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Irreducibility of inverse limits on intervals

by

David J. Ryden (Rolla, MO)

Abstract.A procedure for obtaining points of irreducibility for an inverse limit on

intervals is developed. In connection with this, the following are included. A se-

miatriodic continuum is defined to be a continuum that contains no triod with

interior. Characterizations of semiatriodic and unicoherent continua are given, as

well as necessary and sufficient conditions for a subcontinuum of a semiatriodic and

unicoherent continuumM to lie within the interior of a proper subcontinuum ofM .

1. Introduction. In 1944, R. H. Sorgenfrey [8] generalized a theorem of
R. L. Moore by showing that every unicoherent continuum that is not a triod
is irreducible. Sorgenfrey’s result is one of existence only; it does not provide a
means for obtaining two points between which such a continuum is irreducible.
In 1951, R. H. Bing [2] defined snake-like continua (which are often called
chainable continua) and noted that they are hereditarily unicoherent and
atriodic. In 1959, J. R. Isbell [4] showed that every chainable continuum is
homeomorphic to an inverse limit on intervals. That the converse is true is not
difficult to prove. It follows from these results that every continuum expressed
as an inverse limit on intervals is irreducible. In 1969, D. P. Kuykendall [5]
gave in his master’s thesis a fairly simple procedure for finding a pair of
points between which an inverse limit on intervals with a single bonding map
is irreducible. This procedure makes use of the fixed points and period-two
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points of the bonding map; it does not extend to the general case, however.
In 1973, Kuykendall [6] gave necessary and sufficient conditions for an inverse
limit on metric continua to be irreducible about a given finite set of points.
However, there was still no procedure for finding their coordinates.

The goal of this paper is to find, for a continuum expressed as an inverse
limit on intervals, coordinates of two points between which the continuum is
irreducible. The solution given includes results on other continuum theoretic
problems that do not involve inverse limits. Variations on the following ques-
tion are considered: Under what conditions does a proper subcontinuum of
a chainable continuum fail to lie in the interior of any other proper subcon-
tinuum? The answer given remains true if “chainable continuum” is replaced
with “unicoherent continuum that contains no triod with nonvoid interior”;
the solution presented is in this more general setting. Topological character-
izations for unicoherent continua that contain no triod with nonvoid interior
are also included, as well as various results about subcontinua that “lie at an
end” of such a continuum.

A continuum is a compact connected subset of a metric space. A contin-
uum is said to be irreducible between the two points a and b if and only if it
contains both a and b but has no proper subcontinuum that contains both a
and b.

If K is a subset of a continuum M , then K is said to be a subset of M
with interior if it contains a nonempty open subset of M ; otherwise, K is
said to be nowhere dense in M . A continuum M is said to be a triod if and
only if there is a subcontinuum K of M such that M −K has at least three
components. A continuum is said to be atriodic (semiatriodic) if and only
if it contains no triod (triod with interior). A continuum M is said to be
unicoherent if and only if it is true that if H and K are subcontinua of M
such that H ∪K = M , then H ∩K is connected. A continuum is said to be
hereditarily unicoherent if and only if each of its subcontinua is unicoherent.

A continuum is said to be indecomposable if and only if it is not the union
of two of its proper subcontinua; otherwise, it is said to be decomposable. A
continuum M is said to be two-indecomposable if and only if there are two
indecomposable proper subcontinua of M whose union is M .

A subcontinuum K of a continuum M is said to be an absolutely termi-

nal subcontinuum of M provided that for each pair of subcontinua of M that
contain K, one is a subset of the other. This definition is equivalent to the
standard definition of “absolutely terminal continuum” given by D. E. Ben-
nett and J. B. Fugate [1] save that it does not forbid a continuum to be an
absolutely terminal subcontinuum of itself.

If X1, X2, . . . is a sequence of metric spaces, and for each positive integer
n, fn is a continuous function from Xn+1 into Xn, the sequence {Xn, fn} is
called an inverse sequence, the spaces Xn are called factor spaces , and the
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functions fn are called bonding maps. The notation fm
n (m ≥ n) denotes the

identity on Xn if m = n, fn if m = n + 1, and the composition fn+1
n ◦ fn+2

n+1 ◦
. . .◦fm

m−1 if m is larger than n+1. The projection of the product space
∏

Xn

into Xn, denoted by πn, is the function from
∏

Xn into Xn that satisfies
πn(x) = xn for each x in

∏
Xn. The inverse limit of the inverse sequence

{Xn, fn}, denoted by lim←−{Xn, fn}, is the subset of the product space
∏

Xn

to which x belongs if and only if fn(xn+1) = xn for each positive integer n. A
continuum is chainable if and only if it is homeomorphic to the inverse limit
of an inverse sequence for which each of the factor spaces is an interval. It is
well known that chainable continua are atriodic and hereditarily unicoherent.

2. Points of irreducibility—part I.Every nondegenerate inverse
limit on intervals can be rewritten as an inverse limit on intervals with surjec-
tive bonding maps; hence, surjectivity of the bonding maps will be assumed.
In this section, candidates for points of irreducibility are given that, in gen-
eral, will not suffice. Nevertheless, the unique subcontinuum of M that is
irreducible between them has some important properties that will be useful
for obtaining points of irreducibility.

Notation. For any two points a and b of a hereditarily unicoherent
continuum M , ab denotes the unique subcontinuum of M that is irreducible
between a and b.

Theorem 1. Suppose {[an, bn], fn} is an inverse sequence with surjec-

tive bonding maps and M is the inverse limit of {[an, bn], fn}. If (ζ1, ω1),
(ζ2, ω2), . . . is a sequence of points in M × M with the property that both

πn(ζn) = an and πn(ωn) = bn for each positive integer n and (z, w) is a sub-

sequential limit of (ζ1, ω1), (ζ2, ω2), . . . , then no proper subcontinuum of M
contains zw in its interior.

P r o o f. Let Y be a subcontinuum of M that contains zw in its interior.
Since int(Y )× int(Y ) is an open set in M ×M that contains the point (z, w),
Y must contain both zn and wn for infinitely many positive integers n.

Therefore, πn(Y ) = [an, bn] for infinitely many positive integers n. It
follows that Y = M .

It is worthwhile to note that in Theorem 1, the continuum zw could
be a proper or even degenerate subcontinuum of M . Consider the following
example.

Example. Let f be the map of [0, 1] that satisfies f(0) = 1/2, f(1/4) =
0, f(3/4) = 1, and f(1) = 1/2, and is linear on the intervals [0, 1/4], [1/4, 3/4],
and [3/4, 1]. Let M be the inverse limit of {[0, 1], f}. Since f(0) = f(1) = 1/2
and f(1/2) = 1/2, it follows that z = w = (1/2, 1/2, . . .).
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Hence the conclusion of Theorem 1, that no proper subcontinuum of M
contains zw in its interior, is insufficient to conclude that M is irreducible
between the points z and w. Section 3 investigates the implications of a sub-
continuum of M failing to lie in the interior of any proper subcontinuum of
M . In the context of the points z and w, the results of Section 3 guarantee
that every point of M − zw belongs to an indecomposable continuum “at
the end” of M ; in some sense, this reduces the problem of finding points
of irreducibility for M to that of finding points of irreducibility for an inde-
composable inverse limit of intervals. Corollary 14.1 of Section 4 gives an
algorithm for finding points of irreducibility in the indecomposable case, and
the remainder of Section 4 is devoted to amalgamating this algorithm with
that of Theorem 1 to produce a procedure for the general case. A summary
of the general procedure appears after Theorem 19.

3. Absolutely terminal subcontinua in semiatriodic and unico-

herent continua. The theorem from the last section raises the following
question: under what conditions does a proper subcontinuum of a chainable
continuum M fail to lie in the interior of another proper subcontinuum of
M? If M is an arc, every proper subcontinuum of M is contained in the
interior of another proper subcontinuum of M . If M is indecomposable, each
of its proper subcontinua has void interior; hence, every proper subcontin-
uum of M fails to lie in the interior of another proper subcontinuum of M .
Indecomposability is not necessary, however. In Figure 1, the continuum

q
p

Fig. 1. Two BJK continua whose endpoints are joined by an arc

M is two Brouwer–Janiszewski–Knaster continua whose endpoints, p and q,
are joined by an arc. No proper subcontinuum of M contains this arc in its
interior. These examples suggest that the answer to the above question may
be related to the presence of indecomposable subcontinua of M that “lie at an
end” of M or to the indecomposability of M itself. Section 3.3 confirms this
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for M belonging to the larger class of semiatriodic and unicoherent continua.
It is first necessary to consider some properties of continua belonging to this
class and of their absolutely terminal subcontinua (defined below).

3.1. Semiatriodic and unicoherent continua. The following two results
may be found with proofs in [3, Theorem 3.1] and [7, Theorem 2.7] respec-
tively. The theorem of W. Dwayne Collins shows that the class of semiatriodic
and unicoherent continua is the same as the class of continua for which every
subcontinuum with interior is unicoherent and fails to be a triod.

Theorem 2 (Collins, [3]). If M is a semiatriodic continuum, then every

proper subcontinuum of M with interior is unicoherent.

Theorem 3 (Owens, [7]). Suppose M is a continuum, and suppose A
and B are subcontinua of M with a common point. If A is an absolutely

terminal subcontinuum of M, then A ∩B is connected.

Theorem 4. Suppose M is a continuum. Each of the following state-

ments is equivalent to the condition that M is semiatriodic and unicoherent.

(1) If A is a subcontinuum of M, and C is a component of M −A, then

C is an absolutely terminal subcontinuum of M .

(2) If A is a proper subcontinuum of M, and B is a subcontinuum of M
such that A∪B = M, then B is an absolutely terminal subcontinuum of M .

P r o o f. First, it is shown that M is semiatriodic and unicoherent if and
only if (1) holds. Suppose that M is semiatriodic and unicoherent, but that
there is a subcontinuum A of M and a component C of M − A such that
C is not an absolutely terminal subcontinuum of M . Then there exist two
subcontinua, C1 and C2, of M , each containing C, such that C1 does not
contain C2 and C2 does not contain C1. It will be shown that C1 ∪ C2 is
a triod. Denote M − C by Cc, and let D = Cc ∩ C1 ∩ C2. Note that C
misses A and that M is not a triod; hence, C is a proper open subset of
M . Since M is connected, it follows that C − C is nonempty; furthermore,
C − C ⊂ Cc ∩ C1 ∩ C2, so D is also nonempty. Since M is not a triod,
either Cc is A, or Cc is the union of A with a single component of M − A;
hence, Cc is a continuum. Note that Cc ∪ C1 = M . Since M is unicoherent,
Cc ∩ C1 is a continuum. Then (Cc ∩ C1) ∪ C2 is a subcontinuum of M that
contains the open set C. It follows from Theorem 2 that D is a continuum.
Consider the sets C1 ∩ Cc − D, C2 ∩ Cc − D, and C1 ∩ C2 − D. Since
C ⊂ C1∩C2, it follows that D∪(C1∩Cc−D)∪(C2∩Cc−D)∪(C1∩C2−D) =
[(C1 ∪C2)∩Cc]∪ (C1 ∩C2) = C1 ∪C2. The closed set, C2, does not intersect
C1 ∩ Cc −D; hence, C1 ∩ Cc −D contains no point or limit point of
(C2 ∩Cc −D) ∪ (C1 ∩C2 −D). Similarly, C2 ∩Cc −D contains no point or
limit point of (C1 ∩ Cc −D) ∪ (C1 ∩ C2 −D), and C1 ∩ C2 −D contains no
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point or limit point of (C1 ∩Cc−D)∪ (C2 ∩Cc−D). Therefore, C1 ∪C2 is a
triod; furthermore, C1 ∪ C2 contains the open set C. This is a contradiction
with the assumption that M is semiatriodic.

Suppose that M is not unicoherent. Then there exist proper subcontinua,
M1 and M2, of M such that M1 ∪M2 = M , and M1 ∩M2 is not connected.
Let C be a component of M −M1. Then C is a subcontinuum of M2. By
Theorem 3, M2 is not an absolutely terminal continuum of M ; therefore, C
is not an absolutely terminal subcontinuum of M , and (1) does not hold.

Suppose that M contains a triod, T , with interior. There is a subcontin-
uum, D, of T such that T −D is the union of three mutually separated sets,
T1, T2, and T3.

Case (i). Suppose D has interior relative to M . If M −D is connected,
and C is a component of M −M −D, then T1 ∪ D and T2 ∪ D are both
continua that contain C, but neither is a subset of the other. Thus (1) does
not hold. If M − D is not connected, then it is the union of two mutually
separated sets, H and K. One of H and K contains two components of T−D.
Renaming if necessary, assume H contains two components of T −D. Note
that H ∪D and K ∪D are proper subcontinua of M . Let C be a component
of M − (H ∪D). Then K∪D is a subcontinuum of M that contains C. Since
H contains two components of T −D, K ∪D is not an absolutely terminal
subcontinuum of M . Since K∪D contains C, C is not an absolutely terminal
subcontinuum of M , and (1) does not hold.

Case (ii). Suppose D does not have interior relative to M . Then one of
T1, T2, and T3, say T1, has interior relative to M . If M − T1 is connected,
and C is a component of M −M − T1, then T1 ∪ D ∪ T2 and T1 ∪ D ∪ T3

are both continua that contain C, but neither is a subset of the other, so
(1) does not hold. If M − T1 is not connected, then it is the union of two
mutually separated sets, H and K. Since T −T1 is connected, it is a subset of
either H or K. Renaming if necessary, assume H contains T −T1. Note that
H ∪ T1 and K ∪ T1 are proper subcontinua of M . Let C be a component of
M−(H∪T1). Then K∪T1 is a subcontinuum of M that contains C. Each of
D, T2, and T3 is contained by H , so (K ∪T1)∪D∪ T2 and (K ∪ T1)∪D∪ T3

are subcontinua of M that contain C, but neither is a subset of the other.
Thus, (1) does not hold.

To show that (1) implies (2), suppose A is a proper subcontinuum of M
and B is a subcontinuum of M such that A∪B = M . Let C be a component
of M−A. Then C is a subcontinuum of B. By (1), C is an absolutely terminal
subcontinuum of M ; hence, B is an absolutely terminal subcontinuum of M .

Finally, suppose (2) holds. Let A be a subcontinuum of M . Suppose
M − A is the union of three mutually separated sets, H , J , and K. Then
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A∪H∪J is a proper subcontinuum of M , and A∪K is a subcontinuum of M
such that (A∪H ∪ J)∪ (A∪K) = M . Hence, by (2), A∪K is an absolutely
terminal subcontinuum of M ; but (A∪K)∪H and (A∪K)∪J are subcontinua
of M neither of which contains the other. Therefore, M −A has at most two
components. It follows that each component of M − A is open. Let C be a
component of M − A. Since C is open, Cc is a proper subcontinuum of M .
Then, by (2), C is an absolutely terminal subcontinuum of M . Therefore, (2)
implies (1).

3.2. Properties of absolutely terminal subcontinua

Theorem 5. Suppose M is a semiatriodic and unicoherent continuum,
and suppose A is a proper subcontinuum of M with interior. The following

are equivalent:

(1) A is an absolutely terminal subcontinuum of M .

(2) M −A is connected.

(3) int(A) is an absolutely terminal subcontinuum of M .

P r o o f. First, suppose (2) does not hold. Then M − A has two compo-
nents, H and K. Each of A ∪ H and A ∪ K is a subcontinuum of M that
contains A; but neither of them is a subset of the other. Therefore, (1) does
not hold.

Next, it is shown that (2) implies (3). By (1) of Theorem 4, M −A is
an absolutely terminal subcontinuum of M with nonempty interior. It has
been shown that (1) implies (2), so M − M −A is connected. Therefore,

int(A) = M −M −A is an absolutely terminal subcontinuum of M by (1) of
Theorem 4.

Finally, A is a continuum that contains int(A), so (3) implies (1).

Theorem 6. Suppose M is a semiatriodic and unicoherent continuum.

If A and B are absolutely terminal subcontinua of M with interior that have

a common point , then either A ∪ B = M or one of A and B is a subset of

the other.

P r o o f. Suppose A ∪B is not all of M , and denote M − (A ∪ B) by C.
Since A ∪ B is an absolutely terminal subcontinuum of M with interior, C
is connected by Theorem 5. Then C is an absolutely terminal subcontinuum
with interior by (1) of Theorem 4.

Case (i). Suppose both A and B intersect C. Then each of C∪A and
C∪B is a continuum containing C, so one of them is a subset of the other.
Renaming if necessary, assume C∪A ⊂ C∪ B. It follows that int(A∪B) ∩
(C∪A) ⊂ int(A ∪ B) ∩ (C ∪ B); but int(A∪B) ∩ C is empty, so int(A) ⊂
int(A ∪B) ∩A ⊂ int(A ∪B) ∩B ⊂ B. Each of A and B is a continuum
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that contains int(A), and int(A) is an absolutely terminal subcontinuum by
Theorem 5; therefore, one of A and B is a subset of the other.

Case (ii). Suppose only one of A and B intersects C. Renaming if
necessary, assume A intersects C. Then each of A∪B and A∪C is a continuum
containing A, so one of them is a subset of the other. The continuum C is
not a subset of A ∪ B, so A ∪ B ⊂ A ∪ C. Denote M − A by Ac. Then
Ac ∩B ⊂ Ac ∩C, but B does not intersect C, so Ac ∩B is empty. It follows
that B ⊂ A.

Theorem 7. Suppose M is a semiatriodic and unicoherent continuum.

If each of A, B, and C is an absolutely terminal subcontinuum of M with

interior , then one of A, B, and C is a subset of some other one of A, B,
and C.

P r o o f. The result is trivial if one of A, B, and C is all of M ; hence, it is
assumed that A, B, and C are proper subcontinua of M . Then M−A, M−B,
and M −C are connected by Theorem 5, so M −A, M −B, and M − C are
absolutely terminal subcontinua of M with interior by (1) of Theorem 4.
Suppose A, B, and C are pairwise disjoint. Since M is connected, A∪B ∪C
is not all of M . Each of M −A, M −B, and M − C contains the open set
M−(A∪B∪C). Hence, M −A∪M −B is a proper subcontinuum of M with
interior. Therefore, by Theorem 2, M −A∩M −B is a subcontinuum of M .
It follows further that (M −A∩M −B)∪M − C is a subcontinuum of M with
interior, and, hence, that D = (M −A)∩ (M −B)∩ (M − C) is a subcontin-
uum of M with interior. Note that M −D = (M −M −A)∪ (M −M −B)∪
(M −M − C) = int(A)∪ int(B)∪ int(C). This is a contradiction since A, B,
and C are assumed to be pairwise disjoint closed sets and M is not a triod.

Renaming if necessary, assume A intersects B. If one of A and B is a
subset of the other, the conclusion of the theorem follows; otherwise, A∪B =
M by Theorem 6. Then one of A and B intersects C. Again renaming if
necessary, assume C intersects A. If one of A and C is a subset of the other,
the conclusion of the theorem follows; otherwise, A∪C = M . Then B and C
are both continua that contain the absolutely terminal subcontinuum M −A;
hence, one of B and C is a subset of the other.

Corollary 7.1. If M is a semiatriodic and unicoherent continuum,

then M has at most two indecomposable absolutely terminal subcontinua with

interior.

P r o o f. Suppose M has three indecomposable absolutely terminal sub-
continua with interior. Then, by Theorem 7, one of them has a proper sub-
continuum with interior, which is not possible.

Example. Let T1 denote the set of points (x, y) in the plane such that
x ∈ [−1, 0] and y = 0, T2 denote the set of points (x, y) such that x = 0 and
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y ∈ [−1, 1], and T3 denote the set of points (x, y) such that x ∈ (0, 1] and
y = sin(1/x). Consider the continuum T1 ∪ T2 ∪ T3, and note that T1 ∪ T2

is a triod that has interior in T1 ∪ T2 ∪ T3. The statements of Theorems 5,
6, and 7 do not remain true if “semiatriodic and unicoherent continuum” is
replaced by “unicoherent continuum that is not a triod”. Counterexamples
may be obtained by considering the continuum T1 ∪ T2 ∪ T3.

3.3. Proper subcontinua and their interior

Lemma 1. Suppose M is a continuum that is not a triod , and suppose

B is an absolutely terminal subcontinuum of M . If there is a subset , A, of

M −B such that A is a decomposable subcontinuum of M with interior , then

there is a proper subcontinuum of M that contains B in its interior.

P r o o f. Let A1 and A2 be proper subcontinua of A whose union is A.
Since A has interior, one of A1 and A2 has interior. Renaming if necessary,
assume A1 has interior. Each component of M − A1 is open since M is not
a triod. Therefore, if A1 fails to intersect B, the closure of the component
of M − A1 that contains B is a proper subcontinuum of M that contains B
in its interior. Suppose A1 and B have a common point. Then A1 ∪ B is
a continuum. Since A1 is a proper subcontinuum of A, A1 cannot contain
every point of A. It follows that A1∪B is a proper subcontinuum of M . Note
that A1 ∪ B is an absolutely terminal subcontinuum of M , since it contains
B. Therefore, M − (A1 ∪B) is connected. Since B is an absolutely terminal
subcontinuum of M , and A1 intersects B, M − (A1 ∪B) cannot intersect B.
It follows that A1 ∪B contains B in its interior.

Theorem 8. Suppose M is a semiatriodic and unicoherent continuum.

The following are equivalent :

(1) M contains a nowhere dense subcontinuum that is not contained in

the interior of any proper subcontinuum of M .

(2) M is either indecomposable or two-indecomposable.

P r o o f. Suppose M is neither indecomposable nor two-indecomposable,
and let X be a nowhere dense subcontinuum of M . Let M0 be a proper
subcontinuum of M with interior, and let M1 be the closure of some com-
ponent of M − M0. By (1) of Theorem 4, M1 is an absolutely terminal
subcontinuum of M with interior. By Theorem 5, M − M1 is connected.
Let M2 = M −M1. It follows from (1) of Theorem 4 that M2 is an ab-
solutely terminal subcontinuum of M ; furthermore, M2 has interior. Since
M − (M1 ∩M2) = M −M1 ∪ M −M2 = M2 ∪ M −M2 = M , it follows
that M1 ∩M2 is nowhere dense. One of M1 and M2 is decomposable since
M1 ∪M2 = M . It is assumed that M1 is decomposable, the remainder of the
proof is the same if M2 is decomposable.
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Let B = M2∪X , and let A = M1− (M1∩B). Since each of M1∩M2 and
M1 ∩X is nowhere dense, their union, M1 ∩B, is nowhere dense. Therefore,
int(M1)− (int(M1) ∩ (M1 ∩B)) = int(M1) = M1, and so

M1 = int(M1)− (int(M1) ∩ (M1 ∩B))

= int(M1) ∩ ((M1)− (M1 ∩B)) = M1 − (M1 ∩B) ⊂M1.

It follows that A = M1 and, hence, that A is a decomposable subcontinuum
of M with interior. If B is not connected, then X misses M2 and, hence,
M1 is a proper subcontinuum of M that contains X in its interior. If B
is connected, then B is an absolutely terminal subcontinuum of M since it
contains the absolutely terminal subcontinuum M2; furthermore, A ⊂M−B.
Therefore, by Lemma 1, there is a proper subcontinuum of M that contains
B and, hence, X in its interior.

If M is indecomposable, then every proper subcontinuum of M is a
nowhere dense subcontinuum of M that is not contained in the interior of
any proper subcontinuum of M . Suppose M is two-indecomposable. Let
M1 and M2 be proper indecomposable subcontinua of M whose union is M .
The continuum M is unicoherent, so M1 ∩M2 is a continuum; furthermore,
M1 ∩M2 is a proper subcontinuum of the indecomposable continuum M1, so
M1 ∩M2 is nowhere dense. It is shown that there is no proper subcontinuum
of M that contains M1 ∩M2 in its interior. Assume the contrary, and let Y
be a proper subcontinuum of M that contains M1 ∩M2 in its interior. Let A
be a component of M−Y . The sets M1− (M1∩M2) and M2− (M1∩M2) are
mutually separated, so A is a subset of one of them. Renaming if necessary,
assume A ⊂ M1 − (M1 ∩M2). Then A ⊂ M1; furthermore, A is not all of
M1 since A ⊂M1 − (M1 ∩ int(Y )) ⊂M1 − (M1 ∩M2). Hence, A is a proper
subcontinuum of M1 with interior. This is a contradiction since M1 is inde-
composable. Therefore, no proper subcontinuum of M contains M1 ∩M2 in
its interior.

Theorem 9. Suppose M is a semiatriodic and unicoherent continuum,
and suppose X is a proper subcontinuum of M with interior. The following

are equivalent :

(1) No proper subcontinuum of M contains X in its interior.

(2) The closure of each component of M −X is indecomposable.

(3) Every point of M −X belongs to an indecomposable absolutely ter-

minal subcontinuum of M that has interior and contains a point of X.

(4) Every subcontinuum of M with interior contains a point of X.

P r o o f. It is first shown that (1) implies (2). Suppose (2) does not
hold. Then there is a component, A, of M − X with the property that A
is decomposable. If M − X has another component, let B be the union of
X with this component; otherwise, let B = X . Then B is an absolutely
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terminal subcontinuum by (1) of Theorem 4 or by Theorem 5 respectively.
Since A is a subset of M −B, and A is a decomposable subcontinuum of M
with interior, it follows from Lemma 1 that there is a proper subcontinuum
of M that contains B and, hence, X in its interior.

That (2) implies (3) follows from (1) of Theorem 4.

To see that (3) implies (4), suppose (4) does not hold. Then M has
a subcontinuum, Y , with nonempty interior that does not intersect X . If
M −Y has two components, let Y1 be the union of Y with the component of
M − Y that does not intersect X ; otherwise, let Y1 = Y . In either case, Y1

is an absolutely terminal subcontinuum by (1) of Theorem 4 or by Theorem
5 respectively, Y1 has interior, and Y1 does not intersect X . If M − X has
two components, let X1 be the union of X with the component of M − X
that does not intersect Y1; otherwise, let X1 = X . Then X1 is an absolutely
terminal subcontinuum by (1) of Theorem 4 or by Theorem 5 respectively, X1

has nonempty interior, X1 contains X , and X1 does not intersect Y1. Since
M is connected, X1∪Y1 cannot be all of M . Let z be a point of M−(X1∪Y1).
Suppose there is an indecomposable absolutely terminal subcontinuum, Z, of
M with interior that contains z. Then by Theorem 7, one of X1, Y1, and
Z is a subset of some other one of X1, Y1, and Z. Since z is in neither X1

nor Y1, Z cannot be a subset of either X1 or Y1; furthermore, X1 and Y1 are
mutually exclusive. Therefore, one of X1 and Y1 is a proper subset of Z. This
is a contradiction since both X1 and Y1 have interior, and Z is assumed to be
indecomposable. Therefore, there is no indecomposable absolutely terminal
subcontinuum of M with interior that contains z. Since z is not in X , it
follows that (3) does not hold.

Finally, it is shown that (4) implies (1). Suppose there is a proper sub-
continuum, Y , of M that contains X in its interior. Let A be a component
of M − Y . Then A is a subcontinuum of M with interior that fails to inter-
sect X .

Theorem 10. Suppose M is a semiatriodic and unicoherent continuum,
and suppose X is a proper subcontinuum of M with interior. The following

are equivalent :

(1) There is a proper subcontinuum of M that contains X in its interior.

(2) The closure of some component of M −X is decomposable.

(3) There is a subset , A, of M −X such that A is a decomposable sub-

continuum of M with interior.

P r o o f. It follows from Theorem 9 that (1) implies (2), and (3) follows
directly from (2). Suppose (3) holds. It is shown that A cannot intersect two
components of M − X . Suppose the contrary. Let Q be the closure of one
of these components. Then Q is an absolutely terminal subcontinuum of M
by (1) of Theorem 4. Since Q∪X and Q∪A are both continua that contain the
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absolutely terminal subcontinuum Q, one of Q ∪X and Q ∪A is a subset of
the other. By assumption, A intersects a component of M −X different from
Q, so A intersects M − (Q ∪X). It follows that (Q ∪X) ⊂ (Q ∪ A). Then
int(X)∩ (Q∪X) ⊂ int(X)∩ (Q∪A). Since Q∩ int(X) is empty, int(X) ⊂ A.
This is not possible since A ⊂ M − X . Therefore, A cannot intersect two
components of M −X . If M − X has two components, let B be the union
of X with the one that does not intersect A; otherwise, let B = X . Then
B is an absolutely terminal subcontinuum of M by (1) of Theorem 4 or by
Theorem 5 respectively, and A is a subset of M −B. Therefore, by Lemma 1
there is a proper subcontinuum of M that contains B and, hence, X in its
interior.

Theorem 11. Suppose M is a semiatriodic and unicoherent continuum.

The following are equivalent :

(1) Every proper subcontinuum of M is contained in the interior of some

proper subcontinuum of M .

(2) Every absolutely terminal subcontinuum of M with interior is decom-

posable.

P r o o f. Suppose there is an absolutely terminal subcontinuum, Q, with
interior that is indecomposable. If Q = M , then no proper subcontin-
uum of M has interior, and, hence, (1) does not hold. Suppose Q is a
proper subcontinuum of M . Then M − Q is connected by Theorem 5, and
M −Q is an absolutely terminal subcontinuum of M with interior by (1)
of Theorem 4. By Theorem 5 again, M −M −Q is connected. Note that

M −M −Q = int(Q) ⊂ Q. No proper subcontinuum of Q has nonempty

interior, so M −M −Q = Q. Therefore, the only component of M −M −Q
has an indecomposable closure. Hence, by Theorem 9, no proper subcontin-
uum of M contains M −Q in its interior.

Suppose every absolutely terminal subcontinuum of M with interior is
decomposable. Let X be a proper subcontinuum of M .

Case (i). Suppose X has interior. Let A be a component of M−X . Then
A is an absolutely terminal subcontinuum of M by (1) of Theorem 4, and A
has interior since M is not a triod, so A is decomposable. Then, by Theo-
rem 9, there is a proper subcontinuum of M that contains X in its interior.

Case (ii). Suppose X is nowhere dense. Since M is an absolutely termi-
nal subcontinuum of M , M is decomposable. By (2) of Theorem 4, M cannot
be two-indecomposable. Then, by Theorem 8, there is a proper subcontinuum
of M that contains X in its interior.

Corollary 11.1. Suppose {[an, bn], fn} is an inverse sequence, M is

the inverse limit of {[an, bn], fn}, and every absolutely terminal subcontin-
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uum of M with interior is decomposable. If (ζ1, ω1), (ζ2, ω2), . . . is a se-

quence of points in M × M with the property that both πn(ζn) = an and

πn(ωn) = bn for each positive integer n and (z, w) is a subsequential limit of

(ζ1, ω1), (ζ2, ω2), . . . , then zw = M .

P r o o f. This follows from Theorems 1 and 11.

Theorem 12. Suppose M is a semiatriodic unicoherent continuum, and

suppose X is a proper subcontinuum of M . The following are equivalent:

(1) No proper subcontinuum of M contains X in its interior.

(2) Every point of M −X belongs to an indecomposable absolutely ter-

minal subcontinuum of M that has interior and contains a point of X.

(3) Every subcontinuum of M with interior contains a point of X.

P r o o f. If X has interior, (1), (2), and (3) are equivalent by Theorem 9;
hence, it is assumed that X is nowhere dense.

By Theorem 8, (1) implies (2).

Suppose (2) holds. By Corollary 7.1, M can have at most two indecom-
posable absolutely terminal subcontinua with interior.

Case (i). If M has only one indecomposable absolutely terminal subcon-
tinuum Q with interior, then Q = M by (2) and the assumption that X is
nowhere dense. Therefore, the only subcontinuum of M with interior is M .
It follows that every subcontinuum of M with interior intersects X .

Case (ii). If M has two indecomposable absolutely terminal subcontinua
with interior P and Q, then M = P ∪Q by (2) and the assumption that X
is nowhere dense. Note that each of P and Q contains a point not in the
other since each is indecomposable and has interior. Then each of P and Q
intersects X by (2). Let Y be a subcontinuum of M with interior. Then
int(Y ) intersects one of int(P ) and int(Q); otherwise, int(Y ) would be a
subset of a nowhere dense subset of M . If int(Y ) intersects int(Q), then by
Theorem 2, Y ∩ Q is a subcontinuum of Q with interior. It follows that Y
contains Q and, hence, that Y intersects X . If int(Y ) intersects int(P ), the
proof that Y intersects X is the same.

That (3) implies (1) follows from the proof in Theorem 9 that (4) implies
(1), which does not require that X have interior.

Example. The statements of Theorems 9 and 12 do not remain true if
“semiatriodic and unicoherent continuum” is replaced by “unicoherent con-
tinuum that is not a triod”. This is evident from the following example. Let
M be a continuum that is the union of two Brouwer–Janiszewski–Knaster
continua, M1 and M2, whose intersection is a single point different from the
endpoint M1. Note that M2 is not an absolutely terminal subcontinuum
for M .
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It seems likely that the statements Theorems 8, 10, and 11 would remain
true if formulated for a class of continua more general than that of semiatri-
odic and unicoherent continua. While the statements of Theorems 5, 6, 7, 9,
and 12 do not remain true when formulated for unicoherent continua that are
not triods, it seems likely that they may upon replacing “absolutely terminal
subcontinuum” with a more general type of subcontinuum that lies “at an
end” of a continuum. Many such nonseparating subcontinua are investigated
in [1].

4. Points of irreducibility—part II. Throughout Section 4, the fol-
lowing notation is used: M denotes the inverse limit of an inverse sequence
of the form {[an, bn], fn} where each fn is surjective, and z and w are points
of M that satisfy the hypothesis of Theorem 1—which is to say, (z, w) is a
point of M ×M to which some subsequence of (ζ1, ω1), (ζ2, ω2), . . . converges
where, for each n, ζn and ωn are points of M such that πn(ζn) = an and
πn(ωn) = bn.

Theorems 1 and 12 together yield that every point of M that does not
belong to zw belongs to an indecomposable absolutely terminal subcontinuum
of M with interior. In this section, two points are constructed that have
the property that the continuum irreducible between them contains every
indecomposable absolutely terminal subcontinuum of M with interior that
is not contained by zw. Furthermore, if M is indecomposable, then they
are points of irreducibility for M . It follows that M is irreducible about the
union of these two points with {z, w}. Some two of the four are points of
irreducibility for M ; the proof of Theorem 19 gives a procedure for selecting
the two.

4.1. Indecomposable absolutely terminal subcontinua with interior

Definition. Suppose f : [a, b] → [a0, b0] is a continuous surjection,
x and y are distinct points of [a, b], γ = min{x, y}, δ = max{x, y}, γ0 =
min{f(x), f(y)}, and δ0 = max{f(x), f(y)}. The pair 〈x, y〉 is said to be a:

• type 1 pair with respect to f provided f [[a, γ]∪ [δ, b]] = [a0, γ0]∪ [δ0, b0],

• type 2a pair with respect to f provided f [a, γ] is either [a0, γ0] or [δ0, b0],
and f [a, δ] = [a0, b0],

• type 2b pair with respect to f provided f [δ, b] is either [a0, γ0] or [δ0, b0],
and f [γ, b] = [a0, b0],

• type 3 pair with respect to f provided f [γ, δ] = [a0, b0].

Theorem 13 below gives a simple procedure for constructing a pair of
type 1, type 2, or type 3 with respect to a continuous surjection f from
one interval to another. Figure 2 shows the graphs of three functions with
respect to which 〈γ, δ〉 is a pair of type 1, type 2 (specifically 2a), and type 3
respectively.
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Type 1 Type 2 Type 3

0 0 0

0 0 0

a0 a0 a0

b0 b0 b0

a a ab bb

Fig. 2. Examples of type 1, type 2, and type 3 pairs

The behavior of a function having a pair of type 1, type 2, or type 3 is
reflected by its graph. For an example, denote by f the function whose graph
appears in Figure 2, type 1. The graph of f to the left of γ is restricted to
the “lower left hand corner” of the graph of f , and the graph of f to the
right of δ is restricted to the “upper right hand corner.” If, instead, the graph
of f to the left of γ were restricted to the “upper left hand corner” and the
graph to the right of δ were restricted to the “lower right hand corner,” 〈γ, δ〉
would still be a type 1 pair with respect to f . Note that in Figure 2, type
2, the graph of the function to the left of γ is restricted to the “upper left
hand corner,” and the graph of the function to the left of δ sweeps out the
function’s entire range. In particular, 〈γ, δ〉 is a type 2a pair for this function.
Also note that in Figure 2, type 3, the graph of the function sweeps out the
function’s entire range between γ and δ.

Theorem 13. If f : [a, b] → [a0, b0] is a continuous surjection, x0

and y0 are distinct points of [a0, b0], x′ = min{x ∈ [a, b] : f(x) = x0},
y′ = max{x ∈ [a, b] : f(x) = y0}, x′′ = max{x ∈ [a, b] : f(x) = x0}, and

y′′ = min{x ∈ [a, b] : f(x) = y0}, then one of 〈x′, y′〉 and 〈x′′, y′′〉 is of type

1, type 2, or type 3 with respect to f .

P r o o f. Let γ′ = min{x′, y′}, δ′ = max{x′, y′}, γ′′ = min{x′′, y′′}, and
δ′′ = max{x′′, y′′}. Suppose 〈x′, y′〉 is of neither type 1, type 2, nor type 3 with
respect to f . Since it is not of type 3, one of f [a, γ′] and f [δ′, b] must intersect
{a0, b0}; and since it is not of type 1, one must intersect (γ0, δ0). Suppose that
neither f [a, γ′] nor f [δ′, b] intersects both {a0, b0} and (γ0, δ0). Then one must
be a subset of (a0, b0), and the other either [a0, γ0] or [δ0, b0]. Consequently,
〈x′, y′〉 is a type 2 pair, which is a contradiction. It is assumed that f [a, γ′]
intersects both {b0} and (γ0, δ0); the proof is similar in case it intersects {a0}
and (γ0, δ0), or in case f [δ′, b] intersects both {a0, b0} and (γ0, δ0). Then
δ0 ∈ f [a, γ′). Since x0 cannot be in f [a, x′), which contains f [a, γ′), it follows
that δ0 = y0 and, hence, that y′′ < γ′. Since γ′ ≤ x′ ≤ x′′, this gives
γ′′ = y′′ and δ′′ = x′′. Note that if b0 ∈ f [a, y′′], then f [a, y′′] = [δ0, b0]
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since δ0 = y0 and y0 6∈ f [a, y′′). If a0 6∈ f [x′′, b], then 〈x′′, y′′〉 is a type 2a
pair if b0 ∈ f [a, y′′], and a type 3 pair otherwise. If a0 ∈ f [x′′, b], then
f [x′′, b] = [a0, x0] = [a0, γ0]; so 〈x′′, y′′〉 is a type 1 pair if b0 ∈ f [a, y′′], and a
type 2b pair otherwise.

Lemma 2. If A is an absolutely terminal subcontinuum of M with in-

terior , then there exists a positive integer , N, such that if n is a positive

integer not less than N , then πn(A) intersects {an, bn}.

P r o o f. Suppose A is a subcontinuum of M with interior that has the
property that πn(A) misses {an, bn} for infinitely many positive integers n.
Then πn(M−A) contains both an and bn for infinitely many positive integers
n. It follows that M −A is not connected; otherwise, πn[M −A] would
contain [an, bn] for infinitely many positive integers n, from which it would
follow that M −A = M in contradiction with the hypothesis that A has
interior. Consequently, A is not an absolutely terminal subcontinuum of M
by Theorem 5.

Lemma 3. Suppose x and y are distinct points of M such that

〈xn+1, yn+1〉 is a pair of type 1 or type 2 with respect to fn for all but finitely

many positive integers n, and a pair of type 2 with respect to fn for infinitely

many positive integers n. If xy is a proper subcontinuum of M, then there

are a positive integer N and a sequence A1, A2, . . . of sets where An is one of

[an, min{xn, yn}] and [max{xn, yn}, bn] for n not less than N with the prop-

erty that fn[An+1] = An for each n, and M − xy ⊂ lim←−{An, fn|An+1}.

P r o o f. There is a positive integer N such that 〈xn+1, yn+1〉 is a pair of
type 1 or type 2 with respect to fn and πn[xy] does not contain both an and
bn for each integer n not less than N . Since 〈xn+1, yn+1〉 is a type 2 pair
for infinitely many positive integers n, πn[xy] intersects {an, bn} for infinitely
many positive integers n. Note that if πk+1[xy] intersects {ak+1, bk+1}, and
〈xk+1, yk+1〉 is a pair of type 1 or type 2 with respect to fk, then πk[xy] in-
tersects {ak, bk}. Since πn[xy] intersects {an, bn} for infinitely many positive
integers n, and 〈xn+1, yn+1〉 is a pair of type 1 or type 2 for n not less than
N , it follows that πn[xy] intersects {an, bn} for n not less than N . For these
values of n, denote min{xn, yn} and max{xn, yn} by γn and δn respectively,
and let An be [an, γn] if an 6∈ πn[xy] and [δn, bn] if bn 6∈ πn[xy]. For positive
integers n less than N , denote fN

n
[AN ] by An. Observe that An contains

[an, bn]− πn[xy] for each positive integer n.

Let k be a given positive integer. It is shown that fk[Ak+1] = Ak. If k
is less than N , then fk[Ak+1] = fk[fN

k+1
[AN ]] = fN

k
[AN ] = Ak. Suppose k is

not less than N .

Case (i). Suppose 〈xk+1, yk+1〉 is a type 1 pair. Either fk[Ak+1]=[ak, γk]
or fk[Ak+1] = [δk, bk]. If fk[Ak+1] = [ak, γk], then bk ∈ fk[[ak+1, bk+1]−
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Ak+1] ⊂ fk[πk+1[xy]] = πk[xy]. Hence, ak 6∈ πk[xy], so by definition, Ak is
[ak, γk]. It follows that fk[Ak+1] = Ak. Similarly, if fk[Ak+1] = [δk, bk], then
fk[Ak+1] = Ak.

Case (ii). Suppose 〈xk+1, yk+1〉 is a type 2 pair. It is assumed that
〈xk+1, yk+1〉 is a type 2a pair; the proof is similar if it is a type 2b pair.
Since fk[ak+1, δk+1] is all of [ak, bk], ak+1 is not in πk+1[xy]. Thus, Ak+1 =
[ak+1, γk+1]. If fk[Ak+1] = [ak, γk], then fk[πk+1[xy]] = πk[xy] must con-
tain bk. Therefore, by the definition of Ak, Ak = [ak, γk]. It follows that
fk[Ak+1] = Ak. Similarly, if fk[Ak+1] = [δk, bk], then fk[Ak+1] = Ak.

Suppose p is a point of M − xy. Then πn(p) is in πn[xy] for at most
finitely many positive integers n. Consequently, πn(p) ∈ An for all but at
most finitely many positive integers n and, hence, for all n. It follows that
p ∈ lim←−{An, fn+1|An+1}.

Theorem 14. Suppose Q is an indecomposable absolutely terminal sub-

continuum of M with interior. If x and y are distinct points of M such that

〈xn+1, yn+1〉 is a pair of type 1, type 2, or type 3 with respect to fn for all

but finitely many integers n, and int(πn[Q]) contains xn (or yn) for infinitely

many positive integers n, then xy contains Q.

P r o o f. If xy = M , then xy certainly contains Q. Hence, it is assumed
that xy is a proper subcontinuum of M . Then πn[xy] = [an, bn] for at
most finitely many n. For each positive integer n, denote min{xn, yn} and
max{xn, yn} by γn and δn respectively. Since πn[xy] = fn[πn+1[xy]] for each
n, and fn[πn+1[xy]] contains fn[γn+1, δn+1] for each n, it follows that πn[xy]
contains fn[γn+1, δn+1] for each n. Therefore, 〈xn+1, yn+1〉 is a type 3 pair
for at most finitely many positive integers n.

Case (i). Suppose 〈xn+1, yn+1〉 is a type 2 pair for at most finitely many
n. There is a positive integer N such that 〈xn+1, yn+1〉 is a type 1 pair for
each integer n not less than N which, by Lemma 2, can be chosen large
enough to guarantee that πn[Q] intersects {an, bn} for each integer n not less
than N . Let Bn be [an, γn] ∪ [δn, bn] for n not less than N , and let Bn be
fN

n
[BN ] for n less than N . For n not less than N , 〈xn+1, yn+1〉 is a type 1

pair, so fn[Bn+1] = Bn. If n is less than N , then fn[Bn+1] = fn[fN
n+1[BN ]] =

fN
n [BN ] = Bn. Let B = lim←−{Bn, fn|Bn+1}. If p is a point of M − xy,

then πn(p) is in πn[xy] for at most finitely many positive integers n. Since
πn[xy] contains [γn, δn] for each positive integer n it follows that πn(p) is in
[an, γn] ∪ [δn, bn] for infinitely many integers n and, therefore, in Bn for all
positive integers n. Consequently, p ∈ B and M − xy ⊂ B. It follows that
xy contains Bc which, in turn, contains Bc ∩ Q. If Q does not intersect B,
then the conclusion of the theorem follows. Suppose Q does intersect B. De-
note πn[Q] by Qn. Then Q ∩ B = lim←−{Qn ∩ Bn, fn|Qn+1 ∩ Bn+1}. Since,
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for n not less than N , Bn = [an, γn] ∪ [δn, bn], and Qn is a subinterval of
[an, bn] that intersects {an, bn}, it follows that either Qn ∩Bn is an interval
for n not less than N or there is a positive integer N1 such that Qn ∩Bn is
the union of two disjoint intervals for n not less than N1. In the latter case,
it follows that Q ∩ B is the union of two proper subcontinua of Q; hence,
Q ∩ B is nowhere dense in Q. In the former case, since xn is a boundary
point of Bn for n not less than N , and int(Qn) contains xn for infinitely
many integers n, it follows that Qn ∩ Bn is a proper subinterval of Qn for
infinitely many integers n. Hence, Q∩B is a proper subcontinuum of Q and,
therefore, nowhere dense in Q. Since xy contains Bc ∩Q and xy is closed, it
follows that xy contains Q.

Case (ii). Suppose 〈xn+1, yn+1〉 is a type 2 pair for infinitely many
positive integers n. By Lemma 3, there is a positive integer N and a sequence
A1, A2, . . . of sets where each An is one of [an, γn] and [δn, bn] for n not less
than N with the property that fn[An+1] = An for each n, and M − xy ⊂
lim←−{An, fn|An+1}; furthermore, by Lemma 2, N can be chosen large enough
to guarantee that πn[Q] intersects {an, bn} for n not less than N . Let A =
lim←−{An, fn|An+1}. If Q does not intersect A, then since M − xy is a subset
of A, the conclusion of the theorem follows. Suppose Q intersects A. Note
that Q∩A is a continuum since M is hereditarily unicoherent. Denote πn[Q]
by Qn. Then Q ∩ A = lim←−{Qn ∩ An, fn|(Qn+1 ∩ An+1)}. Since An is one of
[an, γn] and [δn, bn] for each integer n not less than N , it follows that xn is
not an interior point of An for these values of n. Since int(πn[Q]) contains
xn for infinitely many positive integers n, Qn must contain a point that is
not in An for infinitely many values of n. It follows that A ∩ Q is a proper
subcontinuum of Q and, hence, nowhere dense in Q. Since xy contains Ac∩Q,
it follows that xy contains Q.

Corollary 14.1. If M is indecomposable and x and y are distinct

points of M such that 〈xn+1, yn+1〉 is a pair of type 1, type 2, or type 3 with

respect to fn for all but finitely many n, then M is irreducible between x and

y.

P r o o f. Let Q = M in Theorem 14.

4.2. Locating indecomposable absolutely terminal subcontinua with inte-

rior. In Section 4.1, a simple algorithm is given for generating points x and y
of M with the property that 〈xn+1, yn+1〉 is a pair of type 1, type 2, or type 3
for all or all but finitely many positive integers n, and Theorem 14 guaran-
tees that xy contains an indecomposable absolutely terminal subcontinuum
Q of M with interior if int(πn[Q]) contains xn (or yn) for infinitely many n.
This raises the following question: how are x and y to be constructed in
order to guarantee that for each indecomposable absolutely terminal sub–
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continuum Q of M with interior, int(πn[Q]) contains either xn or yn for
infinitely many n? In order to answer this, it is well to introduce the notion
of a “type 4 pair.”

Definition. Let f : [a, b] → [a0, b0] be a continuous surjection, x
and y be distinct points of [a, b], γ = min{x, y}, δ = max{x, y}, γ0 =
min{f(x), f(y)}, and δ0 = max{f(x), f(y)}. The pair 〈x, y〉 is said to be
a type 4 pair with respect to f provided neither f [a, γ) nor f(δ, b] intersects
both {a0, b0} and {γ0, δ0}.

Remark. If 〈x, y〉 is a type 4 pair with respect to f , then it must be a
pair of type 1, type 2, or type 3 with respect to f . In particular, if 〈x, y〉 is a
type 4 pair with respect to f and:

• both f [a, γ) and f(δ, b] intersect {a0, b0}, then 〈x, y〉 is a type 1 pair
with respect to f .

• f [a, γ) intersects {a0, b0} but f(δ, b] does not, then 〈x, y〉 is a type 2a
pair with respect to f .

• f(δ, b] intersects {a0, b0} but f [a, γ) does not, then 〈x, y〉 is a type 2b
pair with respect to f .

• neither f [a, γ) nor f(δ, b] intersects {a0, b0}, then 〈x, y〉 is a type 3 pair
with respect to f .

The converse, however, is not true. Let f be the full-tent map—the mapping
of [0, 1] onto itself that is linear on the intervals [0, 1/2] and [1/2, 1], and
satisfies f(0) = f(1) = 0 and f(1/2) = 1. The pair 〈.2, .7〉 is a type 2a pair
with respect to f , but not a type 4 pair.

Definition. Let f : [a, b]→ [a0, b0] be a continuous surjection. The map
f is a two-pass map provided there is a point c of [a, b] such that f [a, c] =
f [c, b] = [a0, b0].

The following theorem shows that for a continuous surjection f that is
not a two-pass map, the same procedure used in Theorem 13 to construct
a pair of either type 1, type 2, or type 3 with respect to f may be used to
construct a type 4 pair with respect to f .

Theorem 15. Suppose f : [a, b] → [a0, b0] is a continuous surjection

that is not a two-pass map. If x0 and y0 are distinct points of [a0, b0],
x′ = min{x ∈ [a, b] : f(x) = x0}, y′ = max{x ∈ [a, b] : f(x) = y0}, x′′ =
max{x ∈ [a, b] : f(x) = x0}, and y′′ = min{x ∈ [a, b] : f(x) = y0}; then one

of 〈x′, y′〉 and 〈x′′, y′′〉 is a type 4 pair with respect to f .

P r o o f. Let γ0 = min{x0, y0}, δ0 = max{x0, y0}, γ′ = min{x′, y′}, δ′ =
max{x′, y′}, γ′′ = min{x′′, y′′}, and δ′′ = max{x′′, y′′}. Suppose 〈x′, y′〉 is not
a type 4 pair with respect to f . Then one of f [a, γ′) and f(δ′, b] intersects
both {a0, b0} and {γ0, δ0}. It is assumed that f [a, γ′) intersects both {b0}
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and {γ0, δ0}; the proof is similar in case it intersects both {a0} and {γ0, δ0},
or in case f(δ′, b] intersects both {a0, b0} and {γ0, δ0}. Then δ0 ∈ f [a, γ′).
It follows that δ0 cannot be x0 since x0 6∈ f [a, x′) and γ′ ≤ x′. Hence,
δ0 = y0, and y′′ < γ′. Since γ′ ≤ x′ ≤ x′′, this gives γ′′ = y′′, δ′′ = x′′,
and y′′ ≤ x′. Therefore, f [a, y′′) does not intersect {γ0, δ0}. Either x′′ > y′

or x′′ < y′. If x′′ > y′, then f(x′′, b] does not intersect {γ0, δ0}. Suppose
x′′ < y′. Neither f [a, γ′) nor f(x′′, b] contains x0, so neither can contain both
a0 and b0. Recall that b0 ∈ f [a, γ′). Therefore, f(x′′, b] cannot contain b0,
otherwise f [γ′, x′′] would contain a0 and f would be a two-pass map. Hence,
b0 6∈ f(x′′, b]. Suppose a0 ∈ f(x′′, b], and let α be the point of (x′′, b] whose
image is a0. Then the interval whose endpoints are α and y′ is a subinterval
of (x′′, b]. Since y0 = δ0, it follows that a0 ≤ x0 < y0. Then the interval
whose endpoints are α and y′ and, hence, the interval (x′′, b] must contain a
point whose image is x0. This is a contradiction with the definition of x′′.
Therefore, f(x′′, b] does not intersect {a0, b0}.

Lemma 4. Suppose f : [a, b] → [a0, b0] is a continuous surjection, 〈x, y〉
is a type 4 pair with respect to f, f is not a two-pass map, J is a closed

subinterval of [a, b] that intersects {a, b}, and J0 = f [J ] intersects {a0, b0}.
If int(J0) intersects {f(x), f(y)}, then int(J) intersects {x, y}.

P r o o f. Let γ = min{x, y}, δ = max{x, y}, γ0 = min{f(x), f(y)}, and
δ0 = max{f(x), f(y)}. Suppose int(J) does not intersect {x, y}. If J is
degenerate, it follows that int(J0) does not intersect {f(x), f(y)}. Suppose
J is nondegenerate. Then f [int(J)] = f [int(J)] = f [J ] = J0. Since J is a
subinterval of [a, b] that intersects {a, b}, but int(J) fails to intersect {x, y},
it follows that int(J) must be a subset of either [a, γ) or (δ, b]. Therefore,
since 〈x, y〉 is a type 4 pair, f [int(J)] cannot intersect both {a0, b0} and
{γ0, δ0}. However, its closure, J0, must intersect {a0, b0}. Consequently,
J0 ⊂ [a0, γ0] ∪ [δ0, b0]. Since {γ0, δ0} = {f(x), f(y)}, it follows that int(J0)
does not intersect {f(x), f(y)}.

Theorem 16. Suppose A is an absolutely terminal subcontinuum of M
with interior , N is a positive integer such that πn[A] intersects {an, bn} for

n not less than N, and fn is not a two-pass map for n not less than N . If

x and y are points of M such that 〈xn+1, yn+1〉 is a type 4 pair for n not

less than N, and int(πN [A]) contains one of xN and yN , then int(πn[A])
intersects {xn, yn} for n not less than N .

P r o o f. Since πn[A] = fn[πn+1[A]], Lemma 4 entails that int(πN+1[A])
intersects {xN+1, yN+1}. Proceeding inductively yields the desired result.

Recall the question posed at the beginning of this section: how are x
and y to be constructed in order to guarantee that for each indecompos-
able absolutely terminal subcontinuum Q of M with interior, int(πn[Q]) con-
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tains either xn or yn for infinitely many n? For an inverse sequence with
finitely many two-pass maps, Theorem 16 reduces the above question to the
following.

1. How is N to be chosen in order to guarantee that if Q is an indecom-
posable absolutely terminal subcontinuum of M with interior, then πn[Q]
intersects {an, bn} for n not less than N?

2. How are xN and yN to be defined in order to guarantee that if Q is an
indecomposable absolutely terminal subcontinuum of M with interior, then
int(πN [Q]) contains one of xN and yN?

To answer these, it will be useful to consider the points z and w (defined
in the first paragraph of Section 4).

Lemma 5. If A is an absolutely terminal subcontinuum of M with inte-

rior , then A contains one of z and w.

P r o o f. There is a subsequence, (ζn1
, ωn1

), (ζn2
, ωn2

), . . . , of (ζ1, ω1),
(ζ2, ω2), . . . that converges to (z, w). For each positive integer k, πnk

(ζnk
) =

ank
and πnk

(ωnk
) = bnk

. Then by Lemma 2, πnk
[A] contains πnk

(ζnk
) for

infinitely many positive integers k, or πnk
[A] contains πnk

(ωnk
) for infinitely

many positive integers k. Suppose the former, and let m be a given positive
integer. Note that πm[A] = fnk

m
[πnk

[A]] and πm(ζnk
) = fnk

m
(πnk

(ζnk
)) for nk

not less than m. Then πm[A] contains πm(ζnk
) for infinitely many positive

integers k. Since πm[ζn1
], πm[ζn2

], . . . converges to πm[z] and πm[A] is com-
pact, it follows that πm[A] contains πm(z). Hence, A contains z. Similarly,
if πnk

[A] contains πnk
(ωnk

) for infinitely many positive integers k, then A
contains w.

Definitions. An E-sequence of M with respect to the points z and w
is a sequence EN , EN+1, . . . with each En nondegenerate and equal to either
[an, min{zn, wn}] or [max{zn, wn}, bn]. It is called imagewise nondecreasing

provided En ⊂ fn[En+1] for each n. An E-sequence ẼN , ẼN+1, . . . for which

Ẽn is [an, min{zn, wn}] if En = [max{zn, wn}, bn] and [max{zn, wn}, bn] oth-
erwise is the conjugate E-sequence of EN , EN+1, . . .

Lemma 6. If Q is an indecomposable absolutely terminal subcontinuum

of M with interior that is not contained by zw, then there exists an imagewise

nondecreasing E-sequence EN , EN+1, . . . such that En ⊂ πn[Q] for each n.

P r o o f. Let Q be an indecomposable absolutely terminal subcontinuum
of M with interior that is not contained by zw, and let P = zw ∪M −Q.
If Q = M , then P is the continuum zw. If Q is not all of M , then M −Q
is a continuum by Theorem 5, and M −Q intersects zw by (1) and (3) of
Theorem 12. Hence, P is a continuum. Since Q also has interior, Q intersects
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zw. The continuum M is hereditarily unicoherent so zw ∩Q is a continuum.
By assumption, zw does not contain Q; therefore, zw ∩ Q is a proper sub-
continuum of Q. Thus zw∩Q is nowhere dense. The continuum M −Q∩Q
is also nowhere dense, so P ∩ Q is nowhere dense. Since Q has interior, it
follows that P does not contain Q. Then P is a proper subcontinuum of M ,
so there is a positive integer N such that πn[P ] does not contain both an and
bn whenever n is an integer not less than N .

Let eN be the point of {aN , bN} not in πN [P ], and let EN be [aN ,
min{zN , wN}] if eN = aN and [max{zN , wN}, bN ] if eN = bN . By Lemma 5,
πN [Q] contains one of zN and wN , and eN ∈ πN [Q] since eN 6∈ πN [P ]; hence,
EN ⊂ πN [Q]. Note that eN is not in fN [πN+1[P ]]; otherwise, it would be in
πN [P ]. It follows that eN is not in fN [min{zN+1, wN+1}, max{zN+1, wN+1}]
since zw ⊂ P . If eN is in fN [aN+1, min{zN+1, wN+1}], let eN+1 be aN+1

and EN+1 be [aN+1, min{zN+1, wN+1}]; otherwise, let eN+1 be bN+1 and
EN+1 be [max{zN+1, wN+1}, bN+1]. Then fN [EN+1] contains both eN and
one of zN and wN . It follows that EN ⊂ fN [EN+1]. By Lemma 5, πN+1[Q]
contains one of zN+1 and wN+1. Hence, it follows that EN+1 ⊂ πN+1[Q] if
eN+1 ∈ πN+1[Q]. Suppose, on the contrary, that eN+1 6∈ πN+1[Q]. Then
eN+1 ∈ πN+1[P ] and, hence, EN+1 ⊂ πN+1[P ]. Since EN ⊂ fN [EN+1] and
fN [πN+1[P ]] = πN [P ], it follows that EN ⊂ πN [P ], which is not true. Con-
sequently, EN+1 ⊂ πN+1[Q]. Proceeding inductively yields a sequence EN ,
EN+1, . . . with the desired property.

Theorem 17. If M has no imagewise nondecreasing E-sequence with

respect to z and w, then M is irreducible between z and w.

P r o o f. If M is not irreducible between z and w, then by Theorems 1
and 12, there is an indecomposable absolutely terminal subcontinuum of M
with interior that is not contained by zw. It follows from Lemma 6 that M
has an imagewise nondecreasing E-sequence with respect to z and w.

Definition. Suppose X is a proper subcontinuum of M such that no
proper subcontinuum of M contains X in its interior. The integer N is said to
be an E-number for X if and only if it is true that if Q is an indecomposable
absolutely terminal subcontinuum of M with interior that is not contained by
X , then πn[Q] intersects {an, bn} whenever n is an integer not less than N .

Theorem 18. Suppose EN , EN+1, . . . is an imagewise nondecreasing E-

sequence with respect to z and w.

(1) If for some positive integer K not less than N, the sequence ẼK ,

ẼK+1, . . . is imagewise nondecreasing, then K is an E-number for zw.

(2) If for each positive integer K not less than N, the sequence ẼK ,

ẼK+1, . . . is not imagewise nondecreasing, then N is an E-number for zw.
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P r o o f. If zw = M , then every positive integer is trivially an E-number;
hence it assumed that zw is not all of M . Suppose K is a positive integer
such that Ẽn ⊂ fn[Ẽn+1] for n not less than K, and suppose Q is an in-
decomposable absolutely terminal subcontinuum of M with interior that is
not contained in zw. By Lemma 2, πn[Q] must intersect {an, bn} for all but
finitely many integers n; and by Lemma 5, πn[Q] must intersect {zn, wn} for
each positive integer n. It follows that for all but finitely many integers n,
πn[Q] contains one of En and Ẽn. Suppose πn[Q] contains En for infinitely
many integers n. Then for n not less than N , there is an integer m not less
than n such that Em ⊂ πm[Q]. Since EN , EN+1, . . . is imagewise nondecreas-
ing, En ⊂ fm

n
[Em]. Hence, En ⊂ fm

n
[πm[Q]] = πn[Q] for n not less than N . It

follows that πn[Q] intersects {an, bn} for n not less than N . Similarly, if πn[Q]

contains Ẽn for infinitely many integers n, then πn[Q] intersects {an, bn} for
n not less than K. In either case, πn[Q] intersects {an, bn} for n not less than
K. It follows that K is an E-number.

Suppose Ẽn 6⊂ fn[Ẽn+1] for infinitely many integers n, and suppose Q
is an indecomposable absolutely terminal subcontinuum of M with interior
that is not contained in zw. By Lemma 6, there is a sequence I1, I2, . . .
where each In is one of En and Ẽn with the property that both In ⊂ fn[In+1]

and In ⊂ πn[Q] hold for all but finitely many n. It follows that In 6= Ẽn

for infinitely many n; hence, In = En for infinitely many n. It follows
that En ⊂ πn[Q] for infinitely many integers n. Let k be a given integer
not less than N . There is an integer m not less than k with the property
that Em ⊂ πm[Q]. Then Ek ⊂ fm

k
[Em] ⊂ fm

k
[πm[Q]] = πk[Q]. Conse-

quently, πk[Q] intersects {ak, bk} for k not less than N . Therefore, N is an
E-number.

4.3. Points of irreducibility. For certain cases, points of irreducibility for
M can be found using the techniques developed in the previous sections. The
remaining cases are covered by the following theorem. Its conclusion is that
M is irreducible about some two of four points. The proof gives a method
for determining which two of the four are points of irreducibility for M .

Theorem 19. If N is an E-number for zw such that fn is not a two-pass

map for integers n not less than N, and x and y are points of M such that

xN = aN , yN = bN , and 〈xn+1, yn+1〉 is a type 4 pair with respect to fn for

n not less than N, then M is irreducible about some two of z, w, x, and y.

P r o o f. Suppose M is irreducible about the set {z, w, x, y}. Let α and β
be two points of {z, w, x, y} such that there are infinitely many integers n for
which αn = min{zn, wn, xn, yn} and βn = max{zn, wn, xn, yn}. Then πn[αβ]
contains each of zn, wn, xn, and yn for infinitely many positive integers n. It
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αβ contains each of z, w, x, y and, therefore, M . So, it suffices to show
that M is irreducible about the set {z, w, x, y}.

Denote the subcontinuum of M that is irreducible about {z, w, x, y} by
M∗. By Theorem 1, no proper subcontinuum of M contains zw in its interior.
Hence, by Theorem 12, every point of the complement of zw belongs to
an indecomposable absolutely terminal subcontinuum of M with interior.
Since zw ⊂ M∗, the conclusion of the theorem follows if M∗ contains every
indecomposable absolutely terminal subcontinuum of M with interior that is
not contained in zw. Suppose Q is an indecomposable absolutely terminal
subcontinuum of M with interior that is not contained in zw. Denote by K
the smallest of all integers n not less than N such that πn[Q] is nondegenerate.

It will be shown by induction that πn[Q]∩{xn, yn}∩{an, bn} is nonempty
for N ≤ n ≤ K. If n = N , the result is trivial since πN [Q] intersects {aN , bN},
and {aN , bN} = {xN , yN}. Suppose πk−1[Q] ∩ {xk−1, yk−1} ∩ {ak−1, bk−1}
is nonempty for some integer k satisfying N < k ≤ K. Note that πk[Q]
intersects {ak, bk} since N is an E-number. It will be assumed that ak ∈ πk[Q]
and πk−1[Q] = {xk−1}; the inductive step is similar if bk ∈ πk[Q], πk−1[Q] =
{yk−1}, or both. Then fk−1(ak) = xk−1. Since xk−1 is in {ak−1, bk−1},
and fk−1[ak, min{xk, yk}) does not intersect both {xk−1} and {ak−1, bk−1},
it follows that either xk = ak or yk = ak. The coordinates xN and yN

are not equal, so xk−1 and yk−1 are also not equal. Then xk = ak since
fk−1(ak) = xk−1. Consequently, πk[Q] ∩ {xk, yk} ∩ {ak, bk} is nonempty.

Since πK [Q] is nondegenerate and πK [Q] ∩ {xK , yK} is nonempty, it fol-
lows that int(πK [Q]) contains one of xK and yK . Then by Theorem 16,
int(πn[Q]) intersects {xn, yn} for n not less than K. Since 〈xn+1, yn+1〉 is a
type 4 pair with respect to fn for n not less than K, it is a pair of one of
type 1, type 2, or type 3 with respect to fn as well. Therefore, by Theorem 14,
xy contains Q. Since xy ⊂M∗, it follows that M∗ contains Q.

Summary. What follows is an outline of the procedure developed in this
paper for obtaining points of irreducibility for M in all cases.

1. If the inverse sequence {[an, bn], fn} has infinitely many two-pass maps,
then M is indecomposable; hence, M is irreducible between any pair of points
x and y for which 〈xn, yn〉 is a pair of type 1, type 2, or type 3 for each positive
integer n by Corollary 14.1.

2. If {[an, bn], fn} has zero or finitely many two-pass maps, and M con-
tains no imagewise nondecreasing E-sequence, then z and w are points of
irreducibility for M by Theorem 17.

3. If {[an, bn], fn} has zero or finitely many two-pass maps, and M con-
tains an imagewise nondecreasing E-sequence, then Theorem 18 may be used
to obtain an E-number for zw, and Theorem 19 may be used to find points
of irreducibility for M .
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