu) \) est aussi nombre principal de \(f_i(\beta_1, \beta_2, \ldots, \beta_i, \alpha, \nu) \) s'il est plus grand que tous les nombres de la suite \(\beta_1, \beta_2, \ldots, \beta_i \). La condition est nécessaire et suffisante. Donc tout nombre initial, nombre principal de \(f_i(\beta_1, \beta_2, \ldots, \beta_i, \alpha, \nu) \), sera aussi nombre principal de \(f_i(\beta_1, \beta_2, \ldots, \beta_i, \alpha, \nu) \) s'il est plus grand que tous les nombres \(\beta_1, \beta_2, \ldots, \beta_i \).

Lemme 1. Soient: \(\nu > 1 \) (\(j = 1, 2, \ldots, i \)); \(\alpha > 1 \); \(\nu > 0 \)

\[\lambda_i = \max(\beta_1, \beta_2, \ldots, \beta_i, \alpha, \nu) \]

et \(|\lambda_i| \) le nombre cardinal de \(\lambda_i \). Si \(|\lambda_i| \geq \kappa_0 \) on a:

\[|\lambda_i| = |f_i(\beta_1, \beta_2, \ldots, \beta_i, \alpha, \nu)|. \]

Le lemme est évident pour \(f_0 \). Il suffit donc de démontrer que, s'il est vrai pour \(f_i \), il le sera aussi pour \(f_{i+1} \); ce qu'on va faire en utilisant l'induction par rapport à \(\nu \).

Pour \(\nu = 1 \) on a:

\[f_{i+1}(\beta_1, \beta_2, \ldots, \beta_i, \beta_{i+1}, \alpha, \nu) = \phi(\beta_{i+1}, f_i(\beta_1, \beta_2, \ldots, \beta_i, \alpha, \nu), 1) \]

c'est-à-dire:

\[|f_{i+1}(\beta_1, \beta_2, \ldots, \beta_i, \beta_{i+1}, \alpha, \nu)| = |f_i(\beta_1, \beta_2, \ldots, \beta_i, \beta_{i+1}, \alpha, \nu)| = |\lambda_{i+1}|. \]

D'autre part, si \(\nu \geq 1 \) et si

\[|f_{i+1}(\beta_1, \beta_2, \ldots, \beta_i, \beta_{i+1}, \alpha, \nu)| = |\lambda_{i+1}|. \]

1) On suppose \(\beta_j > 1 \) (\(j = 1, 2, \ldots, i \)). Z. J. tr. A. Pag. 41.
2) Z. J. tr. A. Pag. 42. Théorème II.
ce qui prouve que le nombre cardinal correspondant à la valeur de la fonction f_{+a} est le même que celui qui correspond au plus grand de ses paramètres.

Les nombres principaux de f_1, rangés par ordre de grandeur, constituent un ensemble bien-ordonné. Dans le cas où la suite $\beta_1, \beta_2, \ldots, \beta_\alpha$ ne contient que des nombres finis, le premier élément de cet ensemble est ω. On peut donc désigner les nombres principaux de f_1 par une seule lettre, par ex. ξ, affectée de deux indices: ξ_α indique que ξ_α est nombre principal de f_1, et α est le nombre ordinal de l'ensemble formé par les nombres principaux de f_1 plus petits que ξ_α. On a par ex.: $\xi_\alpha = \omega$. L'indice α jouit de la propriété suivante:

Si α est un nombre limite, par ex.: $\alpha = \lim \{\gamma\}$ on a:

$$\xi_{\alpha} = \lim \{\xi_\gamma\}.$$

En effet, la limite d'une suite de nombres principaux de f_1 est encore un nombre principal de cette fonction. Soit alors:

$$\xi_\beta = \lim \{\xi_\gamma\}.$$

Le nombre β est plus grand que tous les éléments de la suite $\{\gamma\}$. Il est donc plus grand ou au moins égal à sa limite:

$$\beta \geq \alpha.$$

D'autre part, de $\alpha = \lim \{\gamma\}$, on déduit:

$$\xi_\alpha > \xi_\gamma$$

pour tout γ, élément de $\{\gamma\}$. ξ_α est donc plus grand ou au moins égal à la limite de la suite $\{\xi_\gamma\}$. C'est-à-dire:

$$\xi_\alpha \geq \lim \{\xi_\gamma\},$$

ce qui entraîne

$$\alpha \geq \beta.$$

On aura donc:

$$\alpha = \beta.$$

Lemme II. Tout nombre principal ξ_α de f_1 $(2, 2, \ldots, 2, a_\nu)$ appartient à la même classe de nombres que son indice α si cet indice est plus grand ou au moins égal à ω. Dans le cas où α est un nombre fini, le nombre ξ_α est dénombrable.

En effet, on peut démontrer que l'on a:

$$\xi_\alpha = f_{+a}(2, 2, \ldots, 2, \omega \cdot a).$$

Donc, pour $a \geq \omega$, on aura, d'après le lemme I:

$$|\xi_\alpha| = |2 \cdot a| = |\alpha|;$$

et, pour $a < \omega$:

$$|\xi_\alpha| = |\omega \cdot a| = |\omega|.$$

Considérons maintenant un nombre initial quelconque Ω, et le nombre principal ξ_Ω qui a pour indice ce nombre initial. On a évidemment:

$$\xi_\Omega \geq \Omega.$$

Considérons, d'autre part, la suite $\{\xi_\gamma\}$ formée par tous les nombres principaux de f_1, dont l'indice est plus petit que Ω. On a:

$$\xi_\Omega = \lim \{\xi_\gamma\} (\gamma < \Omega).$$

De $\gamma < \Omega$ on déduit, à l'aide du lemme II,

$$|\xi_\gamma| < |\Omega|$$

ce qui veut dire:

$$\xi_\gamma < \Omega.$$

La limite de la suite $\{\xi_\gamma\}$ sera donc aussi plus petite ou tout au plus égale à Ω. C'est-à-dire:

$$\xi_\Omega \geq \Omega.$$

Donc:

$$\xi_\Omega = \Omega,$$

et le théorème est démontré.

1) Z. J. tr. A. Pag. 44.