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The topology of the Banach–Mazur compactum

by

Sergey A. An t onyan (Mexico City)

Abstract. Let J(n) be the hyperspace of all centrally symmetric compact convex
bodies A ⊆ Rn, n ≥ 2, for which the ordinary Euclidean unit ball is the ellipsoid of maxi-
mal volume contained in A (the John ellipsoid). Let J0(n) be the complement of the unique
O(n)-fixed point in J(n). We prove that: (1) the Banach–Mazur compactum BM(n) is
homeomorphic to the orbit space J(n)/O(n) of the natural action of the orthogonal group
O(n) on J(n); (2) J(n) is an O(n)-AR; (3) J0(2)/SO(2) is an Eilenberg–MacLane space
K(Q, 2); (4) BM0(2) = J0(2)/O(2) is noncontractible; (5) BM(2) is a nonhomogeneous
absolute retract. Other models for BM(n) are established.

0. Introduction. In [30, Chapter 30, Problem 899, ANR 11] the
following problems of A. Pe lczyński were posed:

(a) Are the Banach–Mazur compacta BM(n) AR’s?
(b) Are they Hilbert cubes?

Recall that the Banach–Mazur compactum BM(n) is the set of isometry
classes of n-dimensional Banach spaces topologized by the metric

d(E,F ) = ln inf{‖T‖ · ‖T−1‖ : T : E → F is a linear isomorphism}.

In what follows we will use the three representations of BM(n) stated
below.

We always denote by ‖ · ‖ the ordinary Euclidean norm on the n-dimen-
sional linear coordinate space Rn, n ≥ 2, i.e., ‖x‖2 =

∑n
i=1 x

2
i for any

x = (x1, . . . , xn) ∈ Rn. By B we will denote the unit ball of Rn, i.e.,
B = {x ∈ Rn : ‖x‖ ≤ 1}.

As usual GL(n) denotes the full linear group, i.e., GL(n) is the Lie group
of all linear invertible operators T : Rn → Rn. Consider the space C(Rn) of
all continuous functions f : Rn → R endowed with the compact-open topol-
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ogy. It is well known that C(Rn) is a locally convex, complete, separable,
metrizable topological vector space. One easily verifies that C(Rn) becomes
a GL(n)-space if we define a GL(n)-action GL(n) × C(Rn) → C(Rn) by
(gf)(x) = f(g−1x), where g ∈ GL(n), f ∈ C(Rn), x ∈ Rn. This action is
continuous and linear (i.e., g(af + bh) = a(gf) + b(gh) for all g ∈ GL(n),
f, h ∈ C(Rn), a, b ∈ R). Denote by N (n) the subset of C(Rn) consisting
of all norms ϕ : Rn → R. Clearly N (n) is a convex, invariant subspace of
C(Rn). Its closure N (n) coincides with the convex invariant subspace of
C(Rn) consisting of all pseudonorms ψ : Rn → R.

It is not hard to see that the Banach–Mazur compactum BM(n) is hom-
eomorphic to the GL(n)-orbit space N (n)/GL(n).

The second, geometric representation of BM(n) (see [30, p. 544] or [19, p.
1191]) is based on the one-to-one correspondence between norms and convex
bodies. Namely, denote by B(n) the hyperspace of all compact convex bodies
of Rn with odd symmetry about the origin. We consider the Hausdorff
metric topology on B(n) and the natural GL(n)-action on it defined as
follows: gA = {ga : a ∈ A} for all g ∈ GL(n), A ∈ B(n). The two GL(n)-
spaces N (n) and B(n) are GL(n)-homeomorphic via the homeomorphism
h : N (n) → B(n) defined by the classical rule h(ϕ) = {x ∈ Rn : ϕ(x) ≤ 1}
for all ϕ ∈ N (n). By Kolmogorov’s normability criterion, h is one-to-one
and the inverse map h−1 is defined by the Minkowski functional (see for
example [11, p. 85, 1.10.7]). The proof of continuity of h and h−1 as well as
of the equivariance of h are a simple verification. Consequently, BM(n) =
B(n)/GL(n).

The third representation of BM(n) (Corollary 1), which is the crucial
tool in our approach to Pe lczyński’s Problem (b), is new. It is based on
the (mutually dual) classical notions of maximal volume (respectively, min-
imal volume) ellipsoid contained in (respectively, containing) a given body
A ∈ B(n). According to a theorem of F. John [18], for any A ∈ B(n) there
is a unique maximal volume ellipsoid j(A), called the John ellipsoid of A
(respectively, minimal volume ellipsoid l(A), usually called the Löwner el-
lipsoid of A). This result is responsible for compactness, contractibility and
local contractibility of BM(n) [30, p. 544].

In Section 2 we first represent BM(n) as orbit space of an action of
the orthogonal group O(n). This step in our proof was prompted by the
following result of H. Abels reducing the investigation of proper G-actions
(in the sense of R. Palais [21]) to that of compact subgroups of G.

Theorem 1 [1, Main Theorem]. Let G be a locally compact group having
a compact space of connected components, K be its maximal compact sub-
group and let X be a proper G-space. If the orbit space X/G is paracompact
then X admits a global K-slice S.
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The definition of a slice is recalled in the Preliminaries. Of course here
the global K-slice S is not unique. As is proved in [1, Lemma 2.3] for any
two global K-slices S1 and S2 of X there is a G-homeomorphism h : X → X
such that h(S1) = S2. Furthermore for any global K-slice S, the inclusion
S ↪→ X induces a homeomorphism S/K = X/G [1, p. 9].

In our case G = GL(n), K = O(n) the orthogonal group, and X =
N (n) = B(n), n ≥ 2. That N (n) (equivalently, B(n)) is a proper GL(n)-
space is stated in [6]. Thus, we get BM(n) = S/O(n), where S is any global
O(n)-slice of B(n). However in B(n) there are two special global O(n)-slices.
Namely, using the above mentioned result of F. John, we prove (Theorem 4)
that the subspace J(n) of B(n) consisting of all bodies A ∈ B(n) for which
the ordinary Euclidean unit ball is the maximal volume ellipsoid contained
in A, is a global O(n)-slice for B(n). So BM(n) = J(n)/O(n). Analogously,
the subspace L(n) of B(n) consisting of all bodies A ∈ B(n) for which the
ordinary Euclidean unit ball is the minimal volume ellipsoid containing A,
is a global O(n)-slice for B(n). So BM(n) = L(n)/O(n) (Remark 1). In
combination with another result of H. Abels (see Theorem 3(1) below) this
implies that the hyperspace B(n) (or equivalently, the space of all norms
N (n)) is homeomorphic to Rk × J(n) with k = n(n+ 1)/2. Moreover, this
homeomorphism can be made O(n)-equivariant (Corollary 8).

In Section 2 we also prove that J(n) ∈ O(n)-AR and Φ(n) ∈ AR,
where Φ(n) is the fixed point set of the induced Z2 = O(n)/SO(n)-space
J(n)/SO(n) and SO(n) denotes as usual the special orthogonal group.

The same John ellipsoid trick allowed P. Fabel [12] to observe that
BM(n) is a retract of the O(n)-orbit space B(n)/O(n). This made it pos-
sible [6] to obtain an affirmative answer to Pe lczyński’s Problem (a) as a
consequence of the following result, which we will also need in what fol-
lows:

Theorem 2 [4, Theorem 8]. Let G be a compact metric group, N ⊆ G
be a closed normal subgroup and X be a G-ANR (resp., a G-AR). Then the
N -orbit space X/N is a G/N -ANR (resp., a G/N -AR). In particular , X/G
is an ANR (resp., an AR).

In this paper for n = 2 we solve Pe lczyński’s Problem (b) in the neg-
ative (Corollary 6). We follow the general idea of a profound paper by
H. Toruńczyk and J. E. West [26]. Establishing Q-manifold hyperspace lo-
calization of the integers, they proved [26, Corollary 4] that the orbit space
(expS1)/S1 of the natural action of the circle group S1 on the hyperspace
of all nonvoid closed subsets of S1 is not a Hilbert cube. More precisely, [26,
Theorem 4] asserts that the orbit space ((expS1)\{S1})/S1 is a Q-manifold
Eilenberg–MacLane space of type K(Q, 2) for the group Q of rationals, form-
ing a Q-manifold realization on π2 of the localization of integers.
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In the case of the Banach–Mazur compactum the situation is quite sim-
ilar. Let J0(n) be the complement of the unique O(n)-fixed point in J(n).
Our main conjecture is that BM0(n) = J0(n)/O(n) is not contractible for
arbitrary n ≥ 2. Here we prove it for n = 2.

In Section 3 we first show that BM0(2) is homotopically equivalent to
the orbit space of the so-called standard O(2)-action (see [22]) on the Hilbert
cube without a point. Namely, let (H1), (H2), . . . be the sequence of all orbit
types occurring in J0(n). Let Π(n) be the product

∏∞
i=1(con(O(n)/Hi))∞

equipped with the diagonal O(n)-action and let Π0(n) = Π(n) \ {a}, where
a is the unique O(n)-fixed point of Π(n). Theorem 5 asserts that J0(2) and
Π0(2) have the same O(2)-equivariant homotopy type, and hence, BM0(2)
and Π0(2)/O(2) have the same ordinary homotopy type. This result pro-
vides new possibilities to attack Pe lczyński’s Problem (b).

Let D1, D2, . . . be the unit discs of mutually inequivalent representations
of O(2) on R2 and let Ψ(2) be the product

∏∞
k=1D

∞
k endowed with the

diagonal O(2)-action. If Ψ0(2) denotes the complement of the unique O(2)-
fixed point in Ψ(2), then Theorems 5 and 6 imply that J0(2) and Ψ0(2) have
the same O(2)-equivariant homotopy type. This result allows us to prove in
Section 4 that the SO(2)-orbit space Ψ0(2)/SO(2), and hence J0(2)/SO(2),
is an Eilenberg–MacLane space K(Q, 2) (Theorem 8). Corollary 5 provides
different homotopical models for BM0(2).

The passage from J0(2)/SO(2) to BM0(2) = J0(2)/O(2) is a straight-
forward consequence of the following two well known results. The first one
(see [7, p. 142, Theorem 7.2], or [8, p. 139]) asserts that if G is a finite
group acting on a paracompact space X, then for every k ≥ 1 the rational
singular cohomology module Hk(X/G) of the orbit space X/G is isomor-
phic to the submodule Hk(X)G of Hk(X) consisting of all elements fixed
under the induced action of G on Hk(X). In our case X = J0(2)/SO(2)
and G = Z2 = O(2)/SO(2). The second result, due to D. Sullivan [24,
p. 91, Theorem], states that H∗(K(Q, 2),Q) = Q[x, 2], the graded polyno-
mial algebra over Q in one indeterminate x of degree 2. It then follows
that H4k(BM0(2)) ≈ Q, k ≥ 0, implying the noncontractibility of BM0(2).
Thus BM(2) is not a Hilbert cube (Corollary 6).

In Section 5 we establish some further relevant results. Namely, Corol-
lary 7 states that the absolute retract BM(2) is nonhomogeneous. Using
the Toruńczyk–West Theorem [26], we show that Ψ0(2)/SO(2) is homeo-
morphic to (exp0 S

1)/SO(2), where exp0 S
1 = (expS1) \ {S1} (Corollaries

9 and 10).
The results of Section 5 are based on Theorem A1 from the Appendix

which may also be of independent interest. In a particular case it asserts
the following: Let Xi, i = 1, 2, . . . , be a sequence of compact G-AR’s with
G a compact Lie group. Assume that if an orbit type (N) occurs in some



Banach–Mazur compactum 213

Xi then it also occurs in infinitely many spaces Xj . Then the orbit space
((

∏∞
i=1Xi) \ {a})/G is a Hilbert cube manifold, where a ∈

∏∞
i=1Xi is a

G-fixed point.
In the final Section 7 some related conjectures are formulated.
Note that in [30, p. 544] the notation “Q(n)”is suggested for the Banach–

Mazur compactum. As the latter is not a Hilbert cube, here we denote it by
BM(n) (think of “Banach–Mazur”), reserving the letter “Q” for the Hilbert
cube.

1. Preliminaries. For a given topological group G we denote by G-
A(N)R (resp., by G-A(N)E) the class of all G-equivariant absolute (neigh-
borhood) retracts (resp., extensors) for all metrizable G-spaces. These con-
cepts are straightforward extensions to the case of G-spaces of the corre-
sponding concepts of ordinary A(N)R’s (resp., A(N)E’s; see, for example
[2-4]). We refer to the monographs [7] and [20] for basic notions of the
theory of G-spaces.

If G is a topological group and X is a G-space, for any x ∈ X we denote
by Gx = {g ∈ G : gx = x} the stabilizer (or stationary subgroup) of x.
When for all x ∈ X, Gx contains only the unity of G, we say that the
G-action is free or X is a free G-space.

For each subgroup H ⊆ G the H-fixed point set X[H] is defined to be
the set {x ∈ X : H ⊆ Gx}.

For a subset S ⊆ X, H(S) denotes the H-saturation of S, i.e., H(S) =
{hs : h ∈ H, s ∈ S}. In particular H(x) denotes the H-orbit {hx ∈ X :
h ∈ H} of x. The H-orbit space is denoted by X/H. By G/H we will
denote the G-space of cosets {gH : g ∈ G} under the action induced by left
translations. When H is a normal subgroup of G, X/H admits a natural
action of the group G/H defined by (gH) ∗ H(x) = H(gx). In particular
X/G denotes the orbit space of X.

The family of all subgroups of G which are conjugate to H is denoted
by (H), i.e., (H) = {gHg−1 : g ∈ G}. The set (H) is called a G-orbit
type (or simply an orbit type). For two orbit types (H1) and (H2) one says
that (H1) � (H2) iff H1 ⊆ gH2g

−1 for some g ∈ G. The relation � is
a partial ordering on the set of all G-orbit types. Since Ggx = gGxg

−1 for
any x ∈ X, g ∈ G, we have (Gx) = {Ggx : g ∈ G}. By X(H) we denote the
G-equivariant subset {x ∈ X : (Gx) � (H)} of X. It follows immediately
from the slice existence theorem [20, p. 37] that X(H) is an open subset of X
whenever G is a compact Lie group and X is a completely regular Hausdorff
G-space. If H is a normal subgroup then (H) is a singleton {H}, and we
write XH instead of X(H).

An equivariant map f : X → Y of G-spaces is said to be isovariant or
(G-isovariant) if Gx = Gf(x) for all x ∈ X.
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IfX is metrizable and % is aG-invariant metric forX then %∗(G(x), G(y))
= inf{%(x′, y′) : x′ ∈ G(x), y′ ∈ G(y)} is a metric for X/G, provided G is
compact.

The hyperspace B(n) of all compact convex symmetric bodies of Rn

is topologized by the Hausdorff metric dH(A,C) = max{supx∈C dist(x,A),
supy∈A dist(y, C)}. For a convex body A ∈ B(n) we denote by ∂A the
boundary of A in Rn.

Let us recall the well known and important definition of a slice [20, p. 27].

Definition 1. Let G be a topological group, H⊆G be a closed subgroup
and X be a G-space. A subset S ⊆ X is called an H-slice in X if

(1) S is H-invariant, i.e., H(S) = S,
(2) the saturation G(S) is open in X,
(3) if g ∈ G \H then gS ∩ S = ∅,
(4) S is closed in G(S).

The saturation G(S) will be said to be tubular. If in addition G(S) = X
then we say that S is a global H-slice of X.

Following R. Palais [21, Definition 1.2.2] we call a G-space X proper if:
(1) G is a locally compact Hausdorff topological group, (2) X is a completely
regular Hausdorff space and (3) every point of X has a neighborhood V
such that for every point of X there is a neighborhood U with the property
that the set 〈U, V 〉 = {g ∈ G : gU ∩ V 6= ∅} has compact closure in G.
Clearly if G is compact then every G-space is proper. Each locally compact
group G with the compact space of connected components has a maximal
compact subgroup K, i.e., every compact subgroup of G is conjugate to a
subgroup of K [1, Theorem A.5]. The corresponding classical theorem on
Lie groups can be found in [14, Ch. XV, Theorem 3.1].

Theorem 3 [1, p. 9]. Let G, K, X and S be as in Theorem 1. Then

(1) X is K-equivariantly homeomorphic to the product G/K × S of K-
spaces, where K acts on G/K by left translations;

(2) there is a K-equivariant retraction α : X → S such that α(x) belongs
to the G-orbit G(x) for every x ∈ X;

(3) the K-orbit space S/K is homeomorphic to the G-orbit space X/G.

2. The Banach–Mazur compactum as orbit space of an O(n)-
action. It is well known that BM(n) = B(n)/GL(n) is a compact metriz-
able space (see, e.g., [10]).

In what follows we will need another model of BM(n) which is crucial
in our approach to Pe lczyński’s Problem (b).

Throughout we denote by J(n) the subspace of B(n) consisting of all
convex bodies A such that the ordinary Euclidean unit ball B is the John
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ellipsoid of A, i.e., j(A) = B (see the introduction). By J0(n) we denote the
complement J(n)\{B}.

Theorem 4. J(n) is a global O(n)-slice for the GL(n)-space B(n).

P r o o f. We verify conditions (1)–(4) of Definition 1 above.
(1) is obvious.
(2) We prove that GL(n)(J(n)) = B(n). Let A ∈ B(n) and let g ∈ GL(n)

be a linear operator mapping the John ellipsoid j(A) onto the unit ball B.
We claim that

(∗) j(gA) = gj(A) for all g ∈ GL(n), A ∈ B(n).

Indeed, suppose the contrary. Let j(gA) = D 6= gj(A). Since B = gj(A)
is an ellipsoid contained in gA, and since the John ellipsoid is unique, we infer
that vol(D) > vol(gj(A)). By the same argument vol(g−1D) < vol(j(A)).
Now we apply the well known fact that each linear operator preserves the
ratio of volumes of any pair of compact convex bodies in a Euclidean space.
Thus we obtain

vol(j(A))
vol(A)

=
vol(gj(A))

vol(gA)
<

vol(D)
vol(gA)

=
vol(g−1D)

vol(A)
<

vol(j(A))
vol(A)

.

This contradiction proves (∗). Now as gj(A) = B, the condition (∗) yields
j(gA) = B, i.e., gA ∈ J(n). As A = g−1(gA) we see that A ∈ GL(n)(J(n)),
proving (2).

(3) If gA ∈ J(n) for some A ∈ J(n) and g ∈ GL(n) then j(A) = B and
j(gA) = gj(A). So gB = B, and therefore, g ∈ O(n).

(4) Let {Ak} ⊆ J(n) be a sequence with limit A ∈ B(n). We prove that
j(A) = B. Suppose the contrary is true. As B ⊆ Ak for all k ≥ 1, we see
that B ⊆ A. Hence, by uniqueness of the John ellipsoid we have vol(j(A)) >
vol(B). Choose an ellipsoid L which is concentric and homothetic to j(A)
with ratio < 1 and vol(L) > vol(B). As L is contained in the interior of j(A),
the distance ε between ∂L and ∂A is positive. Consider the ε-neighborhood
U of ∂A in Rn. Since {Ak} converges to A and all the sets Ak are convex,
the sequence {∂Ak} of boundaries converges to ∂A, and therefore there
exists k0 ≥ 1 such that ∂Ak0 ⊆ U . By convexity it follows that L ⊆ Ak0 ,
and hence, vol(j(Ak0)) ≥ vol(L). On the other hand, j(Ak0) = B and
vol(B) < vol(L). This contradiction proves that j(A) = B, i.e., A ∈ J(n).

The following corollary is immediate from Theorems 3(3) and 4 and
provides the desired model for BM(n):

Corollary 1. The Banach–Mazur compactum BM(n) is homeomor-
phic to the O(n)-orbit space J(n)/O(n).

Corollary 2. J(n) is a compact O(n)-AR.
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P r o o f. By Corollary 1, J(n)/O(n) = BM(n), which is compact by [10].
Since the orbit map J(n) → J(n)/O(n) is perfect (by compactness of O(n)),
we conclude that J(n) is also compact.

By the equivariant Dugundji extension theorem (see [2]) the space N (n)
defined in the Introduction is an O(n)-AR. Observe that N (n) is locally
compact [6]. Consequently, N (n) is open in N (n) and hence is an O(n)-
ANR. As N (n) is also O(n)-equivariantly contractible to the point ‖ · ‖ ∈
N (n), we conclude that N (n) ∈ O(n)-AR [2, Proposition 2]. As B(n) is
O(n)-homeomorphic to N (n), we see that B(n) ∈ O(n)-AR. Now the result
is immediate from Theorems 4 and 3(2).

Consider the induced action of the group Z2 = O(n)/SO(n) on the
SO(n)-orbit space J(n)/SO(n). Theorem 2 and Corollary 2 have the fol-
lowing immediate

Corollary 3. J(n)/SO(n) is a Z2-AR.

Corollary 4. Let Φ(n) be the set of Z2-fixed points in the Z2-space
J(n)/SO(n). Then Φ(n) is an AR.

P r o o f. Immediate from Corollary 3 and [2, Theorem 7].

Remark 1. Yet another concrete global O(n)-slice is provided by the
subset L(n) of B(n) consisting of all bodies A for which the Euclidean unit
ball B is the minimal volume ellipsoid containing A. Acting exactly in the
same way as in the proof of Theorem 4, it can be proved that L(n) is a global
O(n)-slice for B(n). This implies that BM(n) = L(n)/O(n), L(n) ∈ O(n)-
AR, L(n)/SO(n) ∈ Z2-AR. Moreover, it follows from the result of H. Abels
[1, Lemma 2.3] mentioned in the Introduction that the two global O(n)-
slices J(n) and L(n) of B(n) are O(n)-equivariantly homeomorphic. It is
not hard to see that a geometric O(n)-homeomorphism of J(n) onto L(n) is
provided by the so-called polar map, which assigns to each A ∈ J(n) its polar
A� = {y ∈ Rn: |(x, y)| ≤ 1 for all x ∈ A} (see, e.g., [19, p. 1154], [28, §2.8]).
Consequently, all the subsequent results on J(n) have also their analogies
on L(n), which can be proved by trivial modifications of our proofs.

It follows from Corollary 2 that J(n) is O(n)-contractible; however, we
will need the following special O(n)-contraction of J(n).

Lemma 1. There is an O(n)-equivariant strong deformation retraction
(ft) of J(n) to its point B such that ft : J(n) → J(n) is an O(n)-isovariant
map for all 0 < t ≤ 1.

P r o o f. For each A ∈ J(n) and 0 ≤ t ≤ 1 write ft(A) = (1− t)B + tA.
Here for convex bodies X,Y ∈ B(n) and nonnegative numbers a, b with
a+ b = 1 we denote by aX + bY the convex body {ax+ by : x ∈ X, y ∈ Y }
∈ B(n).
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Lemma 2. For each finite subgroup K ⊆ O(2) and each ε > 0 there is a
K-equivariant map hε : J(2) → J0(2), ε-close to the identity map of J(2).
In particular hε(J(2)[K]) ⊆ J0(2)[K].

P r o o f. Since J(2) is a global O(2)-slice for the GL(2)-space B(2), by
Theorem 3(2) there exists an O(2)-equivariant retraction α : B(2) → J(2)
such that α(A) ∈ GL(2)(A) for every A ∈ B(2). By compactness of J(2)
(Corollary 2), one can find 0 < δ < ε/2 such that dH(α(A), A) < ε/2 for all
A belonging to the δ-neighborhood of J(2) in B(2), where dH denotes the
Hausdorff metric on B(2).

Fix a regular polygon T ∈ J0(2) with K ⊆ O(2)T , circumscribing B.
For each A ∈ J(2), let

η(A) =
diamA

2
− δ.

Certainly, one can assume that δ < 1, so η(A) > 0 for all A ∈ J(2).
Setting

h′(A) = A ∩ η(A)T

we obtain a well defined K-equivariant map h′ : J(2) → B(2). As η depends
continuously upon A ∈ J(2), the continuity of h′ follows from that of the
map γ : B(2) × B(2) → B(2) defined by γ(A,C) = A ∩ C. Although the
continuity of γ is easy to show directly, to be more rigorous, we give yet
another (analytic) argument for it. Namely, a simple computation shows
that γ(A,C) = h(max{h−1(A), h−1(C)}), where h : N (2) → B(2) is the
GL(2)-homeomorphism defined in the Introduction. Because max{ϕ,ψ}
depends continuously upon the pair (ϕ,ψ) ∈ N (2) × N (2), the continuity
of γ follows.

As dH(A,A∩η(A)B) ≤ δ and A∩η(A)B ⊆ h′(A) ⊆ A, we conclude that
dH(A, h′(A)) ≤ δ. In particular h′ is ε/2-close to the inclusion J(2) ↪→ B(2).

We claim that h′(A) is not an ellipse for each A ∈ J(2). Indeed, if
A ⊆ η(A)T then A 6= B and h′(A) = A, which clearly is not an ellipse. If
A * η(A)T then it is not difficult to make sure that the boundary ∂(h′(A))
contains a nontrivial line segment from the boundary of the polygon η(A)T ,
and hence, h′(A) cannot be an ellipse. This proves the claim.

As α(h′(A)) and h′(A) have the same GL(2)-orbit, we conclude that
α(h′(A)) 6= B for each A ∈ J(2). As α is O(2)-equivariant and h′ is K-
equivariant, denoting by hε the composition αh′, we obtain a K-equivariant
map hε : J(2) → J0(2), ε-close to the identity of J(2). In particular
hε(J(2)[K]) ⊆ J0(2)[K].

3. More representations of BM0(2) up to homotopy. We write
BM0(n) = J0(n)/O(n). In this section we establish new homotopy repre-
sentations of BM0(2).
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Let G denote an arbitrary compact Lie group. For each closed subgroup
H ⊆ G we denote by con(G/H) the cone (G/H)× [0, 1]/(G/H)× {0} over
G/H equipped with the quotient topology and with the action of G by left
translations on levels. Thus con(G/H) naturally becomes a G-space.

Lemma 3. For each closed subgroup H ⊆ G, con(G/H) is a G-AR.

P r o o f. It is well known that G/H ∈ G-ANR [20, p. 27]. Hence G/H
is locally G-contractible (see [17]). Evidently, con(G/H) inherits from G/H
its local G-contractibility, and since it is finite-dimensional, it then follows
from a result of J. Jaworowski [17] that con(G/H) ∈ G-ANR. Observing
that con(G/H) is globally G-contractible to its vertex, we complete the
proof.

Lemma 4. Let X be a metrizable G-space with the sequence of orbit
types (H1), . . . , (Hk), . . . Let Q(Hi) = (con(G/Hi))∞. Then there exists an
isovariant map f : X →

∏∞
i=1Q(Hi).

P r o o f. The proof can be extracted by an easy modification from the
proof of [4, Lemma 5]. Indeed, let us return to the proof of [4, Lemma 3].
Instead of an equivariant embedding of G/H in a Euclidean G-space En, we
now consider the natural equivariant embedding x 7→ (x, 1), x ∈ G/H, into
con(G/H). It remains to repeat the rest of the proof of [4, Lemma 5], using
the above Lemma 3 instead of the fact that the unit ball of a Euclidean
G-space is a G-AR, which we have used in the proof of [4, Lemma 5].

Hearafter we assume that (H1), (H2), . . . is the sequence of all O(n)-orbit
types occurring in J0(n). Let Π(n) be the product

∏∞
i=1Q(Hi), equipped

with the diagonal O(n)-action, where Q(Hi) = (con(O(n)/Hi))∞. Define
Π0(n) = Π(n) \ {a}, where a is the unique O(n)-fixed point of Π(n). As
con(O(n)/Hi) ∈ AR, i ≥ 1, it follows from a result of J. West [29] that
Π(n) is a Hilbert cube.

Theorem 5. J0(2) and Π0(2) have the same O(2)-homotopy type.

For the proof we need the following

Lemma 5. Every O(2)-equivariant map f : J0(2) → Π0(2) is an O(2)-
homotopy equivalence.

P r o o f. We apply the following result of I. James and G. Segal [16]:
Let G be a compact Lie group and f : T → Z be a G-map of G-ANR’s.
Then f is a G-homotopy equivalence iff for each closed subgroup K ⊆ G,
the restriction of f to the K-fixed point set T [K] is an ordinary homotopy
equivalence.

In our case G = O(2), T = J0(2) and Z = Π0(2). It follows from Corol-
lary 2 that J0(2) ∈ O(2)-ANR. On the other hand, as O(2)/Hi ∈ O(2)-ANR
[20, p. 27], Lemma 3 yields that con(O(2)/Hi) ∈ O(2)-AR. Consequently,
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Q(Hi) ∈ O(2)-AR, i ≥ 1 and Π(2) ∈ O(2)-AR, implying Π0(2) ∈ O(2)-
ANR.

Now, if K is an infinite closed subgroup of O(2) then evidently J0(2)[K]
= Π0(2)[K] = ∅. For K ⊆ O(2) a finite subgroup we shall show that
the K-fixed point sets J0(2)(2)[K] and Π0(2)[K] are both contractible. In
fact, by Lemma 2 the O(2)-fixed point set {B} is a Z-set in J(2)[K]. As
J(2)[K] ∈ AR [2, Theorem 7], it follows from [13] that J(2)[K] and J0(2)[K]
have the same homotopy type, and hence J0(2)[K] is contractible. To prove
the contractibility of Π0(2)[K], we shall show that in fact Π(2)[K] is a
Hilbert cube. As the finite subgroup K is either cyclic or dihedral, there is
a regular polygon A ∈ J0(2) with K ⊂ O(2)A; so there is an orbit type (Hj)
such that (O(2)/Hj)[K] 6= ∅. Next we have Π(2)[K] =

∏∞
i=1(Q(Hi)[K]).

As O(2)/Hi ∈ O(2)-ANR, it follows that (O(2)/Hi)[K] ∈ ANR, imply-
ing that (con(O(2)/Hi))[K]= con((O(2)/Hi)[K]) ∈ AR. If for an index
i ≥ 1, (O(2)/Hi)[K] is nonempty then con((O(2)/Hi)[K]) is nondegener-
ate. In this case, according to West’s theorem [29], the countable product
Q(Hi)[K] = (con(O(2)/Hi)[K])∞ is a Hilbert cube. In particular Q(Hj)[K]
is a Hilbert cube. If (O(2)/Hi)[K] = ∅, then con((O(2)/Hi)[K]) as well as
Q(Hi)[K] are singletons. It follows that

∏∞
i=1(Q(Hi)[K]) is a Hilbert cube,

and hence, Π0(2)[K] is contractible.

Proof of Theorem 5. By Lemma 4 there is an isovariant map f : J0(2) →
Π(2). By isovariance, the image of f in fact lies in Π0(2), so we have an
O(2)-equivariant map f : J0(2) → Π0(2). By Lemma 5, f is an O(2)-
homotopy equivalence.

For each integer k ≥ 1, let µk : O(2) × R2 → R2 denote the natural
action on the plane R2 whose kernel is the cyclic subgroup Zk of O(2). More
precisely, let us identify R2 with the complex plane C and let σ : C → C be
the complex conjugation. Then the orthogonal group O(2) is the disjoint
union SO(2) ∪ SO(2) · σ, where SO(2) is the group of all rotations of R2

about the origin, and SO(2) · σ = {ϕσ : ϕ ∈ SO(2)}. The action µk is then
defined by

µk(eit, reix) = rei(kt+x) if eit ∈ SO(2), reix ∈ C,
µk(eit · σ, reix) = rei(kt−x) if eit · σ ∈ SO(2) · σ, reix ∈ C.

Let R2
k be the O(2)-space (R2, O(2), µk) and let Dk = (D,O(2), µk) with

D the unit disk of R2.
In what follows we denote by ∆(2) the O(2)-space

∏∞
k=1Dk endowed

with the diagonal action. Similarly, we let Ψ(2) =
∏∞

k=1D
∞
k and Γ (2) =∏∞

k=1D
∞
2k. Furthermore, we denote by Ψ0(2) (resp. ∆0(2) and Γ0(2)) the

complement of the unique O(2)-fixed point in Ψ(2) (resp., in ∆(2) and Γ (2)).
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Theorem 6. The three O(2)-spaces Γ0(2), Ψ0(2) and ∆0(2) have the
same O(2)-homotopy type.

P r o o f. 1. Γ0(2) 'O(2) Ψ0(2). The idea of the proof is the same as that
used in Lemma 5. First we observe that each of Γ (2) and Ψ(2) is anO(2)-AR.
This follows from the fact that Dk ∈ O(2)-AR, k ≥ 1. Hence Γ0(2) and Ψ0(2)
are O(2)-ANR’s. Let f : Γ (2) → Ψ(2) be the natural inclusion map defined
by f(x)2k = xk and f(x)2k−1 = O for all x ∈ Γ (2), k = 1, 2, . . . , where O
denotes the origin of R2. Then the restriction f0 : Γ0(2) → Ψ0(2) of f is an
O(2)-equivariant map of O(2)-ANR’s. As in the proof of Lemma 5, using
the James–Segal theorem, one can establish that f0 is an O(2)-homotopy
equivalence. In fact, if K is an infinite subgroup of O(2) then evidently
Γ0(2)[K] = Ψ0(2)[K] = ∅. For K ⊆ O(2) a finite subgroup we show that the
K-fixed point sets Γ (2)[K] and Ψ(2)[K] are both Hilbert cubes. Indeed,

Ψ(2)[K] =
( ∞∏

i=1

D∞
i

)
[K] =

∞∏
i=1

(D∞
i [K]).

If K is a cyclic subgroup of order k then Di[K] = Di if i is a multiple of
k, and Di[K] = {O} otherwise. If K is a dihedral subgroup of order 2k
then Di[K] is the diameter of Di lying on the x-axis if i is a multiple of k,
and Di[K] = {O} otherwise. As D∞

i [K] = (Di[K])∞, we see that Ψ(2)[K],
being a countable product of 1-or 2-dimensional discs, is a Hilbert cube. By
the same reason Γ (2)[K] is a Hilbert cube.

Consequently, Γ0(2)[K] and Ψ0(2)[K] are both contractible, and the
James–Segal theorem completes the proof.

2. The O(2)-homotopy equivalence Ψ0(2) 'O(2) ∆0(2) can be established
in a similar way. Indeed, for every k ≥ 1 there is a natural inclusion map
fk : Dk → D∞

k defined by fk(x) = (x,O,O, . . .), x ∈ Dk. The diagonal
product of these maps is an O(2)-equivariant embedding of ∆(2) into Ψ(2),
which maps the O(2)-ANR space ∆0(2) into the O(2)-ANR space Ψ0(2). To
show that this embedding is an O(2)-homotopy equivalence, it remains to
repeat the argument used above.

Theorem 7. Π0(2) and Γ0(2) have the same O(2)-homotopy type.

P r o o f. We claim that there is an O(2)-equivariant map f : Π0(2) →
Γ0(2).

Indeed, let Hi, i ≥ 1, be a stabilizer occurring in J0(2). Then it is either
a cyclic group Z2k or a dihedral group Z2k ∪ Z2k · σ, where k ≥ 1 is an
integer and σ is a reflection. In both cases we choose a point a ∈ D2k

with ‖a‖ = 1 and consider the natural O(2)-map hi : O(2)/Hi → O(2)(a)
into the orbit O(2)(a) ⊆ D2k. If we consider D2k as a cone over the unit
circle, the map hi admits a conic extension to an O(2)-equivariant map
fi : con(O(2)/Hi) → D2k.
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Observe that fi is O(2)-isovariant if Hi is dihedral, and it is “O(2)-
semiisovariant” if Hi is cyclic, i.e., O(2)fi(x) = O(2)x ∪ O(2)x · σ for a
reflection σ ∈ O(2). Let F : Π(2) → Γ (2) be the direct product of the maps
f∞i : Q(Hi) → D∞

2k, i = 1, 2, . . . Then F is O(2)-equivariant and, due to the
above mentioned property of fi, it maps Π0(2) onto Γ0(2). Now as in the
proof of Theorem 6, by applying the James–Segal theorem we infer that the
restriction f = F |Π0(2) : Π0(2) → Γ0(2) is an O(2)-homotopy equivalence.

Corollary 5. For each closed subgroup N ⊆ O(2), the N -orbit spaces
J0(2)/N , Π0(2)/N , Γ0(2)/N , Ψ0(2)/N and ∆0(2)/N have the same homo-
topy type. In particular , BM0(2), Π0(2)/O(2), Γ0(2)/O(2), Ψ0(2)/O(2) and
∆0(2)/O(2) have the same homotopy type.

P r o o f. Immediate from Theorems 5–7.

4. Homotopy types of J0(2)/SO(2) and BM0(2). In this section
we investigate homotopy properties of J0(2)/SO(2) and BM0(2). Following
the general idea in [26], we first prove the following

Theorem 8. The space J0(2)/SO(2) is an Eilenberg–MacLane space
K(Q, 2); consequently , the compactum J(2)/SO(2) is not homeomorphic to
the Hilbert cube.

For the proof we need some lemmas.
Below we denote by F(2) the set of all finite subgroups of the circle

group SO(2).
For each H ∈ F(2) let ΨH(2) = {x ∈ Ψ(2) : SO(2)x ⊆ H}. We observe

that ΨH(2) ⊆ Ψ0(2).

Lemma 6. For each H ∈ F(2) the set Ψ(2)[H] \ ΨH(2) is a Z-set in
Ψ(2)[H].

P r o o f. As H is a finite subgroup of SO(2) it must be a cyclic group Zk

for some k ≥ 1. Observe that

Ψ(2)[H] =
( ∞∏

i=1

D∞
i

)
[H] =

∞∏
i=1

(D∞
i [H]).

But D∞
i [H] = D∞

i if i is a multiple of k, and D∞
i [H] = {O∗} otherwise,

where O∗ = (O,O, . . .) with O the origin of R2 (see the proof of Theorem 6).
Therefore

Ψ(2)[H] =
∞∏

i=1

Xi with Xi = D∞
i if i is a multiple of k,

and Xi = {O∗} otherwise.
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So, Ψ(2)[H] is a Hilbert cube. Similarly,

Ψ(2)[H] \ ΨH(2) = X1 × . . .×Xk−1 × {O∗} ×
∞∏

i=k+1

Xi.

As points are Z-sets in the Hilbert cube, we infer that {O∗} is a Z-set in
the Hilbert cube Xk = D∞

k , and hence X1× . . .×Xk−1×{O∗}×
∏∞

i=k+1Xi

is a Z-set in
∏∞

i=1Xi. Thus Ψ(2)[H] \ ΨH(2) is a Z-set in Ψ(2)[H].

Lemma 7. For each H ∈ F(2), ΨH(2) is an H-AR.

P r o o f. The slice existence theorem yields that ΨH(2) is an open invari-
ant subspace of Ψ0(2) [20, p. 37]. Since Ψ(2) is an SO(2)-AR (see the proof
of Theorem 6), it follows that Ψ0(2) as well as ΨH(2) are SO(2)-ANR’s.
In order to prove the second statement we apply the following corollary of
the James–Segal theorem [16], already used in the proof of Lemma 5: if G
is a compact Lie group and T is a G-ANR then T is a G-AR iff for ev-
ery closed subgroup K ⊆ G the K-fixed point set T [K] is contractible. In
our case G = H and T = ΨH(2). For let K be any closed subgroup of
H, and denote briefly by Y the subset of all K-fixed points of ΨH(2), i.e.,
Y = {x ∈ Ψ(2) : K ⊆ SO(2)x ⊆ H}.

Consider Ψ(2)[K], the subspace of all K-fixed points of Ψ(2), which is a
Hilbert cube (see the proof of Lemma 6). Let us show that Ψ(2)[K]\Y is a Z-
set in Ψ(2)[K]. Indeed, since K ⊆ H one has Ψ(2)[K]\Y ⊆ Ψ(2)[K]\ΨK(2).
As by Lemma 6, Ψ(2)[K] \ ΨK(2) is a Z-set in Ψ(2)[K], we conclude that
Ψ(2)[K] \ Y is also a Z-set in Ψ(2)[K].

On the other hand, the complement Ψ(2)[K] \ Y is contractible to its
unique O(2)-fixed point O∗ = (O,O, . . .); the corresponding contraction is
given by

Ft(x1, x2, . . .) = ((1− t)x1, (1− t)x2, . . .), t ∈ [0, 1].

Now the complement theorem of T. Chapman [9, §25] yields that Y is
homeomorphic to Q0, the complement of the point O∗ in the Hilbert cube
Ψ(2)[K]. As Q0 is contractible, the proof is complete.

Lemma 8. For each H ∈ F(2) let M(H) = ΨH(2)/SO(2). Then

(1) M(H) is an Eilenberg–MacLane space K(Z, 2);
(2) if F ∈ F(2) and F ⊆ H, then the inclusion iFH : M(F ) → M(H)

induces multiplication by |H/F |: (iFH)∗ : Z = π2(M(F )) → π2(M(H)) = Z.

P r o o f. (1) By Lemma 7, ΨH(2) is an H-AR, and by Theorem 2 the
H-orbit space ΨH(2)/H is an AR, and hence, is contractible. Observe that
the group SO(2)/H is topologically isomorphic to SO(2), and the natural
action of SO(2)/H on ΨH(2)/H (see Preliminaries) is free. According to
a theorem of A. Gleason [7, II, §5], a locally trivial fibration SO(2) ↪→
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ΨH(2)/H → M(H) arises. It follows from the homotopy exact sequence of
this fibration that πk(M(H)) = πk−1(SO(2)) for all k = 1, 2, . . . , so M(H)
is a K(Z, 2). This proves (1).

(2) From the functoriality of the above homotopy exact sequence we
obtain the commutative diagram

π2(ΨF (2)/F ) π2(M(F )) π1(SO(2)/F ) π1(ΨF (2)/F )

π2(ΨH(2)/H) π2(M(H)) π1(SO(2)/H) π1(ΨH(2)/H)

//

��

∂ //

(iF
H)∗

��

//

f

�� ��
// ∂ // //

which is
0 Z Z 0

0 Z Z 0

//

��

∂ //

(iF
H)∗

��

//

f

�� ��
// ∂ // //

with f being multiplication by |H/F |. Hence (iFH)∗ is also multiplication by
|H/F |.

Following [26] we consider the direct system

M(SO(2))
= {M(H), iFH : M(F ) →M(H) (whenever F ⊆ H) : F,H ∈ F(2)},

formed by inclusions. Observe that the index set F(2) is directed by inclu-
sions.

Lemma 9. The space Ψ0(2)/SO(2) is the topological direct limit of the di-
rect system M(SO(2)) of Q-manifolds K(Z, 2); consequently , Ψ0(2)/SO(2)
is a Q-manifold K(Q, 2).

P r o o f. For each k = 1, 2, . . . , let Zk be a copy of Z and let Zm → Zk

be the multiplication by k/m whenever m divides k. It is well known that

(∗∗) {Zk, Zm
k/m−→ Zk : k ∈ N}

is a direct system with direct limit Q (see, for example, [23, Ch. I]).
Since each M(H) is open in Ψ0(2)/SO(2) and their union is the whole

space Ψ0(2)/SO(2), we see that Ψ0(2)/SO(2) = lim−→M(O(2)), the topo-
logical direct limit. Being an open subset of the Q-manifold Ψ0(2)/SO(2)
(Theorem A1 of the Appendix), M(H) is itself a Q-manifold. By Lemma 8
the direct system of p-homotopy groups

πp(M(SO(2)))
= {πp(M(H)), (iFH)∗ : πp(M(F )) → πp(M(H)) : F,H ∈ F(2)}
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is the trivial direct system for each p 6= 2, and is the direct system (∗∗) for
p = 2. Now, as πp(Ψ0(2)/SO(2)) = lim−→πp(M(SO(2))), p = 1, 2, . . . , the
result follows.

Proof of Theorem 8. By Corollary 5, J0(2) has the same SO(2)-homotopy
type as Ψ0(2), and therefore, J0(2)/SO(2) is homotopically equivalent to
Ψ0(2)/SO(2). Now the result follows from Lemma 9.

Corollary 6. The space BM0(2) is not contractible; consequently , the
Banach–Mazur compactum BM(2) is not a Hilbert cube.

P r o o f. We show that H4k(BM0(2)) ≈ Q and H2k+1(BM0(2)) ≈ 0 for
all k ≥ 0, where singular cohomology with rational coefficients is considered
(as J0(2)/SO(2) and BM0(2) are ANR’s, their singular and Čech coho-
mologies coincide). Consider the induced action of Z2 = O(2)/SO(2) on
J0(2)/SO(2). For convenience we redenote X = J0(2)/SO(2) and G = Z2.
According to [7, p. 142, Theorem 7.2] (see also [8, p. 139]), Hk(X/G) ≈
Hk(X)G, where Hk(X)G is the submodule of Hk(X) consisting of all ele-
ments fixed under the induced action of G on Hk(X).

By Theorem 8, X is an Eilenberg–MacLane space K(Q, 2). The cohomol-
ogy algebras of Eilenberg–MacLane spaces of arbitrary type were computed
by D. Sullivan [24, p. 91, Theorem]: H∗(K(Q, 2),Q) = Q[x, 2], the graded
polynomial algebra over Q in one indeterminate x of degree 2. This already
implies that H2k+1(X) ≈ 0.

Let ϕ ∈ G be the generator, i.e., ϕ : X → X is a homeomorphism
with ϕ2 = 1X , and let ϕ∗k : Hk(X) → Hk(X) be the induced isomorphism.
As H2k(X) is a 1-dimensional free module over Q and ϕ∗2k : H2k(X) →
H2k(X) is a linear isomorphism with (ϕ∗2k)2 = 1H2k(X), there are only two
possibilities: either ϕ∗2k = 1H2k(X) or ϕ∗2k = −1H2k(X) (i.e., ϕ∗2k(a) = −a
for all a ∈ H2k(X)). In both cases ϕ∗2k(xk) · ϕ∗2k(xk) = x2k (recall that
xk is the generator of the free module H2k(X)). On the other hand, as
ϕ∗ : H∗(X) → H∗(X) is also an algebra homomorphism, it must preserve
the product, so we have ϕ∗2k(xk)·ϕ∗2k(xk) = ϕ∗4k(x2k). Hence ϕ∗4k(x2k) = x2k,
which implies that ϕ∗4k = 1H4k(X). Consequently, H4k(X)G = H4k(X) ≈ Q,
and hence H4k(BM0(2)) = H4k(X/G) ≈ Q. In particular, BM0(2) is not
contractible. As the Hilbert cube with a point removed is contractible, we
conclude that BM(2) is not a Hilbert cube.

5. Further relevant results. In this section we establish further
properties of the Banach–Mazur compactum BM(2) and of related spaces.
We begin with the following

Corollary 7. BM(2) is nonhomogeneous.
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P r o o f. Because of Corollary 6 it suffices to show that there is a point
O(2)(A) ∈ BM(2), different from the singular point B ∈ BM(2), such that
the complement BM(2) \ {O(2)(A)} is contractible. Let A ∈ J(2) be the
square {(x, y) ∈ R2 : |x| ≤ 1, |y| ≤ 1} and let X denote the complement of
the orbit O(2)(A) in J(2). As X is an open invariant subset of the O(2)-AR
space J(2) (Corollary 2), it is an O(2)-ANR. We assert that X is in fact
an O(2)-AR. It suffices to check that X is O(2)-contractible. Consider the
O(2)-contraction ft : J(2) → J(2) to the point B ∈ J(2) defined in Lemma
1. We claim that ft(C) ∈ X for every C ∈ X and every 0 ≤ t ≤ 1. Indeed,
f0(C) = B ∈ X. Now suppose the contrary, that ft(C) is a square for
some t > 0 and for some C ∈ X. Then there is a g ∈ O(2) such that
ft(gC) = A. Since the point x = (1, 0) belongs to ∂(ft(gC)) ∩ ∂B, it
must belong to ∂(gC). As (1, 1) and (1,−1) belong to ft(gC), there exists
u > 1 such that a = (u, u) and b = (u,−u) belong to gC. By convexity
(u, 0) = 1

2 (a+b) ∈ gC. Since u > 1, this contradicts the fact that x ∈ ∂(gC).
Thus the restriction of (ft) to X realizes an equivariant contraction of

X to its point B. Passing to the orbit space we obtain a contraction of
BM(2) \ {O(2)(A)} to its point {B}. This completes the proof.

Corollary 8. The space N (n) = B(n) is homeomorphic to the product
Rk × J(n) with k = n(n+ 1)/2. Moreover , this homeomorphism can be
made O(n)-equivariant under a suitable linear O(n)-action on Rk.

P r o o f. First we note that B(n) = N (n) is a proper GL(n)-space [6].
As O(n) is a maximal compact subgroup of GL(n), and J(n) is a global
O(n)-slice of B(n) (Theorem 4), Theorem 3(1) implies the equality of O(n)-
spaces:

B(n) = (GL(n)/O(n))× J(n).

In general, when G and K are as in Theorem 1, G/K is K-homeomorphic
to a linear K-space Rp, with p = dim(G/K) [1, Corollary A.6]. For G a
Lie group this is a classical result [14, Ch. XV, Theorem 3.1]. In fact Rp is
the complementary subalgebra of the Lie algebra L(K) in the Lie algebra
L(G). In our case dim(GL(n)/O(n)) = n(n+ 1)/2 (this comes from the
standard result of linear algebra to the effect that each invertible matrix
can be uniquely represented as the product of an orthogonal matrix and
a diagonal matrix with positive diagonal elements). Thus GL(n)/O(n) is
O(n)-homeomorphic to Rk. This completes the proof.

Let expS1 denote the hyperspace of all nonvoid closed subsets of the cir-
cle S1 equipped with the Hausdorff metric and with the natural O(2)-action.
We denote by exp0 S

1 the subspace (expS1) \ {S1}. In [26, Corollary 6] it
is proved that the orbit space (exp0 S

1)/SO(2) is a Q-manifold Eilenberg–
MacLane space K(Q, 2). On the other hand, according to Corollary 5 and
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Theorem 8, ∆0(2)/SO(2) is a K(Q, 2) as well. By Theorem A1 from the
Appendix, ∆0(2)/SO(2) is a Q-manifold. Hence the two Q-manifolds have
the same homotopy type. Further, (exp0 S

1)/SO(2) is homeomorphic to
its product with the half-open interval [0, 1) (see [26, Theorem 1]). The
space ∆0(2)/SO(2) has an obvious proper (preimage of each compact set
is compact) deformation to infinity

(
∆0(2)/SO(2))× [0, 1) → ∆0(2)/SO(2)

(using the conic structure). So, by a result of R. Y. T. Wong [31] (see
also [26, p. 445]), ∆0(2)/SO(2) is homeomorphic to its product with [0, 1).
Therefore, applying [9, Theorem 21.2], we get the following

Corollary 9. ∆0(2)/SO(2) is homeomorphic to (exp0 S
1)/SO(2); con-

sequently , ∆(2)/SO(2) is homeomorphic to (expS1)/SO(2).

Corollary 10. For each closed subgroup N ⊆ O(2), the N -orbit spaces
Π0(2)/N , Γ0(2)/N , Ψ0(2)/N and ∆0(2)/N are mutually homeomorphic. In
particular , Π0(2)/O(2) ≈ Γ0(2)/O(2) ≈ Ψ0(2)/O(2) ≈ ∆0(2)/O(2), and
hence, Π(2)/O(2) ≈ Γ (2)/O(2) ≈ Ψ(2)/O(2) ≈ ∆(2)/O(2).

P r o o f. By Corollary 5, the N -orbit spaces Π0(2)/N , Γ0(2)/N , Ψ0(2)/N
and ∆0(2)/N have the same homotopy type. Further, Π(2), Γ (2), Ψ(2) and
∆(2) all satisfy the hypothesis of Theorem A1 from the Appendix, so all the
orbit spaces Π0(2)/N , Γ0(2)/N , Ψ0(2)/N and ∆0(2)/N are Q-manifolds. As
the relevant spaces have obvious proper deformations to infinity, by applying
the results of R. Y. T. Wong [31] and T. A. Chapman [9] quoted above, we
get the desired homeomorphisms.

6. Appendix. Orbit spaces as Q-manifolds. Here we prove a
theorem announced in [5], whose particular cases were used in Section 5.
Perhaps it is also of independent interest.

Theorem A1. Let G be a compact Lie group, Xi, i = 1, 2, . . . , be a
sequence of metrizable compact G-AR’s and ai ∈ Xi be a G-fixed point.
Assume that if (N ) is an orbit type occurring in some Xi then there are
infinitely many indices j such that Xj \ {aj} contains an orbit type � (N).
Let a = (ai) and X = (

∏∞
i=1Xi) \ {a}. Then for each closed subgroup

H ⊆ G the H-orbit space X/H is a Q-manifold.

The proof depends upon the three lemmas stated below.
For spaces T and Z we denote by C(T,Z) the space of all continuous

maps T → Z equipped with the compact-open topology. If T and Z are
G-spaces then E(T,Z) denotes the subspace of C(T,Z) consisting of all
equivariant maps.

Definition A1. A closed invariant subset A of a G-space Y is called
a GZ-set in Y if for every compact G-space K the set {f ∈ E(K,Y ) :
f(K) ∩A = ∅} is dense in E(K,Y ).
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Lemma A1. Let k ≥ 1 be a fixed integer. Then the set A = {x ∈ X :
xi = ai for all i ≥ k} is a GZ-set in X.

P r o o f. Let f : N → X be a G-map with N a compact G-space, and
let ε > 0. Choose an integer r > k such that

∑∞
i=r+1 1/2i < ε. Let

%i be a metric on Xi with diameter ≤ 1. Consider the metric %(x, z) =∑∞
i=1 %i(xi, zi)/2i on

∏∞
i=1Xi, where x = {xi}, z = {zi} ∈

∏∞
i=1Xi. Let

f(y) = {fi(y)}∞i=1, y ∈ N .

Claim 2. There exists a sequence {ϕi : N → Xi : i ≥ r+ 1} of G-maps
such that for each y ∈ N there is an index j ≥ r + 1 with ϕj(y) 6= aj.

P r o o f. By the slice existence theorem there is a tubular neighborhood
about each orbit G(y) ⊆ N , i.e., there is a G-neighborhood Uy having a
G-retraction py : Uy → G(y) [7, Ch. II, §5]. Clearly Uy can be assumed
to be a closed neighborhood. By compactness of N one can choose a finite
number of neighborhoods Uy1 , . . . , Uym

which cover N . Now for each index
1 ≤ i ≤ m we define a G-map ψq(i) : Uyi → Xq(i) with q(i) ≥ r + 1 as
follows. Since Gyi ⊆ Gf(yi) and f(yi) 6= a there is an index s(i) ≥ 1 such
that fs(i)(yi) 6= as(i). Then Gf(yi) ⊆ Gfs(i)(yi) and hence, Gyi ⊆ Gfs(i)(yi).
According to the hypothesis of Theorem A1 there are infinitely many indices
j ≥ 1 with Xj \ {aj} containing points whose stabilizers are larger than
Gfs(i)(yi). Choose an index q(i) ≥ r + 1 and a point bq(i) ∈ Xq(i) \ {aq(i)}
with Gfs(i)(yi) ⊆ Gbq(i) . Now, as Gyi ⊆ Gbq(i) , there is an obvious G-
map hq(i) : G(yi) → G(bq(i)). Put ψq(i) = hq(i)pyi . We emphasize that
ψq(i)(y) 6= aq(i) for all y ∈ Uyi . Now, as Uyi is a closed invariant subset of N
and Xq(i) ∈ G-AR, we can extend each ψq(i) to a G-map ϕq(i) : N → Xq(i),
1 ≤ i ≤ m. If an index l ≥ r+1 does not belong to the set {q(1), . . . , q(m)},
then we define the corresponding map ϕl : N → Xl by putting ϕl(y) = al,
y ∈ N . The family {ϕj : j ≥ r + 1} of G-maps is as desired. Indeed, let
y ∈ N . Then y ∈ Uyi for some 1 ≤ i ≤ m. By construction ϕq(i)(y) =
ψq(i)(y) 6= aq(i), and since q(i) ≥ r + 1, the proof of Claim 2 is complete.

Now we define a new G-map f ′ : N → X by

f ′(y) = (f1(y), . . . , fr(y), ϕr+1(y), ϕr+2(y), . . .), y ∈ N.

Since r > k and for each y ∈ N there is an index j ≥ r+ 1 with ϕj(y) 6= aj ,
we conclude that f ′ is well defined, i.e., f ′(N) ⊆ X and f ′(N) ∩A = ∅. To
complete the proof observe that by the choice of r,

%(f(y), f ′(y)) =
∞∑

i=r+1

%i(fi(y), ϕi(y))/2i ≤
∞∑

i=r+1

1/2i < ε for all y ∈ N.

Lemma A2. Let A be a GZ-set in a metric G-space Y . Then A/G is a
Z-set in the orbit space Y/G.
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P r o o f. Let M be an arbitrary compact space. One should prove that
the set {ϕ ∈ C(M,Y/G) : ϕ(M) ∩ A = ∅} is dense in C(M,Y/G). Fix a
G-invariant metric % on Y . It is well known [20, Proposition 1.1.12] that
the quotient topology on Y/G is generated by the metric

%∗(G(x), G(y)) = inf{%(x, gy) : g ∈ G}, G(x), G(y) ∈ Y/G.

Evidently,

(A1) %∗(G(x), G(y)) ≤ %(x, y), x, y ∈ Y.

Let ϕ ∈ C(M,Y/G) and ε > 0. Denote by p the orbit map Y → Y/G.
It is well known [15, Ch. IV, Proposition 4.1] that we have the following
commutative (pull-back) diagram:

N Y

M Y/G

f //

π

��
p

��
ϕ //

where N is a compact G-space with N/G = M , π : N → M the orbit map
and f an equivariant map inducing ϕ. Since A is a GZ-subset of Y , there is
an equivariant map l : N → Y such that l(N)∩A = ∅, and %(l(x), f(x)) < ε
for all x ∈ N . Then the map ψ : M = N/G → Y/G induced by l is ε-close
to ϕ (by (A1)), and ψ(M) ∩A/G = ∅. This completes the proof.

Lemma A3. Let H ⊆ G be a closed subgroup of a compact Lie group G
and A be a GZ-set in a metric G-space Y . Then A is an HZ-set in Y .

P r o o f. Let f : N → Y be an H-map with N a compact H-space and
let ε > 0. Consider the twisted product G ×H N and the induced G-map
f ′ : G×H N → Y defined by f ′([g, x]) = gf(x), where [g, x] ∈ G×H N (see
[7, II, §4]). As A is a GZ-subset of Y , there is a G-map ϕ′ : G×H N → Y
with A ∩ Im(ϕ′) = ∅, ε-close to f ′. Now ϕ = ϕ′|N is an H-map of N to Y
with A ∩ Im(ϕ) = ∅, ε-close to f .

Proof of Theorem A1. Since each Xi ∈ G-AR, also Xi ∈ H-AR (see [27]).
Hence

∏∞
i=1Xi ∈ H-AR, implying X ∈ H-ANR. Now by Theorem 2 we

have X/H ∈ ANR. Being an open continuous image of the locally compact
space X, the orbit space X/H is itself locally compact. So, according to
Toruńczyk’s characterization criterion [25], it remains to verify that for each
compactum M the set of all Z-maps M → X/H is dense in C(M,X/H). To
this end take ϕ ∈ C(M,X/H) and let p : X → X/H denote the orbit map.
Consider the diagram from the proof of Lemma A2 with Y = X and G = H.
As f(N) is compact and lies in X, there is an integer m ≥ 1 satisfying the
following condition:
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(A2) for each y ∈ N there exists 1 ≤ i ≤ m such that fi(y) 6= ai, where
fj , j = 1, 2, . . . , are the coordinate maps of f .

(Otherwise there exists a sequence {xk} ⊆ N with f(xk) → a, implying that
a ∈ f(N), a contradiction.)

Let ε > 0 and let k > m be such that
∑∞

i=k 1/2i < ε. Define an
equivariant map s : N → X by

s(y) = (f1(y), . . . , fk−1(y), ak, ak+1, . . .), y ∈ N.

By the choice of k it follows from condition (A2) that s(y) 6= a for all y ∈ N ,
i.e., the map s is well defined. Next we have

(A3) %(s(y), f(y)) =
∞∑

i=k

%i(ai, fi(y))/2i ≤
∞∑

i=k

1/2i < ε.

Thus the equivariant maps f and s are ε-close, and s(N) lies in a “finite-
dimensional face” of the product

∏∞
i=1Xi, namely in A = {x ∈ X : xi = ai

for all i ≥ k}. By Lemmas A1–A3, A/H is a Z-subset of X/H. Let
q : M = N/H → X/H be induced by s. As q(M) ⊆ A/H, q(M) is a
Z-set in X/H. Now let u ∈ M . Then u = π(t) for some t ∈ N , implying
q(u) = p(s(t)) and ϕ(u) = p(f(t)). By (A1) and (A3) it follows that

%∗(q(u), ϕ(u)) ≤ %(s(t), f(t)) < ε for all u ∈M.

So, q is a Z-map ε-close to ϕ. The proof is complete.

7. Concluding remarks. I. As J0(2)/SO(2) and (exp0 S
1)/SO(2)

are both Eilenberg–MacLane spaces K(Q, 2), they have the same homotopy
type. Moreover, they are homeomorphic. This can be proved exactly in the
same way as Corollaries 9 and 10, after having established that J0(2)/SO(2)
is a Q-manifold. In fact J0(n)/H is a Q-manifold for every closed subgroup
H ⊆ O(n) and each n ≥ 2. Whenever H is a subgroup occurring in J0(n)
as a stabilizer then both J(n)/H and J(n)[H] are Hilbert cubes. These and
related results will be presented in our next paper.

The picture seems to be more complicated in the case of the O(n)-space
exp0 S

n−1 of all closed proper nonempty subsets of the (n− 1)-dimensional
sphere Sn−1. Here we have the following

Conjecture 1. For each closed subgroup H ⊆ O(n), the orbit spaces
J0(n)/H and (exp0 S

n−1)/H are homeomorphic Q-manifolds for all n ≥ 2.

For this, one needs first to establish that (exp0 S
n−1)/H ∈ ANR. This

would follow from Theorem 2 if we knew that exp0 S
n−1 ∈ O(n)-ANR. Let

us formulate the following more general assertion, which can be regarded as
a case of the equivariant Wojdys lawski Theorem:
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Conjecture 2. Let G be a compact Lie group and X be a connected
G-ANR. Then expX equipped with the induced G-action is a G-AR.

II. In connection with Theorem 5 we have the following

Conjecture 3. J0(n) and Π0(n) (and hence J(n) and Π(n)) are O(n)-
equivariantly homeomorphic for all n ≥ 2.

The desired equivariant homeomorphism could be obtained just as in the
nonequivariant case [9, §21], by first establishing equivariant versions of the
results of R. Y. T. Wong and T. A. Chapman quoted in Section 5.

III. Yet another O(n)-space related to the Banach–Mazur compactum
BM(n) is provided by the hyperspace J ′(n) of all (not only centrally sym-
metric) compact convex bodies in Rn having the unit ball B as their John
ellipsoid. In the same way as in Section 2 one can prove that J ′(n) ∈ O(n)-
AR. An easy modification of the method used in Section 3 (Corollary 5)
allows one to prove that J ′0(2)/N and Π0(2)/N have the same homotopy
type for every closed subgroup N ⊆ O(2), where J ′0(n) = J ′(n) \ {B}. In
particular this implies that BM0(2) ' J ′0(2)/O(2).

Conjecture 4. J ′0(n) and exp0 S
n−1 are O(n)-equivariantly homeo-

morphic for all n ≥ 2.

IV. Finally we have the following

Conjecture 5. BM0(n) is not contractible for any n ≥ 3.
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