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A dichotomy for P-ideals of countable sets

by

Stevo Todo r č e v i ć (Paris)

Abstract. A dichotomy concerning ideals of countable subsets of some set is in-
troduced and proved compatible with the Continuum Hypothesis. The dichotomy has
influence not only on the Suslin Hypothesis or the structure of Hausdorff gaps in the
quotient algebra P(N)/fin but also on some higher order statements like for example the
existence of Jensen square sequences.

The purpose of this note is to show that a dichotomy about P-ideals
of countable subsets of ω1 appearing previously in a number of restricted
contexts (see e.g., [1], [10], [11]) can be lifted without difficulties to the most
general and optimal form:

(∗) For every P-ideal I of countable subsets of some set S, either

(1) there is an uncountable A ⊆ S such that [A]ω ⊆ I, or
(2) S can be decomposed into countably many sets orthogonal to I.

Recall that an ideal I is a P-ideal if for every sequence {In} of elements
of I there is J ∈ I such that In \J is finite for all n. We shall consider here
only ideals of countable subsets of some index set S and we shall implicitly
assume that every finite subset of S belongs to the ideal we consider. A
subset B of S is orthogonal to a family F of subsets of S if B ∩ F is finite
for every F ∈ F . This notion of orthogonality comes from the classical
writings of Hausdorff, Luzin and Rothberger about the gaps in the quotient
algebra P(N)/fin. This connection will be discussed in more detail below.
The formulation of (∗), however, has its roots in a quite different area. This
is the area that grew out of the famous problem of Suslin and studies the
Ramsey-type properties of uncountable structures. We shall not reproduce
here a historical analysis of this (which can be found e.g. in [1], [10], [11]) but
instead concentrate on reproducing the analysis of (∗) and its consequences
in the present unrestricted form.
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1. Suslin trees. This is an unrestricted version of §2.1 of [1]. A tree
is a well-founded poset T = (T,≤) which has the property that pred(t) =
{s ∈ T : s ≤ t} is totally ordered for every t ∈ T . Identifying T with the
family P (T ) = {pred(t) : t ∈ T} it is natural to let (T )⊥ denote the ideal
of all countable subsets of T which are orthogonal to P (T ). Recall that a
Cantor tree is any tree of height ω +1 all of whose levels except the last one
are countable.

Claim 1. (T )⊥ is a P-ideal whenever T contains no Cantor subtrees.

P r o o f. Note that the equivalent formulation is that (T )⊥ is a P-ideal
whenever the family P (T ) is locally countable, i.e., it has a countable trace
on any countable subset of T . So, given a sequence {In} of elements of
(T )⊥ we let Iω be the union of In’s and let J be a subset that interpolates
the pregap formed by the two countable orthogonal families {In} and the
restriction of P (T ) to Iω.

Note that an uncountable subset A of T such that [A]ω ⊆ (T )⊥ is a
subtree of T of height ≤ ω, so the alternative (1) for (T )⊥ is equivalent
to the fact that T has an uncountable antichain. Note now that a subset
of T that is orthogonal to (T )⊥ must be equal to the union of finitely
many chains, so the alternative (∗)(2) is equivalent to the statement that
T can be decomposed into countably many chains. From this we conclude
that (∗) implies the Suslin Hypothesis. However, one learns more from this
example, the fact that in (∗) the hypothesis that I is P-ideal is essential.
To see this, let σQ be the tree of all well-ordered subsets of the rationals
ordered by end-extension and let I be the ideal of all countable subsets
of σQ that can be covered by finitely many sets from P (σQ). Note that
I⊥ ∩ [σQ]ω = (σQ)⊥, so the dichotomy (∗) applied to I would say that
either σQ has an uncountable chain or it can be decomposed into countably
many antichains. It is well known (see [8], §9) that neither of these two
alternatives are true. It is known (see [10], [11]) that (∗) for non-P-ideals is
true modulo restriction that the ideal be ℵ1-generated. In this example this
would mean that the tree would be of size ℵ1 and then (∗) reduces to the
well known statement that every tree of size ℵ1 without uncountable chains
is the union of countably many antichains (see [8], §9).

Forcing with a nontrivial measure algebra gives us a coherent sequence
(see §3 below) which violates (∗). This has been shown in §7 of [11]. On the
other hand, if R is a nontrivial measure algebra and if Ṫ = (θ,≤Ṫ ) is an
R-name for a tree on θ which contains no Cantor subtree then the family I
of all countable A ⊆ θ such that

‖{α ∈ A : α ≤Ṫ β} is finite‖ = 1

for all β ∈ θ is a P-ideal. It turns out that the P-ideal (Ṫ )⊥ will not violate
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(∗) in the forcing extension by R unless the P-ideal I already violates (∗)
in the ground model. All this has been shown by J. Hirschorn in a recent
article [4] during the course of proving that (∗) implies that the Suslin Hy-
pothesis is preserved under forcing by any measure algebra. Hirschorn [4]
also has a modification of (∗), with alternative (1) strengthened and alter-
native (2) weakened, which is tailored to imply the measure-algebra-forcing
preservation of the statement that all Aronszajn trees are special, i.e., the
union of countably many antichains:

(∗c) For every P-ideal I of countable subsets of some uncountable regular
cardinal θ, either

(1) there is a closed uncountable C ⊆ θ such that [C]ω ⊆ I, or
(2) there is a stationary subset S of θ which is orthogonal to I.

It might be worth investigating which of the other consequences of (∗)
that we list below allow randomization in this sense. In particular, it would
be interesting to know whether the influence of (∗) on Hausdorff gaps, which
we present in the next section, allows for randomization.

2. Hausdorff gaps. This is an unrestricted version of Section 2.2 of [1].
Let A and B be two orthogonal families of countable subsets of some set S,
i.e., two families of sets with the property that every member of A has finite
intersection with every member of B. For the purpose of this example it is
convenient to think of a countable subset a of S as given together with its
enumeration, a bijection between an ordinal ≤ ω and a. Thus, it is natural
to use the notation a[n] for the subset of a consisting of the first n members
of a in that fixed enumeration. With the pregap (A,B) we associate the
ideal I = I(A,B) of all countable subsets B of B for which there exists a ∈ A
such that

(i) B(a, n) = {b ∈ B : b ∩ a ⊆ a[n]} is finite for all n < ω.

Remark. Note that if x, y ∈ A and n ≤ m are such that (x \ y) ∪
(y[n] ∩ x) ⊆ x[m] then B(y, n) is included in B(x,m). So, if x is almost
included in y, then for every n there is m such that B(y, n) is included in
B(x,m). From this we conclude that if an a ∈ A witnesses the condition
(i) for a given B ∈ I then so does any a′ ∈ A which almost includes a.
A similar argument shows that the definition of I does not depend on the
choice of enumerations of countable subsets of S.

Claim 2. I(A,B) is a P-ideal whenever A is σ-directed under almost
inclusion.

P r o o f. Let {Bk} be a given sequence of elements of I and let {ak} be
the corresponding sequences from A. Since A is σ-directed, pick a ∈ A such
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that ak \ a is finite for all k. From the Remark we know that Bk(a, n) is
finite for all n, k < ω. For n < ω, set

B′
n = Bn \Bn(a, n).

Let B =
⋃

n<ω B′
n. Then B almost includes each Bn and a witnesses its

membership in I(A,B).

Claim 3. If X ⊆ B is orthogonal to I(A,B) then c =
⋃

X is orthogonal
to A.

P r o o f. Suppose a ∩ c is infinite for some a ∈ A. So for each n < ω we
can fix bn ∈ X such that a ∩ bn 6⊆ a[n]. It follows that {bn : n < ω} is an
infinite subset of X that belongs to I, a contradiction.

Recall that two families aξ (ξ < ω1) and bξ (ξ < ω1) of countable sets
indexed by ω1 form a Hausdorff gap if they are orthogonal to each other and
if they satisfy the following condition that shows up in Hausdorff’s original
construction of an (ω1, ω

∗
1)-gap in the quotient algebra P(N)/fin (see [3]):

(ii) {ξ < α : aα ∩ bξ ⊆ aα[n]} is finite for all α < ω1 and n < ω.

Clearly, if aξ (ξ < ω1) and bξ (ξ < ω1) form a Hausdorff gap then they are
inseparable in a rather strong sense: For every subset X of

⋃
ξ<ω1

(aξ ∪ bξ)
one of the sets

{ξ < ω1 : aξ ⊥ X} or {ξ < ω1 : bξ ⊆ X}

must be countable.

Claim 4. If there is an uncountable X ⊆ B such that [X]ω ⊆ I(A,B)

then (A,B) contains a Hausdorff subgap.

P r o o f. Let bξ (ξ < ω1) be a one-to-one sequence of elements of X. For
each α < ω, pick aα ∈ A witnessing the fact that {bξ : ξ < α} belongs to
I(A,B).

Applying (∗) to the ideal I(A,B) we get the following consequence remi-
niscent of the influence of the Open Coloring Axiom on the gaps in P(N)/fin
(see [10], §8):

(∗g) If A and B are two orthogonal families of countable subsets of some
set S and if A is σ-directed under almost inclusion, then either

(1) (A,B) contains a Hausdorff subgap, or
(2) there is a countable family {Sn} of subsets of S which are or-

thogonal to A such that every element of B is included in one of
the Sn’s.
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Note that (∗g) has an element of reflection which says that if (A,B) cannot
be separated as in (2) then it contains a subgap of size ℵ1 which also cannot
be separated as in (2). We have already remarked that this reflection state-
ment for A, B ⊆ P(N) is true under OCA with no restriction that A must
be a P-ideal but of course changing the alternative (2) to the statement that
there is a sequence {Sn} of subsets of S such that for every a ∈ A and b ∈ B
there exists n such that a ⊥ Sn and b ⊆ Sn (a statement which is equiv-
alent to (2) when A is σ-directed under almost inclusion). Unfortunately,
this unrestricted reflection, the main source of strength of OCA, cannot be
stretched to the context of an arbitrary set S in place of N at least if we
are looking for a statement compatible with GCH or standard Forcing Ax-
ioms. For example, many of these axioms imply the existence of a regular
uncountable cardinal θ which carries a diamond sequence concentrating on
cofinality omega ordinals. Using the diamond sequence one easily constructs
two orthogonal families A and B of subsets of θ of order type ω such that

(a) F 7→ sup(F ) is one-to-one on A ∪ B,
(b) every unbounded subset of θ contains a member of A as well as a

member of B.

Thus, A and B cannot be separated even though, using a bit of Martin’s
axiom, any two subfamilies of A and B of size ℵ1 can be separated. Note
also that I = (A)⊥ ∩ [θ]ω is a P-ideal of countable subsets of θ which shows
that in (∗) we cannot switch the alternatives (1) and (2), at least if we would
like to be compatible with, say, GCH.

3. Coherent sequences. This is an unrestricted version of §2.3 of [1].
Hausdorff’s original (ω1, ω

∗
1)-gap can be considered as a sequence fα : Aα→2

(α < ω1) of partial functions on N whose domains Aα (α < ω1) form an in-
creasing sequence relative to the inclusion ⊆∗ modulo a finite set and which
is coherent in the sense that fα =∗ fβ�Aα. (Here =∗ denotes equality mod-
ulo a finite set.) A family of coherent partial functions may be coherent
for the trivial reason that there is a global function which induces them all
modulo finite changes. On the other hand such a global function cannot be
found if the family contains an uncountable subfamily of pairwise incom-
patible functions. The coherent sequence fα : Aα → 2 of Hausdorff [3] is
nontrivial exactly for this reason since his condition (ii) presented above in
§2 implies that every uncountable subsequence of {fα} can be refined to an
uncountable sequence of pairwise incompatible functions. The dichotomy
which says that one of these two alternatives happens for every family of
partial functions from N into 2 is one of the reformulations of the Open Col-
oring Axiom. It is therefore natural to search for a similar dichotomy about
partial functions on an arbitrary set rather than N. Again some restriction
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on the family needs to be made. One of the natural restrictions is that the
coherent family F of partial functions can be written as

F = {fA : A → 2 : A ∈ A},

where A is a family of countable subsets of some set S which is σ-directed
under the relation ⊆∗. From the coherence we see that

A0 = {f−1
A (0) : A ∈ A} and A1 = {f−1

A (1) : A ∈ A}

are orthogonal to each other. The assumption that A is σ-directed gives
us that both A0 and A1 are σ-directed. Note that the alternative (∗g)(2)
gives us a total function g : S → 2 such that g�A =∗ fA for all A ∈ A. The
alternative (∗g)(1), on the other hand, gives us an uncountable subfamily of
F of pairwise incompatible functions. In other words, we have the following:

(∗h) A coherent family F = {fA : A → 2 : A ∈ A} of partial functions
indexed by some σ-directed family A of countable subsets of some
set S is induced by a single total function g : S → 2 if and only if
it contains no uncountable subfamily of pairwise incompatible func-
tions.

The full power of (∗) itself is being used, however, when one considers
some weaker forms of coherence of partial functions. We shall say that two
partial functions fA : A → ω and fB : B → ω are weakly coherent if for
every X ⊆ A∩B, the function fA is unbounded on X iff the function fB is
unbounded on X.

(∗d) For every family F = {fA : A → ω : A ∈ A} of weakly coherent
functions indexed by some σ-directed family A of countable subsets
of some set S, either

(1) there is an uncountable X ⊆ S such that f�X is finite-to-one for
every f ∈ F , or

(2) S can be decomposed into countably many sets on which each of
the functions from F is bounded.

To see that (∗d) follows from (∗) let I be the family of all countable subsets
I of S for which there exists A ∈ A which almost includes I such that the
function fA is finite-to-one on I.

Claim 5. I is a P-ideal.

P r o o f. Given a sequence {In} of elements of I let {An} be the sequence
of witnesses from A. Since A is σ-directed, pick A ∈ A such that An \A is
finite for all n. For n < ω, set

I ′n = {x ∈ In ∩A : fA(x) ≥ n}.
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Note that In \ I ′n is a finite set by the weak coherence of the family F . It is
clear that I =

⋃
n<ω I ′n is a member of I as witnessed by A ∈ A.

Applying (∗) to I we get immediately the alternatives (1) and (2) of (∗d)
from the corresponding alternatives of (∗).

4. Square sequences. For an ordinal θ (typically regular and uncount-
able) a C-sequence on θ is simply a sequence of the form Cα (α < θ) such
that Cα+1 = {α} and Cα is a closed unbounded subset of α when α is limit.
The coherence in this context means that Cα = Cβ∩α whenever α is a limit
point of Cβ . When a given C-sequence has this coherence property then it
is usually called Jensen’s square sequence (see [5]), in which case one usu-
ally assumes that the sequence satisfies some sort of nontriviality condition
such as, for example, the nonexistence of a closed unbounded subset C of
θ such that Cα = C ∩ α whenever α is a limit point of C. With a given
C-sequence Cα (α < θ) one usually associates the notion of a walk from an
ordinal β to some smaller ordinal α along this sequence and defines various
distance functions (see [9]). Here, we shall be interested in the simplest one,
the function that counts the number of steps in the walk. Formally, define
%2 : [θ]2 → ω recursively by

%2(α, β) = %2(α, min(Cβ \ α)) + 1.

The nontriviality of the square sequence Cα (α < θ) in case θ is a regular
uncountable cardinal can be reformulated as follows (see [9], 1.14(c)).

(iii) For every family F of size θ whose members are pairwise disjoint
finite subsets of θ and for every integer n there exist a and b in F
such that %2(α, β) > n whenever α ∈ a and β ∈ b.

The coherence condition on the square sequence Cα (α < θ) gives us the
following notion of coherence between the functions (%2)α = %2(·, α) : α → ω
(see [9], 1.14(a)):

(iv) sup
ξ<α

|%2(ξ, α)− %2(ξ, β)| < ∞ for every α < β < θ.

The influence of (∗) on Jensen’s notion of square sequences can now be
stated as follows:

(∗e) Every coherent C-sequence defined on some regular uncountable car-
dinal other than ω1 must be trivial.

To see this, consider the ideal I of all countable subsets I of θ such that
each of the mappings (%2)α is finite-to-one on I. Note that (iv) in partic-
ular means that (%2)α (α < θ) is a weakly coherent family of functions, so
as above we conclude that I is a P-ideal of countable subsets of θ. The



258 S. Todorčevi ć

alternative (∗)(1) for this I is clearly impossible by our assumption about
the cofinality of θ. The alternative (∗)(2), on the other hand, gives us an
unbounded subset X of θ on which each of the functions (%2)α is bounded
and this in particular means that (iii) fails. From this we conclude that the
given C-sequence Cα (α < θ) must be trivial, i.e., there must be a closed
unbounded subset C of θ such that C ∩ α = Cα for all limit points α of C.

This can be seen more directly as follows. Given the set X we first find an
unbounded subset Y of θ and an integer n such that %2(α, β) ≤ n whenever
α ∈ X, β ∈ Y and α < β. Suppose that n is the minimal integer for which
one can find two such sets X and Y . If the C-sequence is nontrivial then
for each large enough limit ordinal ξ in θ there must be β(ξ) in Y above ξ
such that ξ is not a limit point of Cβ(ξ). It follows that there is an ordinal
f(ξ) < ξ such that the walk from β(ξ) to any ordinal α in the interval
(f(ξ), ξ) has the walk from ξ to α as a proper tail. Applying the Pressing
Down Lemma to the regressive map f gives us a stationary set S of limit
ordinals of θ such that f takes some constant value η on S. Let X0 be the
tail of X above η and let Y0 = S. Then X0 and Y0 are unbounded subsets
of θ on whose product the function %2 is bounded by n − 1, contradicting
the minimality of n.

The proof that the statement (iii) is equivalent to the nontriviality of the
C-sequence is very similar and so the reader is urged to supply the proof of
this equivalence using the same basic idea.

Note that on ω1 there is always a nontrivial coherent C-sequence. It
suffices to take for every limit ordinal α < ω1 a subset Cα of order type
ω which is cofinal in α. The coherence condition is vacuously true as no
Cα has limit points. From (∗e) we conclude that the dichotomy (∗) implies
that Jensen’s square principle fails on any regular cardinal > ω1. By recent
results from the Inner Model Theory we learn that any consistency proof
of (∗) must involve considerably strong large cardinal assumptions. In the
next section we shall see that indeed the consistency of the existence of a
supercompact cardinal gives us the consistency of (∗).

The above proof suggests the following preordering between partial
integer-valued functions: f ≤0 g iff dom(f) ⊆ dom(g) and g is unbounded
on any subset of dom(f) on which f is unbounded. Note that the condition
(iv) in particular means that (%2)α (α < θ) is an ≤0-increasing sequence of
functions. The condition (iii) on the other hand implies that the sequence
has no upper bound. There is another more elementary example of an
≤0-increasing and ≤0-unbounded sequence. Namely consider any sequence
eα : α → ω (α < ω1) of finite-to-one mappings. However, since ω1 is the
maximal length of any sequence of finite-to-one mappings it is natural to ask
for a longer sequence that would be ≤0-increasing and ≤0-unbounded for
more subtle reasons. The following dichotomy about increasing sequences
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in this ordering shows that the prototype example of finite-to-one mappings
must, in fact, be present in any case when there is unboundedness:

(∗f ) For every ≤0-increasing sequence fα : α → ω (α < θ), either

(1) there is an uncountable X ⊆ θ such that fα�X is finite-to-one
for all α < θ, or

(2) there is g : θ → ω such that fα ≤0 g for all α < θ.

To see that (∗f ) follows from (∗), assume θ has uncountable cofinality (or
else (∗f )(2) is easily satisfied) and consider the ideal I of all countable
I ⊆ θ such that fα�I is finite-to-one for all sufficiently large α. Using the
assumptions that θ has uncountable cofinality and that the sequence of fα’s
is ≤0-increasing, it is not hard to show that the ideal I is a P-ideal. Now we
apply (∗) to I. It is clear that the alternative (∗)(1) gives us the set X ⊂ θ
satisfying (∗f )(1), which in turn implies that θ has cofinality exactly ω1.
On the other hand, if θ =

⋃∞
n=0 Sn is a disjoint decomposition of θ into sets

that are orthogonal to I, the function g : θ → ω that is constantly equal to
n on Sn would bound all fα’s.

5. Consistency. The purpose of this section is to show both that (∗) is
a consequence of the Proper Forcing Axiom as well as that it is consistent
with GCH relative to the consistency of the supercompact cardinal. The
global structure of this consistency proof follows the outline of Baumgart-
ner’s proof of the consistency of PFA via Laver’s supercompactness sequence
(see [2], [6]) except that instead of using Shelah’s Proper-Forcing Iteration
Lemma we use results of Shelah [7, V] that forcing notions with certain com-
pleteness properties can be iterated without adding reals. Thus, the actual
proof of consistency of (∗) with (G)CH is done using a countable-support
iteration up to a supercompact cardinal where at a successor stage we force
with a proper and complete forcing notion that takes care of a particular
instance of (∗).

Given a forcing notion P and a countable elementary submodel M of
some large enough structure of the form Hκ, we say that a condition q of
P is M-generic if it forces that the generic filter intersects D ∩M for every
dense open subset D of P which belongs to M . The properness of the forcing
notion P is the requirement that such a condition q can always be found.
Note however the stronger requirement that one can put on q: that q should
extend every condition of some filter of P ∩M intersecting every dense open
subset of P belonging to the submodel M . Having such a condition q for
every sufficiently large countable elementary submodel ensures not only that
P is proper but also that it introduces no new reals. This in fact will be our
goal when designing our basic forcing notion that deals with a particular
instance of (∗). The forcing notion that we are just about to describe is a
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natural generalization of one from [1] designed for proving the consistency
of (∗) on ω1.

Our input is a nonprincipal P-ideal I on some ordinal θ which has the
property that θ cannot be decomposed into countably many sets orthogonal
to I but every smaller ordinal can. Note that this in particular implies
that θ has uncountable cofinality. The poset P = PI is a natural poset
designed to force an uncountable subset A of θ such that [A]ω ⊆ I. Thus,
the conditions of P are pairs p = 〈xp,Xp〉 where:

(v) xp is a countable subset of θ,
(vi) Xp is a countable collection of cofinal subsets of [I]ω when considered

as a partial ordering ordered by the relation ⊆.

Before defining the ordering of P let <w be a fixed well-ordering of I. For
a ∈ [I]ω let Aa be the <w-minimal member C of I such that B ⊆∗ C for
all B in a and such that C is covered by the union of the B’s from a. The
ordering on P is defined by letting q ≤ p (q extends p) when

(vii) xq end-extends xp,
(viii) Xp ⊆ Xq,
(ix) for every X ∈ Xp the set {a ∈ X : xq \ xp ⊆ Aa} is cofinal in [I]ω

and it belongs to Xq.

Lemma 1. For every p ∈ P and γ < θ there is an extension q of p such
that xq \ γ 6= ∅.

P r o o f. Otherwise, for every β ∈ θ \ γ there is X ∈ Xp such that

X(β) = {a ∈ X : β ∈ Aa}
is not cofinal in [I]ω. For a given X ∈ Xp, let B(X) be the set of all β ∈ θ\γ
for which X(β) is not cofinal in [I]ω. Our assumption is that the family
B(X) (X ∈ Xp) covers θ \ γ so we shall reach a contradiction once we show
that each B(X) is orthogonal to I. For suppose that for some X ∈ Xp there
is a countably infinite set B ⊆ B(X) belonging to I. Since I is a P-ideal
and X is cofinal in [I]ω, removing a finite set from B, we may assume that

Y = {a ∈ X : B ⊆ Aa}
is cofinal in [I]ω. Note that Y ⊆ X(β) for each β ∈ B, so Y is not supposed
to be cofinal in I because no X(β) is, a contradiction.

Lemma 2. P is proper.

P r o o f. We are given a countable elementary submodel M of some large
enough structure Hκ such that θ, <w, I, P ∈ M . We are also given p0 ∈
P∩M . Let {Dn} be an enumeration of all dense open subsets of P that are
members of M . Starting from p0 we build a chain of conditions pn =(xn,Xn)
(n < ω) such that pn+1 ∈ Dn ∩ M for all n. We shall find a condition q
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extending all pn’s. Having in mind a stronger completeness property of P,
we consider an arbitrary set B ⊆ M ∩θ which has the property that A ⊆∗ B
for all A ∈ I∩M . We shall try to construct the sequence {pn} in such a way
that the following two conditions are satisfied when we let xω =

⋃
n<ω xn:

(x) xω \ x0 ⊆ B,
(xi) for every n<ω and X∈Xn, the set Z(X, n)={a∈X : xω \ xn⊆Aa}

is cofinal in [I]ω.

If this can be done then q = (xq,Xq) defined by

xq = xω, Xq = {Z(X, n) : n < ω, X ∈ Xn} ∪
⋃

n<ω

Xn

is the required extension. Using some enumeration device, to take care of
(xi), we need to provide for each n < ω and X ∈ Xn an integer m > n such
that the definition of pm+1, pm+2, . . .will ensure (xi) for this X. Let

X1 = {a ∈ X : xm \ xn ⊆ Aa}.
By the assumption pm ≤ pn, this set is cofinal in [I]ω. Since I is a P-ideal
there is AM ⊆ M ∩ θ in I such that A ⊆∗ AM for all A ∈ I ∩M . Since X1

is ⊆-cofinal in [I]ω there is a finite set FM ⊆ M ∩ θ such that

X2 = {a ∈ X1 : AM ⊆ Aa ∪ FM}
is cofinal in [I]ω. So if we are able to find an extension pm+1 of pm in
Dm ∩M such that xm+1 \ xm is included in (AM ∩B) \ FM (and also keep
this true about any xi+1 \xi for i ≥ m), this will ensure that the set Z(X, n)
includes the cofinal set X2 so itself will be cofinal in [I]ω. So it really suffices
to show how to satisfy the following two demands for a given set A ⊆ M ∩ θ
in I with the property that C ⊆∗ A for all C ∈ I ∩M :

(xii) pm+1 ∈ Dm ∩M,

(xiii) xm+1 \ xm ⊆ A.

Suppose such an extension pm+1 cannot be found. Let Y0 be the collection
of all a ∈ [I]ω such that for some finite set F ⊆ Aa there is no p ∈ Dm

extending pm such that xp \ xpm is a subset of Aa \ F . Clearly Y0 ∈ M .
Note that every a ∈ [I]ω which belongs to M is a member of Y0 since we
can take F = Aa \ A. It follows that Y0 = [I]ω. By the Pressing Down
Lemma, applied in M , there is a finite set F0 in M and a stationary subset
S of [I]ω in M such that F0 witnesses a ∈ Y0 for all a ∈ S. Note that

q1 = 〈xpm
,Xpm

∪ {S}〉
is a member of P ∩ M which extends pm so by Lemma 1, applied in M ,
there is a β in M ∩ (max(xpm ∪ F0), θ) such that

q2 = 〈xpm ∪ {β},Xq1 ∪ {{a ∈ X : β ∈ Aa} : X ∈ Xq1}〉
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belongs to P ∩M and it extends q1. Since Dm is a dense open subset of P
which belongs to M there is q3 ≤ q2 in Dm ∩M . Applying the definition of
q3 ≤ q1 to X = S ∈ Xq1 we conclude that

T = {a ∈ S : xq3 \ xpm ⊆ Aa}

is cofinal in [I]ω. Choose a in T . Since β = min(xq3 \xpm
) the set xq3 \xpm

does not intersect the finite set F0 so from xq3 \ xpm ⊆ Aa we conclude
xq3 \ xpm ⊆ Aa \ F0, contradicting the fact that F0 witnesses a ∈ Y0. This
finishes the proof of Lemma 2.

Note that we have just shown the following.

Lemma 3. The Proper Forcing Axiom implies (∗).

Let us now recall the notion of α-proper forcing for a countable ordinal
α saying that, given an ∈-chain of length α of countable elementary sum-
bodels of some large enough structure Hκ containing our forcing notion, an
arbitrary condition from the smallest model can be extended to a condition
that is simultaneously generic over all the models of the chain. It turns out
that with very little extra work one can show that our forcing notion P
satisfies this stronger condition of properness. This stronger property of P
will be needed below in Lemma 7.

Lemma 4. P is α-proper for every countable ordinal α.

P r o o f. This is done by induction on α using the following inductive
hypothesis:

(xiv) For every continuous ∈-chain Mξ (ξ ≤ α) of countable elementary
submodels of Hκ, every p0 ∈ P ∩ M0 and every set B ⊆ Mα ∩ θ
such that A ⊆∗ B for all A ∈ I ∩Mα there is a q ∈ P extending p0

which is Mξ-generic for all ξ ≤ α and which has the property that
xq \ xp0 ⊆ B.

We have seen the case α = 0 during the course of the proof of Lemma 2.
Suppose first that α is a successor ordinal and let a = I ∩ Mα−1. Note
that Aa belongs to Mα being definable from <w and a which belong to
Mα. Therefore, this step follows from the inductive hypothesis applied to
the set B ∩Aa (which, being a cofinite subset of Aa, belongs to Mα) inside
the model Mα and then applying the case of a single model. Assume now
that α is a limit ordinal and fix an increasing sequence αi (i < ω) cofinal
in α. For i < ω, let ai = Mαi

∩ I and let Bi = B ∩ Aai
. Note that

Bi ∈ Mαi+1. Recursively on i, starting from p0, we build a decreasing
sequence of conditions pi+1 ∈ Mαi+1 ∩ P (i < ω) such that

(xv) xpi+1 \ xpi
⊆ Bi \ Fi,
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where Fi is a finite subset of Bi given to us by some bookkeeping device
in order to make sure that any set X appearing in some Xpn will have its
set Z(X, n) (see (xi) above) cofinal in [I]ω. Note that there is no problem
in getting pi+1 from pi since working in Mαi+1 we can apply the inductive
hypothesis to pi, 〈Mξ : ξ ≤ αi〉 and Bi \Fi which all belong to Mαi+1. Once
this is done the pair q = 〈xq,Xq〉 obtained by letting

xq =
⋃

n<ω

xpn and Xq = {Z(X, n) : n < ω, X ∈ Xpn} ∪
⋃

n<ω

Xpn

will be a condition of P which extends all pi’s and satisfies the conclusion
of Lemma 3.

Starting again from the basic idea of the proof of Lemma 2, we now
establish an even stronger completeness property of our forcing notion P.
To state this we need yet another basic notion from [7, V] which, for the
convenience of the reader, will be defined during the course of the proof of
the following lemma.

Lemma 5. P is complete with respect to some simple σ-complete com-
pleteness system.

P r o o f. We need to find a second order formula Ψ(Y1, Y2; y1, y2, y3)
which with every triple 〈M,P, p0〉, where M is a countable elementary sub-
model of Hκ, associates the family

GΨ
C = {G ∈ Gen(M,P, p0) : M |= Ψ(G, C,P, p0,~a)},

for C an arbitrary subset of M , that forms a σ-complete filter base on the set
Gen(M,P, p0) of all (M,P)-generic subsets of P ∩M that have extensions
in P(≤ p0). Here ~a is a fixed parameter from Hκ. To see what Ψ should
say consider a triple (M,P, p0). Suppose C is a subset of M which codes,
in some standard way, the following objects:

(xvi) an enumeration {Dn} of all dense open subsets of P which belong
to M ,

(xvii) an enumeration {Xn} of all cofinal subsets of I which belong to M ,
(xviii) a function F : ω → [M ∩ θ]<ω,
(xix) a subset B ⊆ M ∩ θ such that A ⊆∗ B for all A ∈ I ∩M .

We let Ψ(G, C;P, p0, I) say that the decoding of C gives us objects of
(xvi)–(xix), that G is a filter generated by a decreasing sequence {pn} of
conditions which starts with p0 such that for all but finitely many m, pm+1

belongs to
⋂

i≤mDi and that xpm+1 \ xpm is a subset of B disjoint from any
finite set F ⊆ M ∩ θ of the following form: there is i ≤ m such that Xi

belongs to some Xpj
(j ≤ m) and if k is the minimal such j, then F = F (l)
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where l is the minimal integer such that

Xl = {a ∈ Xi : xpm
\ xpk

⊆ Aa}.
This definition is based on the proof of Lemma 2 where the function F :
ω → [M ∩θ]<ω is given by letting F (i) be the minimal finite set E such that

Xl = {a ∈ Xi : AM ⊆ Aa ∪ E}
is cofinal in [I]ω. Thus any set C ⊆ M whose decoding gives us this partic-
ular F : ω → [M ∩ θ]<ω and whose set B of (xix) is equal to AM will have
the property that any G such that

M |= Ψ(G, C;P, p0, I)

will be an M -generic filter of P ∩ M containing p0 and having extensions
in P. In other words, such X will be a witness of P being complete with
respect to the completeness system defined by Ψ .

It is not difficult to verify that the system which Ψ defines is in fact σ-
complete since the diagonalization procedure presented above in the proof
of Lemma 2 is flexible enough to satisfy an arbitrary sequence {Bn} of sets
as in (x) rather than a single B ⊆ M ∩ θ with the property A ⊆∗ B for all
A ∈ I ∩M .

We have already mentioned that the case when the ideal I lives on θ = ω1

is in some sense special and that the consistency of (∗) for S = ω1 does not
require large cardinals. This comes from the fact that in this case the poset
P = PI satisfies some strong chain condition that allows it to be iterated
preserving cardinals. Unfortunately, the chain condition Lemma 3.6 of [1]
has the implicit assumption of CH as the very definition of the poset PI
uses this hypothesis. Since there might be some reasons to consider the
present version of PI in cases when CH fails, we sketch a proof of the chain
condition lemma which does not use any assumptions about the continuum.

Lemma 6. Suppose I is a P-ideal of countable subsets of ω1 such that ω1

cannot be decomposed into countably many sets orthogonal to I. Then the
corresponding poset P = PI satisfies the properness isomorphism condition.

P r o o f. This means that if we are given two countable elementary sub-
models M0 and M1 of some large enough structure Hκ such that P ∈
M0 ∩ M1 and an isomorphism h between M0 and M1 which is equal to
the identity on M0 ∩ M1, then for every p ∈ P ∩ M0 there is a condition
q ∈ P which extends both p and h(p) such that q is M0-generic and such
that q forces that the mapping h sends Ġ∩M0 isomorphically onto Ġ∩M1,
where Ġ is the canonical name for the generic filter of P.

The condition q is obtained as an extension of a sequence pn (n < ω) of
elements of P ∩ M0 which starts with p0 = p and which is obtained via a
diagonalization procedure similar to that in the proof of Lemma 2. The only
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new feature is that now when moving from pm to pm+1 we have to take care
not only of cofinal sets appearing in certain Xpn ’s but also of their h-images.
Thus, at a given stage m where we take care of some X ∈ Xpi (i ≤ m), we
additionally take care of h(X). Note that h(pm) extends h(pi) and that
since h is the identity on I (and this is the point where the assumption that
I consists of countable subsets of ω1 is used), we have

(xx) xh(pm) = xpm and xh(pi) = xpi .

It follows that the set

X1 = {a ∈ h(X) : xpm
\ xpi

⊆ Aa}
is cofinal in [I]ω. So there is a finite set F ⊆ δ = M0 ∩ ω1 = M1 ∩ ω1 such
that

X2 = {a ∈ X1 : A(M0∩I) ⊆ Aa ∪ F}
is cofinal in [I]ω. This will be an additional finite set which we will have to
avoid while constructing pn (n > m). When this is done we form a condition
q = (xq,Xq) of P by letting xq be the union of the xpn ’s and

Xq =
⋃

n<ω

(Yn ∪ Zn), where

Yn = Xpn ∪ {{a ∈ X : xq \ xpn ⊆ Aa} : X ∈ Xpn},
Zn = h′′Xpn ∪ {{a ∈ h(X) : xq \ xpn ⊆ Aa} : X ∈ Xpn}.

Then q is an M0-generic condition which extends not only the pn’s but also
their h-images h(pn)’s, and therefore forces that Ġ∩M0 is generated by the
sequence {pn} while Ġ ∩ M1 is generated by the sequence {h(pn)}. This
finishes the proof.

We are now in a position to complete the consistency proof of (∗) with
GCH assuming the consistency of the existence of a supercompact cardinal.

Lemma 7. If there is a supercompact cardinal then there is a proper
forcing notion which simultaneously forces (∗) and the GCH.

P r o o f. As indicated in the introduction to this section, the general
outline of the proof is a well familiar one. We take a supercompact cardinal
κ and if necessary go to a forcing extension so that we moreover have the
GCH. We choose a Laver sequence f : κ → Vκ with the property that
for every set x and every large enough cardinal λ there is an elementary
embedding j : V → M with critical point κ such that [M ]λ ⊆ M , j(κ) > λ
and (jf)(κ) = x. Using f we build a countable support iteration

〈Pξ, Q̇ξ : ξ ≤ κ〉

of posets that belong to Vκ such that with probability one each Q̇ is α-proper
for all α < ω1 and complete relative to some simple σ-complete complete-



266 S. Todorčevi ć

ness system so that we can apply the basic result of [7, V] and have the
conclusion that no new reals are added at any stage. Since, clearly, Pκ sat-
isfies the κ-chain condition the forcing extension preserves all cardinals ≥ κ
and has its second uncountable cardinal equal to κ. To make sure Pκ forces
(∗), we choose Q̇ξ as follows. Suppose that f(ξ) is equal to (İ, θ̇) where

(xxi) I is a Pξ-name for a P-ideal of countable subsets of the ordinal
θ̇ such that θ̇ cannot be decomposed into countably many subsets
orthogonal to İ but every smaller ordinal can.

In this case we let Q̇ξ be the Pξ-name for the poset Pİ described above,
which by Lemma 1 introduces an uncountable subset A of θ̇ such that [A]ω ⊆
İ. If f(ξ) is not a pair of names of this form we let Q̇ξ be the Pξ-name for
the trivial poset. By Lemmas 3 and 4 we see that with probability one Q̇ξ is
α-proper for all α < ω1 and is complete relative to some simple σ-complete
completeness system, so we are preserving the inductive hypothesis with
this choice of the name.

To see that Pκ forces (∗), consider a Pκ-name İ for a P-ideal of countable
subsets of some ordinal θ̇ with the property that θ̇ cannot be decomposed
into countably many sets orthogonal to İ but every smaller ordinal can. By
the property of the Laver sequence f , we find a large enough regular cardinal
λ and an elementary embedding j : V → M such that κ is the critical point
of j, [M ]λ ⊆ M , j(κ) > λ and (jf)(κ) = (İ, θ̇). In the model M we find that
j(〈Pξ, Q̇ξ : ξ < κ〉) = 〈Pξ, Q̇ξ : ξ < j(κ)〉 is a countable support iteration
whose initial part up to κ agrees with our initial iteration. Applying the
same rule in M to choosing Q̇ξ at stage ξ = κ we enter into its nontrivial
case (jf)(κ) = 〈İ , θ̇〉. So Q̇κ is a Pκ-name for the poset Pİ . By Lemma 1,
forcing with Q̇κ introduces an uncountable subset Ȧ of θ such that [A]ω ⊆ İ.
Using the κ-chain condition of Pκ one sees that j naturally extends to an
elementary embedding j : V Pκ → MPj(κ) . Recall that with probability one
λ is much larger than θ̇ and that M is closed under λ-sequences. So in par-
ticular the mapping i = j�λ is a member of M . By the elementarity of the
embedding j : V Pκ → MPj(κ) (and the fact that no new countable sets of
ordinals have ever been added) we see that the mapping i moves the set Ȧ
(which MPj(κ) knows already at stage κ+1) to an uncountable set Ḃ with the
property that [Ḃ]ω ⊆ j(İ). So MPj(κ) sees the first alternative of (∗) for j(I)
satisfied, and so by the elementarity of the embedding j, the extension V Pκ

must see the first alternative of (∗) holding for İ. This completes the proof.
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