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Towers of measurable functions

by

James H i r s c h o r n (Toronto, ON)

Abstract. We formulate variants of the cardinals f, p and t in terms of families of
measurable functions, in order to examine the effect upon these cardinals of adding one
random real.

1. Introduction. Let N be the set of all nonnegative integers, and let
P(N) denote the power-set of N. We give P(N) a topology by identifying it
with the Cantor set 2N endowed with the product topology. Define a relation
“almost set inclusion” on P(N) by

A ⊆∗ B iff A \B is finite,

where A,B ⊆ N. And A ⊇∗ B iff B ⊆∗ A. For a family X ⊆ P(N), A ⊆ N
is a pseudo-intersection of X iff A ⊆∗ X for every X ∈ X .

A family of (infinite) subsets of N is called a filter base iff every nonempty
finite subfamily has an infinite intersection. Let p be the smallest cardinality
of a filter base which has no infinite pseudo-intersection. Let f be the smallest
cardinality of a filter base which is contained in an Fσ filter, and which has
no infinite pseudo-intersection. (We always assume that a filter is proper,
i.e. it contains no finite sets.) Let N[∞] denote the set of all infinite subsets
of N. A tower is a subfamily of N[∞] that is well-ordered by ⊇∗. Let t be the
smallest cardinality of a tower with no infinite pseudo-intersection.

Let NN be the set of all functions from N into N. We give NN the product
topology. Define the relation ≤∗ on NN by

f ≤∗ g iff ∀∞n ∈ N f(n) ≤ g(n),

where f, g ∈ NN. Let b be the smallest cardinality of a subfamily of NN
that is unbounded in (NN,≤∗). The reader can find an introduction to the
cardinals p, t and b and other small cardinals in [vD84] and in [Bla99]. For
further discussion on the cardinal f see [Laf97].

2000 Mathematics Subject Classification: Primary 03E10; Secondary 03E05, 28A20.

[165]



166 J. Hirschorn

Let N[<∞] denote the set of all finite subsets of N. We give (N[<∞])N the
product topology where N[<∞] has the discrete topology.

Let I denote the unit interval [0, 1], and let µ denote the Lebesgue meas-
ure on I.

Notation. For any formula ϕ(v1, . . . , vn) of the language of set theory
with all free variables displayed, and for any functions f1, . . . , fn from I into
either P(N), NN or (N[<∞])N, we define

‖ϕ(ḟ1, . . . , ḟn)‖ = {x ∈ I : ϕ(f1(x), . . . , fn(x))}.
For example, given k ∈ N and f : I → P(N),

‖k ∈ ḟ‖ = {x ∈ I : k ∈ f(x)}.
Any set A which is either in P(N), NN or (N[<∞])N may be viewed as a
constant function on I. In this case, we suppress the dot to emphasize that
A is a constant. For example, given A ⊆ N and f : I → P(N),

‖A ⊆ ḟ‖ = {x ∈ I : A ⊆ f(x)}.
If f is a (Lebesgue) measurable function on I, and if ϕ(v) is a sufficiently

“simple” formula, then ‖ϕ(ḟ)‖ will be a (Lebesgue) measurable set. For
example, if ϕ(v) is a Borel notion, i.e. if {x ∈ I : ϕ(x)} is a Borel set, then
‖ϕ(ḟ)‖ is measurable for every measurable f : I → P(N).

For any F,G ⊆ I, we write

(a) F = 0 if F is null,
(b) F = 1 if F has measure one,

and we let

(c) F +G = F ∪G,
(d) F ·G = F ∩G,
(e) −F = I \ F ,
(f) F 4G = (F · (−G)) + ((−F ) ·G).

Also, we abbreviate “F · (−G)” by “F −G”. We write

(g) F ≤ G if F −G = 0,

and F ≡ G if F ≤ G and G ≤ F . The order of precedence is ·, −, +.

The reader familiar with Boolean algebras will recognize that we are
using the notation for Boolean operations to represent unions, intersections
and complements. This is justified in the context of forcing, because the
poset for adding one random real is the Boolean algebra R defined by

R = {F ⊆ I : F is Lebesgue measurable}/N ,
where N is the ideal of Lebesgue null subsets of I. We refer to R as the
random algebra.
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Therefore, while the proofs in Sections 4 and 5 make use of the above
notation, none of these proofs involves forcing. However, the reader may, if
he or she so wishes, correctly interpret these proofs by viewing all statements
with the ‖ϕ(ḟ)‖ notation as statements in the forcing language of R.

Now we define the corresponding notions in the realm of functions from I
into P(N): We define a relation on the set of all functions from I to P(N) by

f ⊆∗ g iff ‖ḟ ⊆∗ ġ‖ = 1,

where f, g : I → P(N). For a family F of functions from I to P(N), f : I →
P(N) is a pseudo-intersection of F if f ⊆∗ g for every g ∈ F .

Definition 1.1. A function f : I → P(N) is called infinitary if

‖ḟ is infinite‖ = 1.

Definition 1.2. A family F of functions from I into P(N) is filtered if
for every nonempty finite subfamily A ⊆ F ,

⋂

f∈A
f is infinitary

(i.e. µ({x ∈ I :
⋂
f∈A f(x) is infinite}) = 1).

Definition 1.3. A family T of functions from I into P(N) is a tower if

(i) f is infinitary for all f ∈ T ,
(ii) T is well-ordered by ⊇∗.
Definition 1.4. Let pµ be the smallest cardinality of a filtered family of

measurable functions from I into P(N) which has no measurable infinitary
pseudo-intersection from I into P(N).

Definition 1.5. Let tµ be the smallest cardinality of a tower of measur-
able functions from I into P(N) which has no measurable infinitary pseudo-
intersection from I into P(N).

We define a relation on the set of all functions from I into NN by

f ≤∗ g iff ‖ḟ ≤∗ ġ‖ = 1.

A family F of functions from I into NN is called bounded if there is a b ∈ NN
such that ‖ḟ ≤∗ b‖ = 1 for all f ∈ F ; such a function is called a bound
for F .

Definition 1.6. A function S : I → (N[<∞])N is called a slalom if

‖∀n ∈ N |Ṡ(n)| ≤ n‖ = 1.

Definition 1.7. For functions S : I → (N[<∞])N, X : I → P(N) and
f : I → NN, we say that (S,X) captures f if

‖∀∞n ∈ Ẋ ḟ(n) ∈ Ṡ(n)‖ = 1.
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Definition 1.8. Let fµ be the smallest cardinality of a bounded family
F of measurable functions from I into NN such that for every measurable
slalom S : I → (N[<∞])N and every measurable infinitary X : I → P(N),
(S,X) does not capture every f ∈ F .

Some of the results of this paper are as follows:

Theorem 1.9. pµ ≥ p.

Theorem 1.10. tµ ≥ t.

Theorem 1.11. fµ ≥ min{b, f}.
Theorem 1.12. fµ ≤ b.

The cardinal f is less known than p and t. We describe its relation to t
here.

Theorem 1.13 (Laflamme). t ≤ f.

P r o o f. See [Laf97].

We also remark that due to a result of S. Shelah (see [BS96]) both of the
inequalities b < f and b > f are consistent (see also [Laf97]).

The effect upon the cardinals p and t—two of the most important cardinal
characteristics of the continuum—of adding one random real was previously
unknown. The same was true of the cardinal f. For example, it was unknown
whether p was preserved under the addition of a random real, i.e. whether
κ < p implies R ‖ κ̌ < ṗ. In Section 2 we will see that pµ, tµ and fµ are
precisely the values of p, t and f, respectively, in the forcing extension via
one random real. Thus Theorems 1.9 and 1.10 give a positive answer to the
preservation of p and t under the addition of a single random real. And
Theorems 1.11 and 1.12 give both lower and upper bounds for the random
real value of the cardinal f.

Let us remark on a related Theorem of Kunen:

Theorem 1.14 (Kunen). MAκ(σ-linked) implies R ‖ MAκ̌(σ-linked).

P r o o f. See [Roi79] and [Roi88].

Recall that MAκ(σ-linked) implies κ < p (see e.g. [Bel81]). Thus Kunen’s
Theorem implies that it is consistent that κ < p in the extension by one ran-
dom real for any κ beneath the continuum. However, one should note that
Kunen’s Theorem does not imply the random real preservation of p. More-
over, by Bell’s Theorem [Bel81], an equivalent reformulation of Theorem 1.9
is:

Theorem 1.15. MAκ(σ-centered) implies R ‖ MAκ̌(σ-centered).



Towers of measurable functions 169

Section 3 is an extension of Section 2 where we observe that the ob-
jects in V R under our consideration can be named with continuous func-
tions. In Section 4 we prove Theorems 1.9–1.12. The proofs of Theorems 1.9
and 1.10 amount to taking a filtered family [tower] of measurable functions
which is maximal in the sense that it has no measurable infinitary pseudo-
intersection, and transforming it into a filter base [tower] of sets of integers
while preserving its maximality. The proof of Theorem 1.11 is similar. In
Section 5 we discuss the inequalities not covered by Theorems 1.9–1.12.

I wish to thank Alan Dow and Stevo Todorčević for their comments
which enhanced this paper.

2. Adding one random real

Notation. Fix R-names ḃ, ḟ, ṗ and ṫ which are forced to be the values
of b, f, p and t, respectively. Let ṙ be the canonical R-name for the random
real.

There is a canonical correspondence between names for reals in the ran-
dom extension and measurable functions from I into P(N). We describe
this by ẋ 7→ fẋ, where R ‖ fẋ(ṙ) = ẋ (see [Sco67] and [Abr80]). Note
that for any formula ϕ(x) and any Borel function f : I → P(N), when we
write R ‖ ϕ(f(ṙ)), we are implicitly identifying f with a name for the de-
coding of f in the forcing extension; moreover, since for every measurable
f : I → P(N), there is a Borel function g : I → P(N) which agrees with f
almost everywhere (i.e. ‖ġ = ḟ‖ = 1), we see that R ‖ ϕ(f(ṙ)) makes sense
whenever f is measurable. In the other direction we have f 7→ ẋf , where
R ‖ f(ṙ) = ẋf ⊆ Ň.

It follows from the absoluteness of Borel notions that given any two
names ẋ and ẏ for reals,

(1) R ‖ ẋ ⊆∗ ẏ iff fẋ ⊆∗ fẏ.
Also, for any finite sequence ẋ1, . . . , ẋn of names for reals,

(2) R ‖
n⋂

k=1

ẋk is infinite iff
n⋂

k=1

fẋk is infinitary.

The following two propositions are now immediate:

Proposition 2.1. R ‖ ṗ = p̌µ.

Proposition 2.2. R ‖ ṫ = ťµ.

These two propositions in turn relate Theorems 1.9 and 1.10 to the effect
on the cardinals p and t, respectively, of adding one random real:

Corollary 2.3. R ‖ ṗ ≥ p̌.
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Corollary 2.4. R ‖ ṫ ≥ ť.

The relationship between f and fµ becomes a little clearer by considering
a reformulation of f.

Definition 2.5. For b : N→ N, define

R(b) =
∞∏
n=0

b(n).

We give R(b) the product topology, and we endow R(b) with the product
measure ν =

∏∞
n=0 νn, where νn({l}) = 1/b(n) for all l < b(n).

Definition 2.6. Set

f1 = min{|H| : ∃b ∈ NN H ⊆ R(b),∃g ∈ NN limn→∞ g(n) =∞,
∀X ∈ N[∞] ∀Sn ∈ b(n)[≤g(n)] ∃h ∈ H ∃∞n ∈ X h(n) 6∈ Sn}.

Theorem 2.7 (Laflamme). f = f1.

P r o o f. See [Laf97].

We consider a slightly simpler formulation:

Definition 2.8. Define

f2 = min{|H| : ∃b ∈ NN H ⊆ R(b),

∀X ∈ N[∞] ∀Sn ∈ b(n)[≤n] ∃h ∈ H ∃∞n ∈ X h(n) 6∈ Sn}.
Essentially the same argument as in Laflamme’s proof that f1 ≤ f will

show that f2 is indeed a reformulation of f. But first we need a combinatorial
description of Fσ filters:

Lemma 2.9 (Laflamme). Let F be an Fσ filter and g ∈ NN. Then there
is an increasing sequence of integers 〈kn : n ∈ N〉 and sets ani ⊆ [kn, kn+1)
[i < mn] such that

∀n ∈ N ∀s ∈ m[≤g(n)]
n

⋂

i∈s
ani 6= ∅,(1)

∀X ∈ F ∀∞n ∈ N ∃i < mn a
n
i ⊆ X.(2)

Conversely , given 〈kn〉, 〈ani : i < mn〉 and g satisfying (1) and (2) and with
limn→∞ g(n) =∞, the set

{X ⊆ N : ∀n ∈ N ∃i < mn a
n
i ⊆ X}

generates an Fσ filter.

P r o o f. See [Laf97].

Proposition 2.10. f = f2.

P r o o f. Trivially, f2 ≥ f1. Hence, by Theorem 2.7, we need only show
that f2 ≤ f. We take κ < f2 and prove that κ < f. Suppose that 〈Xξ : ξ < κ〉
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is an enumeration of a filter base which is included in an Fσ filter, say F .
By Lemma 2.9, there exist {kn} and ani ⊆ [kn, kn+1) [i < mn] such that

∀s ∈ m[≤n]
n

⋂

i∈s
ani 6= ∅,(3)

∀X ∈ F ∀∞n ∃i < mn a
n
i ⊆ X.(4)

Let b ∈ NN be given by b(n) = mn for all n. Then we can choose, for each
ξ < κ, hξ : N→ R(b) so that

(5) ∀∞n anhξ(n) ⊆ Xξ.

Since κ < f2, there exist X ∈ N[∞] and Sn ∈ m[≤n]
n such that

(6) ∀ξ < κ ∀∞n ∈ X hξ ∈ Sn.
Therefore,

⋃
n∈X

⋂
i∈Sn a

n
i is an infinite pseudo-intersection of 〈Xξ : ξ<κ〉.

Proposition 2.11. Every measurable f : I → NN is bounded (i.e. the
family {f} is bounded).

P r o o f. The proposition is equivalent to the fact that R is NN-bounding
(see [BJ95]).

Using Propositions 2.10 and 2.11 and other considerations similar to
(and including) (1) and (2), we see that:

Proposition 2.12. R ‖ ḟ = f̌µ.

And Theorems 1.11 and 1.12 say the following about the effect on f of
adding a random real:

Corollary 2.13. R ‖ ḟ ≥ min{b̌, f̌} and R ‖ ḟ ≤ b̌.

3. Continuous names

Lemma 3.1. For every measurable F ⊆ 2N and every ε > 0, there is a
clopen set B such that µ(B 4 F ) < ε.

P r o o f. See [Roy88].

This means that the metric space (R, d), where

(7) d(F,G) = µ(F 4G),

is separable. We remark that the absence of a countable dense set in the
metric space corresponding to a nonseparable measure algebra is the pre-
cise reason that none of the proofs of Theorems 1.9–1.11 will work for the
addition of many random reals.

Observe that by considering the base 2 expansion of members of 2N after
the decimal point, after removing a countable set from 2N we can identify it
with I. Moreover, under this identification the standard product measure on
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2N agrees with the Lebesgue measure on I. Therefore, if we replace I with
2N in any of our definitions, then the corresponding results will hold when
I is replaced with 2N. For example, for any of the cardinals fµ, pµ and tµ, if
every instance of I in their definition is replaced with 2N, then we get the
same cardinal. Also notice that Lemma 3.1 says that for every measurable
F ⊆ I and every ε, there is a finite union of rational intervals B such that
µ(B 4 F ) < ε.

Notice that p and t are cardinal characteristics of the object P(N)/fin.
For example, t is the smallest order type of a maximal well-ordered subset of
(P(N)/fin,⊇∗). Moreover, by considering the reformulation f2, f is a cardinal
characteristic of the object NN/fin. We observe that for an R-name for a
member of one of these objects, the equivalence class can be named in a
particularly nice manner.

Definition 3.2. Let ẋ be an R-name for a member of P(N)/fin. A lifting
of ẋ is a function f : 2N → P(N) such that

‖[ḟ ] = ẋ‖ = 1.

A lifting of an R-name for a member of NN/fin or (N[<∞])N/fin is defined
analogously.

Lemma 3.3. Every R-name for a member of P(N)/fin has a continu-
ous lifting. Equivalently , for every measurable f : 2N → P(N) there is a
continuous g : 2N → P(N) such that

‖ḟ ≡ ġ mod fin‖ = 1.

P r o o f. Let ẋ be a given R-name for a member of P(N)/fin. Then let ẏ
be an R-name for a member of P(N) such that

(8) R ‖ [ẏ] = ẋ.

Recall that there is a measurable fẏ : 2N → P(N) such that R ‖ fẏ(ṙ) = ẏ
(see Section 2). Then from (1) we conclude that fẏ is a lifting of ẋ.

For each l ∈ N, let
Al = ‖l ∈ ḟẏ‖.

Note that each Al is a measurable subset of 2N. Hence, by Lemma 3.1, there
exists a clopen Bl ⊆ 2N such that

(9) µ(Al 4Bl) < 2−l.

Define g : 2N → P(N) by

g(x) = {l ∈ N : x ∈ Bl}.
Claim 3.4. g is continuous.

P r o o f. For each l ∈ N, let

Vl = {A ⊆ N : l ∈ A} and V−l = {A ⊆ N : l 6∈ A}.
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Since {Vl, V−l : l ∈ N} is a subbasis of clopen sets for P(N), it suffices to
prove that g−1(Vl) is clopen for all l ∈ N. And

(10) g−1(Vl) = Bl,

which is clopen.

It remains to show that ‖ḟẏ ≡ ġ mod fin‖ = 1, which is equivalent to
showing that

(11) fẏ =∗ g

(i.e. fẏ ⊆∗ g and g ⊆∗ fẏ). First we prove that fẏ ⊆∗ g. This is equivalent
to

(12)
∞∏

k=0

∞∑

l=k

‖l ∈ ḟẏ‖ · ‖l 6∈ ġ‖ = 0.

Fix k ∈ N. Then by (9),

(13) µ
( ∞∑

l=k

‖l ∈ ḟẏ‖ · ‖l 6∈ ġ‖
)

= µ
( ∞∑

l=k

Bl −Al
)
≤ 2−k−1.

Thus µ
(∏∞

k=0

∑∞
l=k ‖l ∈ ḟẏ‖ · ‖l 6∈ ġ‖) ≤ infk→∞ 2−k−1 = 0, as needed.

The proof that g ⊆∗ fẏ is the same but with the roles of Al and Bl inter-
changed.

Analogous results for NN/fin and (N[<∞])N/fin can be proved in the same
manner:

Lemma 3.5. Every R-name for a member of NN/fin [resp. (N[<∞])N/fin]
has a continuous lifting.

Now the following reformulations of pµ, tµ and fµ follow easily:

Proposition 3.6. pµ is the smallest cardinality of a filtered family of
continuous functions from 2N into P(N) which has no continuous infinitary
pseudo-intersection from 2N into P(N).

Proposition 3.7. tµ is the smallest cardinality of a tower of continuous
functions from 2N into P(N) which has no continuous infinitary pseudo-
intersection from 2N into P(N).

Proposition 3.8. fµ is the smallest cardinality of a bounded family F
of continuous functions from 2N into P(N) such that for every continuous
slalom S : 2N → (N[<∞])N and every continuous infinitary X : 2N → P(N),
(S,X) does not capture every f ∈ F .

4. The proofs. Here we give proofs of Theorems 1.9–1.12. Before start-
ing we review the relations between the cardinals b, p and t.

Theorem 4.1. ℵ1 ≤ p ≤ t ≤ b.
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P r o o f. See [vD84], [Bla99].

We complete the preparation for the proofs with a basic fact about mea-
surable functions.

Theorem 4.2 (Luzin). If X is a second countable Hausdorff space and
f : I → X is measurable, then for every ε > 0 there is a closed K ⊆ I with
µ(K) > 1− ε such that f¹K is continuous.

P r o o f. See [Roy88].

Proof of Theorem 1.9. We take an infinite κ < p and prove that κ < pµ.
Let fξ : 2N → P(N) [ξ < κ] be a filtered family of measurable functions. By
Lemma 3.3 (see also Proposition 3.6), we can assume that fξ is continuous for
all ξ. Since any finite intersection of continuous functions is also continuous,
we may assume further without loss of generality that 〈fξ : ξ < κ〉 is closed
under finite intersections, i.e. there is a map α : κ[<ℵ0] → κ such that

(14) fα(Γ ) =
⋂

ξ∈Γ
fξ for all Γ ∈ κ[<ℵ0].

Notation. Let B be the family of all clopen subsets of 2N. Let 〈Bi, qi〉∞i=0
be an enumeration of all pairs 〈C, q〉 such that C ∈ B[<ℵ0] and q : C → N.

For each ξ < κ and n ∈ N, define

Aξ(n) =
{
i ∈ N : qi(B) ≥ n for all B ∈ Bi, µ

(∑
Bi
)
≥ 1− 2−n,

B ≤ ‖qi(B) ∈ ḟξ‖ for all B ∈ Bi
}
.

Claim 4.3. For every ξ < κ, Aξ(n) 6= ∅ for all n ∈ N.
P r o o f. Fix ξ < κ and n ∈ N. The fact that fξ is infinitary is easily seen

to be equivalent to the statement

(15)
∞∏

k=0

∞∑

l=k

‖l ∈ ḟξ‖ = 1.

Therefore there exists p ∈ N such that

(16) µ
( p∑

l=n

‖l ∈ ḟξ‖
)
≥ 1− 2−n.

For each l = n, . . . , p, put
Bl = ‖l ∈ ḟξ‖.

Since each Bl is clearly clopen, we can find i∈N such that Bi={Bn, . . . , Bp},
and such that qi(Bl) = l for all l = n, . . . , p. Then i ∈ Aξ(n).

For each ξ < κ, define aξ : N→ N by

aξ(n) = minAξ(n) for all n ∈ N.
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By Theorem 4.1, κ < b. Hence there exists a : N → N such that a is a
≤∗-bound for {aξ : ξ < κ}. For each ξ < κ, define

Cξ = {(n, i) ∈ N× N : i ∈ Aξ(n), i ≤ a(n)}.
Claim 4.4. 〈Cξ : ξ < κ〉 is a filter base.

P r o o f. Let Γ ⊆ κ be a given nonempty finite subset. Take k ∈ N. Find
n ≥ k such that aα(Γ )(n) ≤ a(n). Then i = minAα(Γ )(n) ≤ a(n), and
hence (n, i) ∈ Cα(Γ ). Since ‖l ∈ ḟα(Γ )‖ =

∏
ξ∈Γ ‖l ∈ ḟξ‖, it follows from

its definition that Aα(Γ )(n) ⊆ Aξ(n) for all ξ ∈ Γ . And this implies that
(n, i) ∈ Cξ for all ξ ∈ Γ . Thus (

⋂
ξ∈Γ Cξ)\(k×N) 6= ∅, proving that

⋂
ξ∈Γ Cξ

is infinite.

Since κ < p, there exists an infinite C ⊆ N × N which is a pseudo-
intersection of 〈Cξ : ξ < κ〉. Moreover, we can insist that C ⊆ C0. Let
D = dom(C). Clearly, D is infinite. For each n ∈ D, choose in so that

(17) (n, in) ∈ C.
Now we define f : 2N → P(N) by

f(x) = {qin(B) : n ∈ D, B ∈ Bin , x ∈ B}.
Claim 4.5. f is continuous.

P r o o f. It suffices to prove that f−1(Vl) is clopen for all l ∈ N (see the
proof of Claim 3.4). And since C ⊆ C0, we have

(18) qin(B) ≥ n for all n ∈ D and all B ∈ Bin .

Therefore,

f−1(Vl) =
⋃
{B : n ∈ D, B ∈ Bin , qin(B) = l}

is a clopen set.

Claim 4.6. f is infinitary.

P r o o f. From (18) it follows that if we take k ∈ N, then

(19) ‖ḟ \ k 6= ∅‖ ≥
∑

n∈D\k

∑
Bin .

But clearly µ(
∑
n∈D\k

∑Bin) ≥ limn→∞(1−2−n) = 1. Thus ‖ḟ \k 6= ∅‖ = 1
for all k ∈ N, which implies that f is infinitary.

Claim 4.7. f ⊆∗ fξ for all ξ < κ.

P r o o f. Fix ξ < κ. The statement ‖ḟ ⊆∗ ḟξ‖ = 1 is equivalent to

(20)
∞∏

k=0

∞∑

l=k

‖l ∈ ḟ‖ · ‖l 6∈ ḟξ‖ = 0.
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Define k : N→ N by k(m) = 0 for m ≤ min(D), and

k(m) = max
n∈D∩m

max ran(qin) + 1 for m > min(D).

Subclaim. We have

(21)
∞∑

l=k(m)

‖l ∈ ḟ‖·‖l 6∈ ḟξ‖ ≤
∑

n∈D\m

∑

B∈Bin
B−‖qin(B) ∈ ḟξ‖ for all m.

P r o o f. Take l ≥ k(m). Suppose that x ∈ ‖l ∈ ḟ‖ · ‖l 6∈ fξ‖. Since
x ∈ ‖l ∈ ḟ‖, there exists n ∈ D and B ∈ Bin such that qin(B) = l and
x ∈ B. And then, since x 6∈ ‖l ∈ ḟξ‖, x ∈ B − ‖qin(B) ∈ ḟξ‖. Moreover, as
l ≥ k(m), n ≥ m as needed.

Now C ⊆∗ Cξ, and hence there is an m such that (n, in) ∈ Cξ for all
n ∈ D \m. Therefore, by (21),

(22)
∞∑

l=k(m)

‖l ∈ ḟ‖ · ‖l 6∈ ḟξ‖ = 0,

proving (20).

Claims 4.5–4.7 show that f is a continuous infinitary pseudo-intersection
of 〈fξ : ξ < κ〉. Therefore, κ < pµ.

Proof of Theorem 1.10. We take κ < t and prove that κ < tµ. Let
fξ : I → P(N) [ξ < κ] be a tower of measurable functions such that the
enumeration respects the well ordering of the tower, i.e. ξ ≤ η → fη ⊆∗ fξ.

For each ξ < η < κ, since fη ⊆∗ fξ,
∑∞
k=0 ‖ḟη \ k ⊆ ḟξ‖ = 1. And

obviously the sets ‖ḟη \ k ⊆ ḟξ‖ are increasing with respect to k. Hence we
can find an increasing function Hξη : N→ N so that

µ(‖ḟη \ k ⊆ ḟξ‖) ≥ 1− 1
Hξη(k)

for all k ∈ N,(23)

lim
k→∞

Hξη(k) =∞.(24)

We construct gη, hη : N → N [η < κ] by recursion on η so that for all
η < κ,

h0(n) = n, g0(n) = 2n for all n ∈ N,(25)

gη ≥∗ 2 · gξ for all ξ < η,(26)

hη ≥∗ hξ for all ξ ≤ η,(27)

gη ≤∗ Hξη ◦ hη for all ξ < η.(28)

Given 0 < η < κ, assume that 〈gξ, hξ : ξ < η〉 have been chosen satisfying
the above conditions. By Theorem 4.1, η < b. Hence we can let gη : N→ N
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be a ≤∗-bound for {2 · gξ : ξ < η}. For each ξ < η, Hξη : N→ N given by

Hξη(n) = min{k ∈ N : Hξη(k) ≥ n}
is well defined by (24). For each ξ < η, define h̃ξ : N→ N by

h̃ξ(n) = max{hξ(n), Hξη(gη(n))} for all n ∈ N.

Let hη : N → N be a ≤∗-bound for {h̃ξ : ξ < η}. Clearly, hη ≥∗ hξ for
all ξ ≤ η. Fix ξ < η. Find k ∈ N such that hη(n) ≥ h̃ξ(n) for all n ≥ k.
Then, since Hξη is increasing, Hξη(hη(n)) ≥ Hξη(Hξη(gη(n))) ≥ gη(n) for
all n ≥ k.

Notation. Let B denote the family of all finite unions of rational inter-
vals. Let 〈Bi, qi〉∞i=0 be an enumeration of all pairs 〈C, q〉 such that C ∈ B[<ℵ0]

and q : C → N.

Define, for each ξ < κ and n ∈ N,

Aξ(n) =
{
i ∈ N : qi(B) ≥ hξ(n) for all B ∈ Bi, µ

(∑
Bi
)
≥ 1− 2−n,

µ
( ∑

B∈Bi
B − ‖qi(B) ∈ ḟξ‖

)
≤ 1
gξ(n)

}
.

Claim 4.8. For every ξ < κ, Aξ(n) 6= ∅ for all n ∈ N.

P r o o f. Fix ξ < κ and n ∈ N. Since fξ is infinitary, there exists p ∈ N
such that

(29) µ
( p∑

l=hξ(n)

‖l ∈ ḟξ‖
)
≥ 1− 2−n−1.

For each l = hξ(n), . . . , p, choose Bl ∈ B such that

(30) µ(Bl 4 ‖l ∈ ḟξ‖) ≤ 1
(p− hξ(n) + 1) ·max{2n+1, gξ(n)} .

Then µ(
∑p
l=hξ(n)Bl) ≥ 1− 2−n, and µ(

∑p
l=hξ(n)Bl − ‖l ∈ ḟξ‖) ≤ 1/gξ(n).

Hence, if i is such that Bi = {Bhξ(n), . . . , Bp} and qi(Bl) = l for all l =
hξ(n), . . . , p, then i ∈ Aξ(n).

Claim 4.9. For every ξ < η < κ, Aη(n) ⊆ Aξ(n) for all but finitely many
n ∈ N.

P r o o f. Fix ξ < η < κ. Find k ∈ N such that

gη(n) ≥ 2 · gξ(n) for all n ≥ k,(31)

hη(n) ≥ hξ(n) for all n ≥ k,(32)

gη(n) ≤ Hξη(hη(n)) for all n ≥ k.(33)
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Take i ∈ Aη(n) for any n ≥ k. Clearly, qi(B) ≥ hξ(n) for all B ∈ Bi. And
∑

B∈Bi
B − ‖qi(B) ∈ ḟξ‖ ≤

(
‖ḟη \ hη(n) ⊆ ḟξ‖ ·

∑

B∈Bi
B − ‖qi(B) ∈ ḟξ‖

)

+ (−‖ḟη \ hη(n) ⊆ ḟξ‖)
≤
( ∑

B∈Bi
B − ‖qi(B) ∈ ḟη‖

)

+ (−‖ḟη \ hη(n) ⊆ ḟξ‖).
Therefore

µ
( ∑

B∈Bi
B − ‖qi(B) ∈ ḟξ‖

)
≤ 1
gη(n)

+
1

Hξη(hη(n))
≤ 2
gη(n)

≤ 1
gξ(n)

,

which proves that i ∈ Aξ(n).

For each ξ < κ, define aξ : N→ N by

aξ(n) = minAξ(n) for all n ∈ N.

By Theorem 4.1, κ < b. Hence there exists a : N → N such that a is a
≤∗-bound for {aξ : ξ < κ}. For each ξ < κ, define

Cξ = {(n, i) ∈ N× N : i ∈ Aξ(n), i ≤ a(n)}.
Claim 4.10. 〈Cξ : ξ < κ〉 is a tower.

P r o o f. It follows from Claim 4.8 that each Cξ is infinite. Fix ξ < η < κ.
By Claim 4.9, there exists k ∈ N such that Aη(n) ⊆ Aξ(n) for all n ≥ k.
Then Cη \(k×N) ⊆ Cξ. Therefore Cη ⊆∗ Cξ, because Cη∩(k×N) is finite.

Since κ < t, there exists an infinite C ⊆ N × N which is a pseudo-
intersection of 〈Cξ : ξ < κ〉. Moreover, we can insist that C ⊆ C0. Let
D = dom(C). Clearly, D is infinite. For each n ∈ D, choose in so that
(n, in) ∈ C.

Now we define f : I → P(N) by

f(x) = {qin(B) : n ∈ D, B ∈ Bin , x ∈ B}.
Claim 4.11. f is measurable.

P r o o f. It suffices to prove that f−1(Vl) is measurable for all l ∈ N (see
the proof of Claim 3.4). And

f−1(Vl) =
⋃
{B : n ∈ D, B ∈ Bin , qin(B) = l}

is an open set. (In fact, it is clopen.)

Claim 4.12. f is infinitary.
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P r o o f. Since C ⊆ C0 and by (25), for all n ∈ D, qin(B) ≥ h0(n) = n
for all B ∈ Bin . Hence, if we take k ∈ N, then

(34) ‖ḟ \ k 6= ∅‖ ≥
∑

n∈D\k

∑
Bin .

But clearly, µ(
∑
n∈D\k

∑Bin) ≥ limn→∞(1−2−n) = 1. Thus ‖ḟ\k 6= ∅‖ = 1
for all k ∈ N, as wanted.

Claim 4.13. f ⊆∗ fξ for all ξ < κ.

P r o o f. Fix ξ < κ. We need to show that
∏∞
k=0

∑∞
l=k ‖l ∈ ḟ‖·‖l 6∈ ḟξ‖=0.

Choose k : N→ N so that

k(m) ≥ max
n∈D∩m

max ran(qin) + 1 for m > min(D),(35)

lim
m→∞

k(m) =∞.(36)

Subclaim. We have

(37)
∞∑

l=k(m)

‖l ∈ ḟ‖·‖l 6∈ ḟξ‖ ≤
∑

n∈D\m

∑

B∈Bin
B−‖qin(B) ∈ ḟξ‖ for all m.

P r o o f. Take l ≥ k(m). Suppose that x ∈ ‖l ∈ ḟ‖ · ‖l 6∈ fξ‖. Since
x ∈ ‖l ∈ ḟ‖, there exists n ∈ D and B ∈ Bin such that qin(B) = l and
x ∈ B. And then since x 6∈ ‖l ∈ ḟξ‖, x ∈ B − ‖qin(B) ∈ ḟξ‖. Moreover, as
l ≥ k(m), n ≥ m by (35).

Now
∞∏

k=0

∞∑

l=k

‖l ∈ ḟ‖ · ‖l 6∈ ḟξ‖ =
∞∏
m=0

∞∑

l=k(m)

‖l ∈ ḟ‖ · ‖l 6∈ ḟξ‖ by (36)

≤
∞∏
m=0

∑

n∈D\m

∑

B∈Bin
B − ‖qin(B) ∈ ḟξ‖ by (37).

And thus C ⊆∗ Cξ and (25) imply that

µ
( ∞∏

k=0

∞∑

l=k

‖l ∈ ḟ‖ · ‖l 6∈ ḟξ‖
)
≤ inf
m→∞

∑

n∈D\m
2−n = 0.

Claims 4.11–4.13 show that f is a measurable infinitary pseudo-intersec-
tion of 〈fξ : ξ < κ〉. Therefore, κ < tµ.

Proof of Theorem 1.11. We take κ < min{b, f} and prove that κ < fµ.
Let fξ : 2N → NN [ξ < κ] be a bounded family of measurable functions, say
b ∈ NN is a bound for the family. By Lemma 3.5, we may assume that every
fξ is continuous. For each ξ < κ and each n ∈ N, define Aξ(n) : b(n) → R
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by

Aξ(n)(l) = ‖ḟξ(n) = l‖ for all l < b(n).

Notation. Let B denote the family of all clopen subsets of 2N.

Let {Bi}∞i=0 be an enumeration of all members of B<N for which

(38) Bi(k) ·Bi(l) = 0 for all k 6= l in dom(Bi).

By continuity, for each ξ < κ and n ∈ N, there is an i ∈ N such that
Aξ(n) = Bi. Hence we can define aξ : N→ N so that

Baξ(n) = Aξ(n) for all n ∈ N.

Since κ < b, there exists a : N → N such that a is a <∗-bound for
{aξ : ξ < κ}. Define for each n ∈ N,

cni = {s ∈ a(n)[≤n] : i ∈ s} for all i < a(n).

Note that

(39) ∀n ∈ N ∀s ∈ a(n)[≤n]
⋂

i∈s
cni 6= ∅.

Therefore, by Lemma 2.9 the set

(40)
{
X ⊆

∞⋃
n=0

{n} × a(n)[≤n] : ∀∞n ∃i < a(n) {n} × cni ⊆ X
}

generates an Fσ filter, say F .
Define, for each ξ < κ,

Cξ =
⋃{{n} × cnaξ(n) : n ∈ N, aξ(n) < a(n)

}
.

Then 〈Cξ : ξ < κ〉 is contained in the set in (40), and hence in F . Therefore,
as κ < f, 〈Cξ : ξ < κ〉 has an infinite pseudo-intersection, say C. Clearly,
D = dom(C) is infinite. For each n ∈ D, choose sn ∈ a(n)[≤n] such that
(n, sn) ∈ C. And for each n 6∈ D, let sn ∈ a(n)[≤n] be arbitrary. Then for
every ξ < κ, sn ∈ cnaξ(n) for all but finitely many n ∈ D. Thus

(41) ∀ξ < κ ∀∞n ∈ D aξ(n) ∈ sn.
Define S : 2N → (N[<∞])N by

S(x)(n) = {l < b(n) : i ∈ sn, x ∈ Bi(l)}.
Claim 4.14. S is a continuous function.

P r o o f. For each n ∈ N and each t ∈ N[<∞], let

Vn,t = {g ∈ (N[<∞])N : g(n) = t}.
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Since {Vn,t : n ∈ N, t ∈ N[<∞]} is a subbasis of clopen sets for (N[<∞])N, it
suffices to prove that S−1(Vn,t) is clopen for all n and t. And

S−1(Vn,t) =
⋂

l∈t∩b(n)

⋃
{Bi(l) : i ∈ sn} \

⋃

l∈b(n)\t

⋃
{Bi(l) : i ∈ sn}

is a clopen set.

Claim 4.15. S is a slalom.

P r o o f. Fix n ∈ N. For each i < a(n), define

Sni (x) = {l < b(n) : x ∈ Bi(l)} for all x ∈ 2N.

By condition (38), |Sni (x)| ≤ 1 for all x ∈ 2N. Therefore, since S(x)(n) =⋃
i∈sn S

n
i (x) for all x ∈ 2N, and since |sn| ≤ n, we have |S(x)(n)| ≤ n for all

x, which implies that S is a slalom.

Claim 4.16. (S,D) captures fξ for all ξ < κ.

P r o o f. Fix ξ < κ. Since we are viewing D as a constant function on 2N,
it suffices to show that

(42)
∞∑
m=0

∏

n∈D\m
‖ḟξ(n) ∈ Ṡ(n)‖ = 1.

By (41), there is an m ∈ N such that

(43) aξ(n) ∈ sn for all n ∈ D \m,

and then since Baξ(n)(l) = Aξ(l) for all l < b(n), we have

(44) ‖ḟξ(n) ∈ Ṡ(n)‖ = 1 for all n ∈ D \m.

This proves (42).

By Claims 4.14–4.16, S is a continuous slalom such that (S,D) captures
every member of the family 〈fξ : ξ < κ〉. Therefore, κ < fµ.

Remark. Note that in the proof of Theorem 1.11 we have proved more
than stated in the theorem. We only needed to produce a measurable slalom
S and a measurable infinitary X which captured the family, but in fact we
found a constant function D in place of X.

The next lemma illustrates how analytic properties of measurable func-
tions can lead to the existence of an object in V R independently of the
ground model. We will show that in V R there always exists a bounded sub-
family of NN of size b which cannot be captured by any pair (S,X) where
S is a slalom and X is infinite.

Definition 4.17. For h : I → NN, a function g ∈ NN is called an
approximate lower bound for h if the set {x ∈ I : h(x)(n) ≥ g(n) for all
n ∈ N} has positive measure.
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Notation. Let NN↗ denote the subspace of NN of all strictly increasing
functions.

Lemma 4.18. Every measurable h : I → NN for which ‖ḣ ∈ NN↗‖ = 1 has
an approximate lower bound in NN↗.

P r o o f. By Theorem 4.2, we can find a compact K ⊆ I with positive
measure such that

h ¹ K is continuous,(45)

h(x) ∈ NN↗ for all x ∈ K.(46)

By continuity and compactness, for each n, there is a finite sequence A0
n, . . . ,

Amn−1
n of relatively clopen subsets of K and a finite sequence of integers

l0n, . . . , l
mn−1
n such that

h(x)(n) = lin for all x ∈ Ain and all i < mn,(47)

Ain 6= 0 for all i < mn,(48) ∑

i<mn

Ain = K.(49)

Define g : N→ N by

g(n) = min
i<mn

lin for all n ∈ N.

Then by (47) and (49), K witnesses that g is an approximate lower bound
for h, and it follows from (46) and (48) that g ∈ NN↗.

We define a notion of “complexity” for measurable subsets of 2N:

Definition 4.19. For a measurable G ⊆ 2N with positive measure, we
define c(G) to be the smallest integer n for which there exists a (finite)
T ⊆ 2<N such that

(i) [t] · [u] = 0 for all t 6= u in T ,
(ii) µ(G− [T ]) ≤ µ(G)/2,

(iii) µ(G · [t]) ≥ 2−|t|−1 for all t ∈ T ,
(iv) n = maxt∈T |t|.
Example 4.20. c([〈0, 0, 0, 0, 0〉] ∪ [〈1, 1, 1, 1, 1〉]) = 4.

Definition 4.21. Let a : N→ N be the exponential function, i.e.

a(n) = 2n for all n ∈ N.

We define an association h 7→ fh, between NN and the continuous functions
from 2N into R(a), by

fh(x)(n) ≡ x¹h(n) mod a(n) for all x ∈ 2N and all n ∈ N,
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i.e.

fh(x)(n) ≡
h(n)−1∑

i=0

2h(n)−i−1 · x(i) mod a(n).

Thus a larger value of h(n) gives a more rapidly oscillating function fh(·)(n).

It will be convenient to deal indirectly with infinite sets via their enu-
merating functions. This is why we make the following auxiliary definition.

Definition 4.22. For S : 2N → (N[<∞])N, E : 2N → NN and f : 2N → NN,
we say that (S,E) captures f if

‖∀∞n ∈ N ḟ(Ė(n)) ∈ Ṡ(Ė(n))‖ = 1.

Lemma 4.23. Suppose that E : 2N → NN is measurable, b∗ ∈ NN↗ is
an approximate lower bound for E, b∗ ∈ NN↗ is an (upper) bound for E,
S : 2N → R(2a) is a measurable slalom and that h ∈ NN↗. Suppose further
that (S,E) captures fh. Then if g : N→ N is given by

g(n) = max{c(‖Ė(n) = l‖ · ‖Ṡ(l) = s‖) : l ∈ [b∗(n), b∗(n)], s ∈ a(l)[≤l]},
then

∀∞n ∈ N g(n) ≥ h(b∗(n))− b∗(n).

P r o o f. Let
δ = µ(‖∀n ∈ N Ė(n) ≥ b∗(n)‖).

Since b∗ is an approximate lower bound for E, δ > 0. Therefore, as b∗ is an
upper bound for E, and by the definition of a slalom, for k0 ∈ N sufficiently
large,

(50) µ
( b∗(n)∑

l=b∗(n)

∑

s∈a(l)[≤l]

‖Ė(n) = l‖ · ‖Ṡ(l) = s‖
)
≥ δ

2
for all n ≥ k0.

Since (S,E) captures hf ,
∑∞
k=0

∏∞
n=k ‖ḟh(Ė(n)) ∈ Ṡ(Ė(n))‖ = 1. We can

therefore find a k1 ∈ N large enough so that

(51) µ
( ∞∏

n=k1

‖ḟh(Ė(n)) ∈ Ṡ(Ė(n))‖
)
≥ 1− δ

8
.

And since b∗ ∈ NN↗, there is a k2 ∈ N (e.g. k2 = 6) such that

(52) b∗(n) ≥ 6 for all n ≥ k2.

Take any n ≥ max(k0, k1, k2). Then observe that there is an l ∈ [b∗(n),
b∗(n)] and an s ∈ a(l)[≤l] such that

(53) µ(‖Ė(n) = l‖ · ‖Ṡ(l) = s‖ · ‖ḟh(l) ∈ s‖)
≥ 3

4
· µ(‖Ė(n) = l‖ · ‖Ṡ(l) = s‖) 6= 0.
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For otherwise

µ
( b∗(n)∑

l=b∗(n)

∑

s∈a(l)[≤l]

‖Ė(n) = l‖ · ‖Ṡ(l) = s‖ · ‖ḟh(l) ∈ s‖
)

<
3
4
· µ
( b∗(n)∑

l=b∗(n)

∑

s∈a(l)[≤l]

‖Ė(n) = l‖ · ‖Ṡ(l) = s‖
)
,

which would by (50) imply that µ(‖ḟh(Ė(n)) ∈ Ṡ(Ė(n))‖) < 1 − δ/8, con-
trary to (51).

Claim 4.24. c(‖Ė(n) = l‖ · ‖Ṡ(l) = s‖) > h(l)− l.
P r o o f. Suppose that T ⊆ 2<N is a collection of pairwise incompatible

elements such that

[t] · [u] = 0 for all t 6= u in T ,(54)

µ(‖Ė(n) = l‖ · ‖Ṡ(l) = s‖ − [T ]) ≤ 1
2
· µ(‖Ė(n) = l‖ · ‖Ṡ(l) = s‖),(55)

µ([t] · ‖Ė(n) = l‖ · ‖Ṡ(l) = s‖) ≥ 2−|t|−1 for all t ∈ T .(56)

From (53)–(55), we can deduce that there exists t ∈ T such that

(57) µ([t] · ‖Ė(n) = l‖ · ‖Ṡ(l) = s‖ · ‖ḟh(l) ∈ s‖)
≥ 1

2
· µ([t] · ‖Ė(n) = l‖ · ‖Ṡ(l) = s‖).

Therefore, by (56),

(58) µ([t] · ‖Ė(n) = l‖ · ‖Ṡ(l) = s‖ · ‖ḟh(l) ∈ s‖) ≥ 2−|t|−2.

Notation. For T ⊆ 2<N and t ∈ 2<N, let Tt = {u ∈ T : u is compatible
with t}.

Subclaim. |t| > h(l)− l.
P r o o f. For each i < a(l), define

Ui = {u ∈ 2h(l)
t : u ≡ i mod a(l)}.

Suppose towards a contradiction that |t| ≤ h(l) − l. Then, since |2h(l)
t | =

2h(l)−|t| ≥ 2l = a(l), a pigeon hole argument yields

(59) |Ui| ≤ 2
a(l)
· |2h(l)

t | for all i < a(l).

Now let p be the cardinality of the set {u ∈ 2h(l)
t : [u] · ‖ḟh(l) ∈ s‖ 6= 0}.

Since [u] · ‖ḟh(l) ∈ s‖ ≤ ‖i ∈ s‖ for all u ∈ Ui and all i < a(l), and since
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|s| ≤ l, by (59),

(60) p ≤
∑

i∈s
|Ui| ≤ |s| · max

i<a(l)
|Ui| ≤ 2l

2l
· 2h(l)−|t|.

Combining formulas (52) and (60) yields µ([t] · ‖ḟh(l) ∈ s‖) < 2−|t|−2,
contrary to (58). This proves the Subclaim and hence also Claim 4.24.

Since h is an increasing function, with Claim 4.24 we have shown that
g(n)≥h(b∗(n))−b∗(n) for all n≥max(k0, k1, k2). This proves Lemma 4.23.

Proof of Theorem 1.12. We take κ < fµ and prove that κ < b. LetH ⊆ NN
with |H| = κ. We may assume without loss of generality that H ⊆ NN↗. By
the assumption on κ, there is a measurable infinitary X : 2N → P(N) and a
measurable slalom S : 2N → (N[<∞])N such that (S,X) captures fh for all
h ∈ H. We can assume without loss of generality that ran(S) ⊆ R(2a). Let
eX : 2N → NN be defined so that eX(x) is the strictly increasing enumeration
of X(x) for all x ∈ I. Then clearly (S, eX) captures fh for all h ∈ H. It is
also clear that eX is measurable, and hence by Lemma 4.18, eX has an
approximate lower bound b∗ ∈ NN↗. And by Proposition 2.11, eX has an
(upper) bound b∗ ∈ NN↗. Let g : N→ N be as defined in Lemma 4.23.

Define f : N→ N by

f(n) = g(n) + b∗(n) for all n.

Then since b∗(n) ≥ n for all n, by Lemma 4.23, h ≤∗ f for all h ∈ H.
Therefore, κ < b.

Remark. Unlike Theorems 1.9–1.11, the proof of Theorem 1.12 does
not rely on the fact that R is separable. However, if B is a nonseparable
measure algebra, then V B |= non(N ) = ℵ1, because any ℵ1 of the random
reals added by B has positive outer measure (see [BJ95]). And (the known
fact that) f ≤ non(N ) follows easily from Proposition 2.10. Thus these two
facts show that V B |= f ≤ ℵ1 ≤ b, and we see that Theorem 1.12 is not
interesting in the case of large measure algebras.

5. The other inequalities. Theorems 1.9–1.12 do not give a complete
description of the effect of adding a random real on the cardinals f, p and t.
For example, one may ask “does ZFC ` tµ ≤ t?”. The analogous question for
the addition of one Cohen real can readily be answered due to the following,
nearly trivial fact. Letting C denote the poset for adding one Cohen real, we
have:

Lemma 5.1. Suppose that T ⊆ N[∞] is a tower. Then if

C ‖ “ Ť has an infinite pseudo-intersection”,

then T does have an infinite pseudo-intersection.
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P r o o f. See [Hir00].

Furthermore, if the Cohen poset is replaced with the Hechler poset in
Lemma 5.1, then the result still holds (see [BD85]). However, as we shall see
in Example 5.5, the analogous result fails for the random algebra.

Definition 5.2. For b ∈ NN, define

S(b) =
{
s ∈ R(2b) : ∀n ∈ N s(n) 6= ∅,

∞∑
n=0

|s(n)|
b(n)

<∞
}
.

For s ∈ S(b), define Σ(s),Π(s) ⊆ R(b) by

Σ(s) = {f ∈ R(b) : ∃∞n ∈ N f(n) ∈ s(n)},
Π(s) = {f ∈ R(b) : ∀∞n ∈ N f(n) ∈ s(n)}.

Define ideals

N (b) = {A ⊆ R(b) : s ∈ S(b), A ⊆ Σ(s)},
E(b) = {A ⊆ R(b) : s ∈ S(b), A ⊆ Π(s)}.

Proposition 5.3. For any b ∈ NN, E(b) is σ-complete.

P r o o f. Let Ai [i ∈ N] be a sequence of elements of E(b), say there exists
si ∈ S(b) [i ∈ N] such that Ai ⊆ Π(si) for all i ∈ N. Choose a strictly
increasing sequence 〈ki : i ∈ N〉 such that

(61)
∞∑

n=ki

i∑

j=0

|sj(n)|
b(n)

≤ 1
i2
.

Define s ∈ R(2b) by

s(n) =
i⋃

j=0

sj(n) for all ki ≤ n < ki+1 and all i ∈ N.

Clearly, s ∈ S(b).
Given i ∈ N, take f ∈ Ai. Find l ∈ N such that f(n) ∈ si(n) for all

n ≥ l. Then f(n) ∈ s(n) for all n ≥ max(ki, l). Hence f ∈ Π(s).

Proposition 5.4. For any b ∈ NN, ν(N (b)) = 0 (see Definition 2.5).

P r o o f. Take s ∈ S(b). Then

ν(R(b) \Σ(s)) = sup
m→∞

∞∏
n=m

|b(n)− s(n)|
b(n)

= sup
m→∞

∞∏
n=m

1− |s(n)|
b(n)

.

Therefore ν(R(b) \Σ(s)) = 1 by the Cauchy criterion for products.

Example 5.5. (CH) A tower for which the random algebra adds an in-
finite pseudo-intersection. Fix b ∈ NN with b(n) ≥ n2 (so that S(b) 6= ∅).
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Let sξ [ξ < ω1] be an enumeration of S(b). By Proposition 5.3, we can
recursively choose tη ∈ S(b) such that for all η < ω1,

(62)
⋃

ξ<η

Π(tξ) ∪Π(sη) ⊆ Π(tη).

For each η < ω1, define Xη ⊆ N× N by

Xη =
∞⋃
n=0

{n} × (b(n) \ tη(n)).

Claim 5.6. 〈Xη : η < ω1〉 is a tower.

P r o o f. Obviously, each Xη is infinite. Fix ξ < η < ω1. Suppose by way
of contradiction that Xη \ Xξ is infinite. Then there exists f ∈ R(b) such
that

∀n ∈ N f(n) ∈ tξ(n),(63)

∃∞n ∈ N f(n) 6∈ tη(n).(64)

This implies that f ∈ Π(tξ) while f 6∈ Π(tη), which contradicts the fact
that Π(tξ) ⊆ Π(tη).

Claim 5.7. 〈Xη : η < ω1〉 has no infinite pseudo-intersection.

P r o o f. Suppose to the contrary that X ⊆ N × N is an infinite pseudo-
intersection. Clearly, D = dom(X) is infinite. For each n ∈ D, choose in ∈
b(n) such that (n, in) ∈ X. Let f ∈ R(b) be such that

(65) f(n) = in for all n ∈ D.

Then f 6∈ Π(tη) for all η < ω1. This contradicts the fact that
⋃
η<ω1

Π(tη)
= R(b).

Let ṙ name the random real in R(b).

Claim 5.8. R ‖ ∀η < ω1 ṙ ⊆∗ X̌η.

P r o o f. This follows from Proposition 5.4, because ṙ 6∈ Σ(tη) implies
that ṙ ⊆∗ X̌η. This proves the claim, and hence completes Example 5.5.

5.1. Fσ filters. Now we work towards a partial analogue of Lemma 5.1
for the random real.

The following is a well known consequence of the fact that there are no
(ω, κ∗)-gaps for κ < b:

Lemma 5.9. Let κ < b. Suppose that 〈aξn : n ∈ N〉 ⊆ R+ [ξ < κ] is
a family of sequences such that limn→∞ aξn = 0 for all ξ < κ. Then there
exists a sequence 〈an : n ∈ N〉 ⊆ Q+ such that

(1) limn→∞ an = 0,
(2) ∀ξ < κ ∀∞n aξn < an.
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P r o o f. For each k ∈ N, define

Ak =
{

(n, i) ∈ N× N : i ≥ n

k + 1

}
.

For each ξ < κ, define

Bξ = {(n, i) ∈ N× N : i ≤ n · aξn}.
Then Ak ∩ Bξ is finite for all k ∈ N and all ξ < κ. Hence there exists an
infinite A ⊆ N×N such that Ak ⊆∗ A for all k ∈ N, and A∩Bξ =∗ ∅ for all
ξ < κ. Assume without loss of generality that A0 ⊆ A. Then 〈an : n ∈ N〉 ⊆
Q+ given by

an =
min{i ∈ N : (n, i) ∈ A}

n
for all n ∈ N

is well defined, and as needed.

Theorem 5.10. Suppose that X ⊆ N[∞] with |X | < b. Then if

R ‖ “X̌ has an infinite pseudo-intersection”,

then X is contained in an Fσ filter.

P r o o f. Let X ⊆ N[∞] with cardinality κ < b, and let Xξ [ξ < κ]
enumerate X . Suppose that f : I → P(N) is a measurable infinitary pseudo-
intersection of X . Let ef : I → NN be the measurable function where ef (x)
is the strictly increasing enumeration of f(x) for all x. Let K ⊆ I be a
compact set with positive measure such that

f ¹ K is continuous,(66)

f(x) is infinite for all x ∈ K.(67)

Using (66), (67) and compactness, we can obtain an S : N → N[<∞] such
that for all n ∈ N,

(68)
∑

l∈S(n)

‖ėf (n) = l‖ ≥ K,

and ‖ėf (n) = l‖ 6= 0 for all l ∈ S(n). Then as in the proof of Lemma 4.18,

(69) lim
n→∞

minS(n) =∞.
For each ξ < κ and each n ∈ N, define

Eξ(n) = {l ∈ S(n) : l 6∈ Xξ} and Wξ(n) =
∑

l∈Eξ(n)

K · ‖ėf (n) = l‖.

Clearly,

(70) lim
n→∞

µ(Wξ(n)) = 0 for all ξ < κ.
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Hence by Lemma 5.9, there exists h : N→ Q+ such that

lim
n→∞

h(n) = 0,(71)

∀ξ < κ ∀∞n h(n) > µ(Wξ(n)).(72)

Define g : N→ N by

g(n) =
⌊

1
h(n)

⌋
for all n ∈ N.

For each n ∈ N, let 〈ain : i < mn〉 be a 1-1 enumeration of all F ⊆ S(n) such
that

(73) µ
(∑

l∈F
K · ‖ėf (n) = l‖

)
> 1− h(n).

Notice that

∀n ∈ N ∀s ∈ m[g(n)]
n

⋂

i∈s
ain 6= ∅,(74)

∀ξ < κ ∀∞n ∈ N ∃i < mn a
i
n ⊆ Xξ.(75)

Therefore X is contained in the Fσ filter generated by

(76) {X ⊆ N : ∀∞n ∈ N ∃i < mn a
i
n ⊆ X},

and this filter is proper by (69).

The following corollary is immediate:

Corollary 5.11. Suppose that X ⊆ N[∞] with |X | < min{b, f}. Then if
R ‖ “X̌ has an infinite pseudo-intersection”,

then X has an infinite pseudo-intersection.

We can apply the proof of Theorem 5.10 to obtain an example of a tower
contained in an Fσ filter for which the random algebra adds an infinite
pseudo-intersection.

Corollary 5.12. Suppose that V |= CH and that d is either a Hechler
real or a Laver real over V (see [BD85] or [BJ95], respectively). Then, in
V [d], there is a nonextendible tower T contained in an Fσ filter such that

R ‖ “ Ť has an infinite pseudo-intersection”.

P r o o f. In V : Let T be the tower constructed in Example 5.5. Then there
is a measurable infinitary f : I → P(N× N) which is a pseudo-intersection
of the tower of (constant) functions T . As noted in Section 2, we can insist
that f is a Borel function.

In V [d]: Identifying f with its Borel code, by the absoluteness of Borel
notions, we still have

(77) ‖ḟ ⊆∗ T‖ = 1 for all T ∈ T ,

and therefore the random algebra extends the tower.
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Next we show that T has no infinite pseudo-intersection. First suppose
that d is a Hechler real. Then we are done by the result mentioned at the
beginning of the section. Now suppose that d is a Laver real. Then by the
Laver property (see [BJ95]), we still have

(78)
⋃
η<ω1

Π(tη) = R(b),

and the proof of Claim 5.7 goes through, as needed.
It remains to show that T is contained in an Fσ filter. However, the real

d can play the same role that the cardinal b did in the proof of Theorem
5.10, and hence we are done. (Note that a Laver real is also a dominating
real (see [BJ95]).)

5.2. Sufficient conditions for tµ ≤ t

Lemma 5.13. (1) tµ ≤ t implies pµ ≤ p,

(2) fµ ≤ f implies tµ ≤ t.

P r o o f. (1). We take κ < pµ and show that κ < p. Let X be a filter
base of cardinality κ. Since κ < pµ, X has an infinitary measurable pseudo-
intersection from I into P(N). Hence, R ‖ “X̌ has an infinite pseudo-
intersection”. It follows from Proposition 2.11 that κ < pµ ≤ b. Moreover,
since every tower of functions is also filtered, we have pµ ≤ tµ. Hence by
Theorem 1.13, κ < pµ ≤ tµ ≤ t ≤ f. Thus by Corollary 5.11, X has an
infinite pseudo-intersection, proving that κ < p.

(2) can be proved similarly.

Notation. Let M denote the meager ideal.

Theorem 5.14. Any of the following conditions implies that tµ ≤ t, and
hence also pµ ≤ p.

(1) t = b.
(2) t < f.
(3) t = add(M).
(4) t < cov(N ).
(5) 2t > c.
(6) Define

t1 = min{T ⊆ N[∞] : T is a tower which is not contained in an Fσ filter}.
Trivially , t1 ≥ t. A sufficient condition is t = t1.

P r o o f. The first statement follows form the fact that R ‖ ḃ = b̌ (this
is so by Proposition 2.11). And (2) follows from (1) and Theorem 5.10.
Statement (3) follows from the fact that R ‖ add(M) = add(M)V (see
[BRS96]), and the inequality t ≤ add(M) (see [PS87]).
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Now we prove (4). Let 〈Aξ : ξ < t〉 enumerate a tower with no infinite
pseudo-intersection. Suppose towards a contradiction that f : I → P(N) is
an infinitary pseudo-intersection of 〈Aξ : ξ < t〉. Then

µ(‖ḟ is finite‖) = 0,(79)

µ(‖ḟ 6⊆∗ Aξ‖) = 0 for all ξ < t.(80)

By the assumption on cov(N ), the union of ‖ḟ is finite‖ and ‖ḟ 6⊆∗ Aξ‖
[ξ < t] does not cover I. But if we pick an x ∈ I outside this union, then
f(x) is an infinite pseudo-intersection of 〈Aξ : ξ < t〉, giving a contradiction.

To see that (5) holds, note that there is a sequence Tz [z ∈ 2t] of towers
of length t with the property that

(81) z0 6= z1 implies ∃A ∈ Tz0 ∃B ∈ Tz1 A ∩B is finite

(see [vD84, §3], [Bla99]). On the other hand, there are only continuum many
measurable functions from I into P(N) modulo the equivalence relation
f ∼ g iff ‖ḟ = ġ‖ = 1, because we can choose a Borel function from each
equivalence class. Therefore, if 2t > c, we cannot find measurable infinitary
pseudo-intersections for all of the towers Tz [z ∈ 2t].

To prove the last statement, note that by (1) we may assume that t < b,
and then the result follows from Theorem 5.10.

We conclude with a conjecture.

Conjecture 5.15. The following statements are consistent with ZFC:

(1) fµ > f,
(2) pµ > p,
(3) tµ > t.

We should mention that it is at least conceivable that research along
the lines of Conjecture 5.15 could lead to a solution to the famous open
problem of Rothberger: “does ZFC ` p = t?” (see [Bla99] and [Vau90]). For
suppose we are able to obtain a model where say pµ = ℵ2 yet tµ = ℵ3. Then
regardless of whether p = t in this model, adding one random real to this
model yields p < t.
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