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Dynamics on Hubbard trees

by

Llúıs A l s ed à and Núria Fa ge l l a (Barcelona)

Abstract. It is well known that the Hubbard tree of a postcritically finite complex
polynomial contains all the combinatorial information on the polynomial. In fact, an
abstract Hubbard tree as defined in [23] uniquely determines the polynomial up to affine
conjugation. In this paper we give necessary and sufficient conditions enabling one to
deduce directly from the restriction of a quadratic Misiurewicz polynomial to its Hubbard
tree whether the polynomial is renormalizable, and in this case, of which type. Moreover,
we study dynamical features such as entropy, transitivity or periodic structure of the
polynomial restricted to the Hubbard tree, and compare them with the properties of the
polynomial on its Julia set. In other words, we want to study how much of the “dynamical
information” about the polynomial is captured by the Hubbard tree.

1. Introduction. In this paper we deal with Hubbard trees of Mi-
siurewicz polynomials, for the most part of degree two, and the dynamical
properties of such a polynomial f when restricted to its Hubbard tree H =
H(f). A Hubbard tree and the restricted map catch the essence of the
dynamics of f . Indeed, from the combinatorial information given by a map
on an abstract Hubbard tree (satisfying certain conditions) one can obtain
the affine class of the actual polynomial realizing the tree as its Hubbard
tree. But since it is easier to deal with the dynamics on the tree, it is of
interest to describe how one reads off properties of the polynomial f directly
from the dynamics of the tree map f |H(f).

The main results of the paper (see Subsection 1.5) give necessary and
sufficient conditions enabling one to deduce directly from f |H(f) whether
the polynomial is renormalizable, and of which type. Renormalization is a
very important concept in holomorphic dynamics; it is therefore of interest
to have a purely combinatorial characterization of this notion. Our results
also show that other dynamical properties of the polynomial on its Julia set,
such as density of periodic points, total transitivity or maximal topological
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entropy, are not always inherited by f |H(f), even though the Hubbard tree
is an invariant subset of the Julia set. Even more, we give a precise charac-
terization of those polynomials for which these properties pass on to their
Hubbard trees. This classification is strongly related to renormalization.

In what follows we introduce notation and summarize the basic facts
which are necessary to state the main results. For more details and general
background we refer to [7, 8, 12, 19, 16, 20, 25].

1.1. Complex polynomials. Let f be a complex polynomial and let z ∈ C.
We denote by O+

f (z) the forward orbit of z under f , i.e. the set {fn(z) |
n ∈ N ∪ {0}}. If fk(z) = z for some k ∈ N then z is a periodic point. The
smallest such k is called the period of z. If z is not periodic but O+

f (z) is
finite we say that z is preperiodic.

For a complex polynomial f of degree d ≥ 2 the point at infinity is a
superattracting fixed point. This allows us to define the filled Julia set of f ,
denoted by K(f), as the complement of the basin of attraction of infinity.
That is,

K = K(f) = {z ∈ C | O+
f (z) is bounded}.

The filled Julia set is clearly compact and totally invariant (that is, f(K)=
f−1(K)=K). The common boundary of K(f) and of the basin of attraction
of infinity is called the Julia set of f and is denoted by J(f). The Julia set
is also totally invariant and is the set of points where “chaotic dynamics”
occurs.

We say that a point ω ∈ C is a critical point of f if f ′(ω) = 0. Then
its orbit is called a critical orbit . The behavior of the critical points under
iteration determines in many ways the topology of K(f) and the dynamics
of f . As an example, let C(f) denote the set of critical points of f . Then
K(f) is known to be connected if and only if C(f) ⊂ K(f).

We are interested in the special case where the critical orbits are finite,
since these are the polynomials for which Hubbard trees are well defined.
We call these polynomials postcritically finite (or PCF for short) and they
can be of three types. If all critical orbits are periodic then f is called a
center. If the critical orbits are all preperiodic then f is called a Misiurewicz

polynomial. In this case K(f) has empty interior and hence K(f) = J(f)
(see [14] and the Appendix for some examples). Finally, a PCF polynomial
could exhibit both types of critical orbits. In all cases K(f) is connected
and locally connected (see [14]). In this paper, we will be concerned with
Misiurewicz polynomials since our questions have trivial answers when there
is a periodic critical point. We also restrict ourselves to degree two in all
what concerns renormalization. Hence, in this case, our polynomials are
conjugate to one in the family z2 + c, and thus, ω0 = 0 is the only critical
point. Generalizations to higher degrees will be the object of a later paper.
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1.2. Renormalization

Definition. Let f(z) = z2+c be such that J(f) is connected. For n > 1
we say that fn is renormalizable (or that f is renormalizable for n > 1) if
there exist open bounded sets U and V isomorphic to disks such that

(1) U ⊂ V ,
(2) fn(U) = V and fn : U → V is proper of degree two, i.e. every point

in V has two preimages under f in U counted with multiplicity,
(3) fkn(0) ∈ U for all k ≥ 0.

We define the small filled Julia set of the renormalization, Kn, as the
points that never leave U under iteration of fn.

It follows from the Straightening Theorem (see [15]) that there exists a
unique (up to affine conjugation) quadratic polynomial Q such that fn and
Q are hybrid equivalent, that is, there exists a quasiconformal conjugacy
h between fn and Q on neighborhoods of Kn and K(Q) respectively, such
that h maps Kn to K(Q) and ∂h = 0 on Kn.

f 3

f (U)

V
f (U)

2U

0=ω0=ω2 
ω1

Fig. 1. The Julia set of fc with c = −1.772892 . . . The map f
3
c is renormalizable and the

small filled Julia set is quasiconformally homeomorphic to the filled Julia set of f
−1 (lower

figure). This is an example of renormalization of disjoint type.

Hence, in particular, the small filled Julia set Kn is homeomorphic to the
filled Julia set of an actual quadratic polynomial (see Figure 1). We define
the cycle

Kn(0) = Kn, Kn(1) = f(Kn(0)), . . . ,Kn(n− 1) = f(Kn(n− 2)),

where f(Kn(n − 1)) = Kn(0). We call each Kn(i) a small filled Julia set

of the renormalization. Likewise, we define the small Julia sets as Jn(i) =
∂Kn(i) for i = 0, 1, . . . , n − 1. McMullen [19] showed that these sets can
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intersect each other in at most one single point, which of course must be a
fixed point of fn.

Quadratic polynomials have only two fixed points. We call them α and
β, where the latter is set to be the most repelling one. We denote the α-
and β-fixed points of Jn(i) (under fn) by αn(i) and βn(i) for 0 ≤ i ≤ n− 1.
From the above it follows that, for a given n, the renormalization can only
be of one of the following types:

(i) fn is renormalizable of disjoint type if the small Julia sets are all
disjoint.

(ii) fn is renormalizable of β-type if all intersections among small Julia
sets occur at their β-fixed points.

(iii) fn is renormalizable of α-type or crossed type if all intersections
among small Julia sets occur at their α-fixed points.

We remark that PCF polynomials are at most finitely many times renor-
malizable. However, each stage of the renormalization process can be of any
of the three types.

1.3. Hubbard trees. Douady and Hubbard [14] introduced a combinato-
rial description of the dynamics of PCF polynomials by associating to each
filled Julia set a tree, called the Hubbard tree. For Misiurewicz polynomials
the Hubbard tree is defined as follows. Given a subset A of J(f) we denote
by [A] the convex hull of A in J(f), i.e. the smallest closed connected subset
of J(f) that contains A.

Definition. Let f be a Misiurewicz polynomial and let Ω(f) denote
the postcritical set

⋃
ω∈C(f) O+

f (ω), which in this case is finite and contained

in J(f). We define the Hubbard tree of f as

H(f) = [Ω(f)].

Recall that a tree is a topological space which is uniquely arcwise con-
nected and homeomorphic to a union of finitely many copies of the closed
unit interval. Note that each Hubbard tree is indeed a tree. To see this, one
only has to show that for any two points x, y ∈ J(f) there is a unique Jordan
arc in J(f) that joins x and y. The existence of this arc follows from the fact
that J(f) is connected and locally connected in S2; the uniqueness follows
from the fact that J(f) has empty interior and is contractible. Therefore,
since H(f) is the union of the Jordan arcs in J(f) joining x, y ∈ Ω(f), it
follows that H(f) is a tree.

If T is a tree and x ∈ T , the valence of x is defined to be the number
of components of T \ {x}. A point of valence 1 is called an endpoint and a
point of valence greater than 2 is called a branching point. We define the
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set of vertices of H(f) as

V (f) = Ω(f) ∪ {v ∈ H(f) | v is a branching point}.
The closure of the arc in H(f) joining two consecutive vertices is called an
edge. Note that any endpoint of H(f) belongs to Ω(f) and, hence, V (f)
contains all points of H(f) with valence different from 2.

It is easy to check that the Hubbard tree is a forward invariant subset
of the Julia set (see Lemma 1.10 in [23]). The set of vertices is also forward
invariant since Ω(f) is forward invariant and non-critical branching points
must be mapped to branching points (because the map is a local homeo-
morphism). For these and other basic properties of Hubbard trees we refer
to [23]; however in Section 2, we study the features that we use in proving
the main results of this paper.

Remark 1.1. Hubbard trees are in fact defined for any PCF polynomial
(see [14, 23]). If f is not Misiurewicz, it follows from the definition that
the Hubbard tree intersects the basins of attraction of points of Ω(f) in
K(f) \ J(f).

The interest of Hubbard trees lies in the fact that they contain all the
combinatorial information on the polynomial. Indeed, Douady and Hubbard
showed that if we retain the dynamics and the local degree of f on the set of
vertices, the way the tree is embedded in the complex plane and a little bit
of extra information (which we will not make precise here), then different
PCF polynomials (not conjugate as dynamical systems) give rise to different
Hubbard trees. A variation of the converse is also true and was proved in a
general version by A. Poirier [23].

1.4. Dynamical properties. Next we are going to describe the basic prop-
erties of the Julia set with respect to periodic points, topological entropy
and transitivity. The notion of topological entropy was introduced by Adler,
Konheim and McAndrew in [1], to which we refer for a precise definition
and basic properties (see also, for instance, [13] or [4]). In what follows,
the topological entropy of a map f will be denoted by h(f). Next we recall
the definition of transitivity. Let f : X → X be a continuous map of a com-
pact metric space. We say that f is (topologically) transitive if for any two
non-empty open sets U and V in X, there is a positive integer k such that
fk(U) ∩ V 6= ∅. It is well known (see [26]) that if either X has no isolated
points or f is onto, then f is transitive if and only if it has a dense orbit (i.e.
if there exists x ∈ X such that O+

f (x) is dense in X). When fn is transitive
for each n ∈ N then f is called totally transitive (see [5]).

The following proposition states some basic properties of the Julia set,
all of which are well known (see for example [7]).
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Proposition 1.2. For a complex polynomial f of degree d ≥ 2 the fol-

lowing statements hold.

(a) The periodic points of f are dense in J(f).

(b) f |J(f) is totally transitive.

(c) The topological entropy of f |J(f) is log d.

(d) f |J(f) has periodic points of each period except maybe period 2.

In this context it is natural to ask the following question. Apart from
the topological and combinatorial structure of the Julia set, what dynamical
information can be deduced directly from the Hubbard tree? In this case,
by dynamical information we mean dynamical features such as transitivity,
topological entropy, density of periodic points and periodic structure. More
precisely, which of the properties in Proposition 1.2 (if any) is still true when
we replace J(f) by H(f)? If the answer depends on the polynomial, what
is a characterization of polynomials for which those properties hold? We
will see that these features are generally not inherited by the Hubbard tree
except in the case where no renormalization is possible.

1.5. Main results. The main results of this paper are the following.

Theorem A. Let f be a Misiurewicz polynomial of degree 2 and let H(f)
be its Hubbard tree. Then the following statements are equivalent :

(a) f is renormalizable of disjoint type for some n ≥ 2.

(b) The periodic points of f are not dense in H(f).

(c) The map f |H(f) is not transitive.

(d) There exists an edge l of H(f) such that
⋃

n≥0 f
n(l) 6= H(f).

Theorem B. Let f be a Misiurewicz polynomial of degree 2 and let H(f)
be its Hubbard tree. Then the following statements are equivalent :

(a) f is non-renormalizable for any n ≥ 2.

(b) f |H(f) is totally transitive.

(c) For any edge l of H(f), there exists n > 0 such that fn(l) = H(f).

We observe that Theorems A and B refer to sets of Misiurewicz poly-
nomials with no intersection but not complementary to each other. The
remaining Misiurewicz polynomials are characterized in the following corol-
lary which follows trivially from negating Theorems A and B simultaneously
(see Figure 2).

Corollary C. Let f be a Misiurewicz polynomial of degree 2 and let

H(f) be its Hubbard tree. Then the following statements are equivalent :

(a) f is renormalizable but not of disjoint type.

(b) f |H(f) is transitive but not totally transitive.
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Misiurewicz

A
lp

ha

Disjoint

Beta
Thm A

Thm B
Corollary C

Fig. 2. This diagram shows which polynomials are described by Theorems A and B and
Corollary C. Notice that “Disjoint” means “renormalizable of disjoint type for some n ≥ 2”
and likewise for “Alpha” and “Beta”.

(c) For any edge l of H(f) we have
⋃

n≥0 f
n(l) = H(f) but there exists

an edge l∗ of H(f) such that fn(l∗) 6= H(f) for each n ≥ 0.

We remark that under the conditions of Theorem B or Corollary C the
set of periodic points is dense in H(f). Moreover, the results above give
easy criteria to check if a polynomial f is renormalizable and, in that case,
of which type. One only needs to construct the Hubbard tree and check the
images of its edges. We also note that, in general, density of periodic points
does not imply transitivity. It does though in the above cases.

To complete the picture arising from Theorem B, note that from [6] it
follows that if f |H(f) is transitive then any of the conditions of Theorem B is
equivalent to the fact that N\Per(f |H(f)) is finite (1), where Per(f) denotes
the set of all n ∈ N such that f has a periodic point of period n. Even in our
case, the converse of this fact is not true without the assumption that f |H(f)

is transitive. Indeed, the map fc2 |H(fc2
) from Example 2 in the Appendix

is not transitive but it has periodic points of all periods.
The relationship between the entropy of f and that of f |H(f) is given in

the following theorem.

Theorem D. Let f be a Misiurewicz polynomial of degree d ≥ 2 and let

H(f) be its Hubbard tree. Then h(f |H(f)) ≤ log d and equality holds if and

only if H(f) = J(f).

(1) Although this fact has been generalized in [6] to arbitrary transitive maps of trees,
it was proved by the first time in a previous version of this paper for tree maps which are
transitive restrictions of quadratic polynomials to their Hubbard trees.
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We remark that if f is a Misiurewicz polynomial and H(f) = J(f) then
J(f) is an interval. Indeed, if J(f) is not an interval, then it contains
a point z such that J(f) \ {z} has more than two connected components.
Therefore it contains infinitely many such points. Thus, since H(f) contains
finitely many branching points, we obtain H(f)  J(f). The exceptional
cases where J(f) = H(f) occur, for example, for the monic Chebyshev
polynomials.

From [3, Theorem B] the following corollary of Theorem A follows im-
mediately.

Corollary E. Let f be a Misiurewicz polynomial of degree 2 which is

not renormalizable of disjoint type, and let H(f) be its Hubbard tree. Then

f |H(f) is transitive and

h(f |H(f)) ≥
log 2

End(H(f))

where End(H(f)) denotes the number of endpoints of H(f).

Hence if a Misiurewicz polynomial f of degree 2 is not renormalizable of
disjoint type, the entropy of the map f |H(f) is always bounded below by a
positive quantity which depends on each particular polynomial. One might
then ask whether there exists a universal lower bound for the topological
entropy of such polynomials. As shown in the following proposition, the
answer to this question is negative even in the case of non-renormalizable
polynomials (which are the ones that show the most “chaotic” behavior).

Proposition F. There exists a family {gn}n≥1 of non-renormalizable

quadratic Misiurewicz polynomials such that h(gn|H(gn)) tends to zero as n
tends to infinity.

The remainder of the paper is organized as follows. Section 3 contains
the proofs of Theorems A, B and D, and Proposition F, while Section 2 is
meant to be a summary of the definitions and tools needed for those proofs.
These preliminaries are distributed into independent subsections, according
to the subject they belong to.

Acknowledgements. We wish to thank A. Poirier and A. Douady
for valuable discussions and C. Mannes and D. Sørensen for their help in
the computer illustrations. The second author thanks the Centre de Re-
cerca Matemàtica for their hospitality. Both authors have been partially
supported by the DGES grant number PB96-1153.

2. Definitions and preliminaries

2.1. Quadratic polynomials, renormalization and the Yoccoz puzzle. Yoc-
coz puzzles (see for example [18, 21]) are a useful tool to deduce renormal-
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ization properties of quadratic polynomials. To define a Yoccoz puzzle we
use an orthogonal set of coordinates in the basin of attraction of infinity:
equipotentials and external rays. These coordinates are defined in the same
way for polynomials of any degree d ≥ 2 with a connected Julia set.

Let f(z) = z2 + c have a connected Julia set. Since the point at ∞ is a
superattracting fixed point, the dynamics in its basin of attraction, A(∞),
is very simple. One can find a holomorphic change of variables ψf : C\D→
A(∞) (called the Böttcher coordinates at infinity) that conjugates f |A(∞)

to the map z 7→ z2 on the complement of the closed unit disk. This change
is unique if we require the derivative at infinity to be one.

The image under ψf of a circle of radius exp(η) > 1 in C \D is a simple
closed curve in A(∞) called an equipotential of potential η. We denote the
potential function defined this way by G(z) := Gf (z). Thus an equipotential
of potential η is mapped 2-to-1 under f to an equipotential of potential 2η
(see Figure 3). If we parameterize the arguments of the unit circle between
0 and 1, the image under ψf of a ray of argument t is called an external

ray of argument t and denoted by Rf (t). Again, since ψf is a conjugacy,
an external ray of argument t is mapped to an external ray of argument 2t
(mod 1). Equipotentials and external rays give us orthogonal coordinates
in the superattracting basin.

ψf

t

r e2πit

2-1
z->z 2

f

α

−α
β

K(f)

Rf(0)

Rf(t)

2-1

r e
2πi0

Fig. 3. Böttcher coordinates, equipotentials and external rays

From now on, we assume that both fixed points of f are repelling. Then
one fixed point (to be called β) is the landing point of the external ray of
argument zero and the other (called α) is the landing point of a cycle of q
external rays where q ≥ 2 (see for example [20, 22]).

Remark 2.1. By a simple combinatorial argument on external rays,
using the fact that θ 7→ 2θ (mod 1) is order preserving, one can show that
the points 0, f(0), . . . , f q−1(0) lie in different components of K(f) \ {α}.
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In what follows we define the Yoccoz puzzle construction and summarize
its basic properties and applications, mainly following [21]. As always, let
ω0, ω1, . . . be the critical orbit, where ωi = f i(0). Let G(z) be the potential
function and set D = {z ∈ C | G(z) ≤ 1}. This is a compact set isomorphic
to a disk that contains the filled Julia set. The Yoccoz puzzle of depth zero

consists of the pieces P0(ω0), P0(ω1), . . . , P0(ωq−1) obtained by cutting the
region D along the q rays landing at α and labeling them so that the piece
P0(ωi) contains the point ωi. Each piece is a compact set whose boundary
contains the α-fixed point, two segments of external rays and a piece of ∂D
(see Figure 4).

P1(ω2)

P1(-ω1)

P1(-ω2)

P0(ω2)
P0(ω1)

P1(ω1)

P1(0)

P0(0)

1/7

2/7

4/7

1/14

9/14

11/14

ω0= 0

α

−α

D

Fig. 4. Some pieces of the Yoccoz puzzle of fc5 of Example 5

The puzzle pieces of depth d > 0 are defined by induction to be the
connected components of f−1(P ) where P ranges over all puzzle pieces of
depth d − 1. The puzzle pieces of depth d have disjoint interiors and each
of them is contained in a unique piece of depth d− 1. Any point z ∈ K(f)
which is not a preimage of α is contained in a unique puzzle piece at each
depth, which we denote by Pd(z).

In the next section we will use the following three lemmas to deduce
renormalization of disjoint type, β-type and crossed type respectively. We
always assume that f is a quadratic polynomial with a connected Julia set,
with both fixed points repelling and q external rays landing at α.
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Lemma 2.2 (Lemma 2 of [21]). Suppose the orbit of the critical point

avoids the α-fixed point. If Pd(0) = Pd(ωp) for all depths d and some p > 1
then fp is renormalizable.

Lemma 2.3 (Lemma 3 of [21]). If the critical orbit is entirely contained

in

P1(ω0) ∪ P1(ω1) ∪ . . . ∪ P1(ωq−1)

(that is, the union of the puzzle pieces of depth one that touch the fixed point

α), then f q is renormalizable of disjoint type or β-type.

Our contribution in this section is the following lemma (motivated by an
example of McMullen) which gives a criterion to deduce renormalization of
crossed type.

Lemma 2.4. If there exists n ∈ N such that n divides q, 2n ≤ q and

{ωnk}k∈N lies entirely in

P1(0) ∪ P1(ωn) ∪ P1(ω2n) ∪ . . . ∪ P1(ωq−n)

∪ P1(−ωn) ∪ P1(−ω2n) ∪ . . . ∪ P1(−ωq−n),

then fn is renormalizable of crossed type.

The proofs of the lemmas above make use of the so-called thickened

puzzle pieces. Intuitively, a thickened puzzle piece P̂0(ωi) (for 0 ≤ i ≤ q)
is a slight enlargement of the puzzle piece P0(ωi) (see Figure 5). By the

α P0(ω i)
P1(0)

P0(0)
^

^

Fig. 5. Sketch of a puzzle piece P0(ωi) and its corresponding thickened puzzle piece P̂0(ωi)

usual inductive procedure, the thickened puzzle pieces of depth d > 0 are
the connected components of f−1(P̂ ), where P̂ ranges over all the thickened
puzzle pieces of depth d−1. The main virtue of these thickened pieces is the
following: If a puzzle piece Pd(z) contains Pd+1(z) then the corresponding

thickened puzzle piece P̂d(z) contains P̂d+1(z) in its interior. Indeed, in all
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the three lemmas above one can find puzzle pieces (Pd(0) for d large enough
in the case of Lemma 2.2 and P1(0) in the case of Lemma 2.3) that satisfy
all the requirements in the definition of a renormalizable map, except that
these pieces are contained, but not compactly contained, in their images
under the appropriate iterate of f . The use of thickened pieces takes care
of this problem.

Remark 2.5. Lemma 3 of [21] (Lemma 2.3 here) is included in a chapter
where it is generally assumed that the critical orbit does not hit the fixed
point α. To prove it though, one only needs to work with thickened pieces
up to level one and hence this assumption is not necessary.

Proof of Lemma 2.4. Set

U ′ = Pn(0) ∪ Pn(ωn) ∪ Pn(ω2n) ∪ . . . ∪ Pn(ωq−n)

∪ Pn(−ωn) ∪ Pn(−ω2n) ∪ . . . ∪ Pn(−ωq−n)
and

V ′ = P0(ωn) ∪ P0(ω2n) ∪ P0(ω3n) ∪ . . . ∪ P0(0).

Let Li = P0(ωi) ∩ J(f) for i = 0, 1, . . . , q − 1, which are the connected
components of J(f)\{α}. Then observe that f(Li) = Li+1 for i = 1, . . . , q−
2, f(Lq−1) = L0 and f(L0) = J(f). Since −α ∈ L0 ⊂ J(f), it follows that
all kth preimages of −α for k < q are contained in L0 ∪ Lq−1 ∪ . . . ∪ Lq−k.
But any kth preimage of −α is a (k + 1)th preimage of α and vice versa,
hence this implies that the set L1 ∪ . . . ∪ Lq−n does not contain any nth
or earlier preimage of α. From this fact, it follows that the rays bounding
Pn(ωi) are the same as the ones bounding P0(ωi), for i = n, 2n, . . . , q − n
(see Figure 6).

It is easy to check that U ′ ⊂ V ′ and that fn maps U ′ in V ′ with degree
two. Moreover, the orbit of the critical point (under fn) is contained in
U ′. To conclude that fn is renormalizable we would need to see that U ′

is contained in the interior of V ′ and that the critical orbit (under fn) is
entirely contained in the interior of U ′ (which is not the case if the orbit hits
the fixed point α). This is obviously not true but if we replace all puzzle
pieces by thickened puzzle pieces then all requirements are satisfied. To see
that the renormalization is of crossed type, observe that on the one hand,
Kn(0) contains all the iterates 0, ωn, ω2n, . . . and hence it must contain the
fixed point α. On the other hand, Kn(1) contains ω1, ωn+1, ω2n+1, . . . and
hence it also contains α. We conclude that Kn(0) ∩Kn(1) = {α} since two
small filled Julia sets can intersect in at most at one point.

2.2. Hubbard trees. Let f be a Misiurewicz polynomial of degree d ≥ 2
and letH(f) be its Hubbard tree. To ease notation, in the rest of this subsec-
tion, we set H=H(f). The following proposition states some properties of
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P0(0)

P3(0)

P3(ω3)

P3(-ω3)

P0(ω3) U ’

V ’

c0= 0

α

−α

Fig. 6. Sketch of the construction in the proof of Lemma 2.4 for n = 3 and q = 6

Hubbard trees that we will need in the proofs of the main theorems. For a
complete description we refer to [23]. In what follows, when speaking about
the interior of [x, y] we will mean the set [x, y]\{x, y} instead of the usual
topological interior. Note that if [x, y]\{x, y} contains a point of valence
larger than 2 then this is not an interior point of [x, y] in the topological
sense.

Proposition 2.6. Let f be a Misiurewicz polynomial of degree d ≥ 2
and let H be its Hubbard tree.

(a) If the interior of [x, y] does not contain a critical point then f is

one-to-one on [x, y].

(b) The preperiodic points are dense in H.

(c) Let x, y ∈ H be two preperiodic points. Then there exists n > 0 such

that the interior of [fn(x), fn(y)] contains a critical point.

(d) Given x, y ∈ H there exists n > 0 such that [fn(x), fn(y)] contains

a whole edge of H.

Moreover , when d = 2:

(e) H has no invariant subtree.

(f) The fixed point α of f is a point of H of valence greater than one.
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P r o o f. Statement (a) is trivial. To show (b), let x, y ∈ H and assume
that [x, y] contains no preperiodic point in its interior. Choose t in the in-
terior of [x, y] and choose q ∈ J(f), periodic and sufficiently close to t so
that q can be joined to H by an arc in J(f) through a point in the interior
of [x, y] (this is possible because J(f) is connected and locally connected,
H ⊂ J(f) and the periodic and branching points are dense in J(f)). Let p
be the joining point in the interior of [x, y]. It follows that J(f) \ {p} has
more than two connected components. For a Misiurewicz polynomial, every
such point is preperiodic (see Prop. 3.2 in [23]). Hence p is preperiodic,
contradicting the assumption that [x, y] contained no preperiodic point in
its interior.

Statement (c) is Proposition 1.18 of [23] but we include its proof for
completeness. Assume the conclusion is false. Then the interior of [x, y]
contains no preimage of a critical point and hence fm is injective on [x, y]
for all m > 0. By taking high enough iterates we may assume that x and
y are periodic. Let m be the least common multiple of the periods of x
and y. Since there are a finite number of fixed points of fm, we may assume
that [fm(x), fm(y)] = [x, y] does not contain any other such point. But both
endpoints are repelling (since f is Misiurewicz) and fm is a homeomorphism
of [x, y] onto itself. It follows that there must be another fixed point of fm

in the interior, contrary to what was assumed.

To show (d), take two different preperiodic points in the interior of [x, y].
This is possible by (b). By (c), there exists k > 0 such that [fk(x), fk(y)]
contains a vertex in its interior (recall that each critical point is a vertex
by definition). If it contains two vertices we are done. Otherwise, let v
be the unique vertex in the interior of [fk(x), fk(y)] and apply the above
procedure again to [v, fk(y)], to obtain n > 0 such that [fn(v), fn+k(y)]
contains a vertex v′ in its interior. Then, since the set of vertices is forward
invariant, we conclude that [fn(v), v′] contains the desired edge.

To see (e) let T ⊆ H be an invariant subtree of H (i.e. a non-empty,
compact, connected, forward invariant subset of H). Applying (c) we find
that T must contain the critical point and hence the critical orbit. Thus,
since T is connected, the convex hull of the critical orbit, i.e. the Hubbard
tree H, must be contained in T and we are done.

As we saw in the preceding section (see Remark 2.1), ω0 and ω1 belong to
different components of J(f) \ {α}. Hence, by definition, α ∈ [ω0, ω1] ⊂ H.
This proves (f).

2.3. Transitive maps on trees. This subsection summarizes some results
and techniques for continuous maps on trees. The first proposition shows
that a transitive non-totally transitive map gives a useful decomposition
of the space. Its proof follows from a more general theorem of Blokh (for
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non-connected graphs) stated in [11] and proved in [10] (see also [5] for a
version of this result for locally connected compact metric spaces).

Proposition 2.7. Let T be a tree and let f : T → T be transitive. Then

either f is totally transitive or there exist closed , connected subsets X0,
X1, . . . ,Xk−1 of T with non-empty interior and a fixed point y of f of

valence larger than or equal to k such that :

(a) T =
⋃k−1

i=0 Xi,
(b) Xi ∩Xj = {y} for all i 6= j,

(c) f(Xi) = Xi+1 (mod k) for i = 0, 1, . . . , k − 1.

In particular , fk|Xi
is transitive for all i ∈ {0, 1, . . . , k − 1}.

The next result is proved by Blokh in [11] when the space is a graph, by
using a spectral decomposition (and in [3] for other types of metric spaces).

Proposition 2.8. Let T be a tree and let f : T → T be transitive. Then

the set of periodic points of f is dense.

The rest of this subsection outlines a common technique to compute the
topological entropy of tree maps which are “monotone” when restricted to
each of its edges.

Let f : T → T be a tree map and let P ⊂ T be a finite forward invariant
set of f which contains all endpoints and branching points of f . The closure
of a connected component of T \ P will be called a P -basic interval. Notice
that each P -basic interval is homeomorphic to a closed interval of the real
line. The f -graph of P is the oriented generalized graph having the P -basic
intervals as vertices, and arrows defined as follows. If K and L are P -basic
intervals and K has m subintervals with pairwise disjoint interiors such that
the f -image of each of these intervals contains L, then there are m arrows
from K to L. The transition matrix of the f -graph of P is the matrix of
size equal to the number of P -basic intervals such the the i, j-entry is the
number of arrows from the vertex i to the vertex j. If M is such a matrix,
let its largest eigenvalue (if it exists) be denoted by ̺(M). We note that,
since M is a non-negative integral matrix, in view of the Perron–Frobenius
Theorem (see [17]), ̺(M) exists and is in fact the spectral radius of M .
The map f is called P -monotone if the image of each P -basic interval is
homeomorphic to a closed interval of the real line and is monotone when
considered as an interval map.

The next result gives the desired formula for the topological entropy of
a P -monotone map. It can be proved in a similar way to [2, Theorems 4.4.3
and 4.4.5].

Theorem 2.9. Let f : T → T be a tree map and let P ⊂ T be a finite

forward invariant set of f which contains all endpoints and branching points
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of f . Let M denote the transition matrix of the f -graph of P . Then h(f) ≥
log(̺(M)). Moreover , if f is P -monotone then h(f) = max{0, log ̺(M)}.
Remark 2.10. We note that, since f |H(f) is V (f)-monotone, then it

is semiconjugate to the subshift of finite type with transition matrix equal
to the transition matrix of the f |H(f)-graph of V (f). Consequently, our
arguments admit an analogous formulation in terms of subshifts of finite
type. For simplicity we have chosen to work with the terminology and
notions outlined in this subsection.

3. Proofs of the main results. Let f be a quadratic Misiurewicz
polynomial and set H = H(f). For the proof of Theorem A we need the
following three lemmas.

A closed subset I  H is called proper if Int(I) 6= ∅. Note that the
interior of the complement of any proper set is also non-empty.

Lemma 3.1. Let I be a proper , forward invariant subset of H. Then

there exists a forward invariant set E ⊆ I which is a finite union of edges

of H (in particular E is also proper).

P r o o f. Since the interior of I is non-empty, we can choose x, y ∈ I
such that [x, y] ⊂ I. By Proposition 2.6(d), there exists n > 0 such that
[fn(x), fn(y)] ⊂ fn([x, y]) contains a whole edge of H. Since I is invariant
it follows that I contains an edge, which we denote by l. Then, since the
set of vertices is invariant, the set E =

⋃
n≥0 f

n(l) is obviously the union of

a finite number of edges and is a proper, forward invariant subset of I.

Lemma 3.2. Any proper , forward invariant set E ⊂ H must contain the

critical point of f . Moreover , E is not connected.

P r o o f. The first statement follows from Proposition 2.6(b), (c). More-
over, if E were connected, it would be an invariant subtree of H (since it is
proper and closed), contradicting Proposition 2.6(e).

Lemma 3.3. Suppose fn is renormalizable for some n > 1 and let Jn(i)
for 0 ≤ i ≤ n − 1 be the small Julia sets. Then the set Jn(i) ∩ H has

non-empty interior for all 0 ≤ i ≤ n− 1.

P r o o f. It suffices to show that Jn(0) ∩H contains at least two points.
Indeed, since Jn(i)∩H is connected and simply connected it follows that if
x, y ∈ Jn(0)∩H with x 6= y, then [x, y] ⊂ Jn(0)∩H. Moreover, fk([x, y]) ⊂
Jn(k) ∩H has non-empty interior for all 0 ≤ k ≤ n − 1 because f is non-
constant.

So, assume that Jn(0)∩H contains only one point. Since 0 ∈ Jn(0)∩H
it follows that this point must be ω = 0. But Jn(0) is invariant by fn and so
is H. Hence, fn(0) = 0, which contradicts the fact that f is Misiurewicz.
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Now we are ready to prove Theorem A.

Proof of Theorem A. We will prove Theorem A by showing

(a)⇒(b)⇒(c)⇒(d)⇒(a).

To show (a)⇒(b), assume that fn is renormalizable of disjoint type for
some n > 1. For i = 0, 1 . . . , n−1 let Jn(i) be the small Julia sets and define
Ei = Jn(i) ∩H; the latter sets have non-empty interior by Lemma 3.3. Set
E =

⋃
0≤i≤n−1Ei. Then E is a closed, forward invariant subset of H.

Moreover, E 6= H because the Ei’s are disjoint (since the renormalization is
of disjoint type) and H is connected.

Since f(Ei) = Ei+1 (mod n) and the Ei’s are disjoint it follows that α 6∈ E.
Let C be the connected component of H \ E that contains the fixed point
α. Since E 6= H and E is closed it follows that C is open (in H). If C is
invariant then the closure of C is a proper invariant subtree, contradicting
Proposition 2.6(e). Hence, f(C) 6= C. Note that f(C) is open, connected
and intersects C. Therefore C contains open sets whose image is contained
in E. These sets cannot contain any periodic point of f , so the periodic
points are not dense in H.

The fact that (b) implies (c) follows from Proposition 2.8.

To show (c)⇒(d), assume f is not transitive on H. Then there exist
two open sets U and V in H such that fk(U) ∩ V = ∅ for all k ∈ N. The

set I =
⋃

k∈N
fk(U) is proper (since V ∩ I = ∅) and forward invariant. By

Lemma 3.1 we may assume that I contains an edge l. Then
⋃

k∈N
fk(l) ⊆

I  H.

Finally we prove (d)⇒(a). Let l ⊂ H be the edge such that L :=⋃
n∈N

fn(l)  H. Since the set of vertices is forward invariant we deduce
that L is a finite union of edges and hence closed. Also note that L is
proper and forward invariant. Thus, by Lemma 3.2, L is disconnected and
contains the critical point. Let L0, L1, . . . , Lp−1 be a cycle of (pairwise
different) connected components of L such that ω0 ∈ L0 and f(Li) = Li+1

for i = 0, 1, . . . , p − 2. To see that such a cycle exists note that since
L has finitely many connected components there must be a cycle among
them. Also, by Proposition 2.6(c) this cycle has to contain the critical point.
Without loss of generality we may assume that p is the smallest possible
number with these properties and that ω0 ∈ L0. Moreover, p must be
larger than one, for L0 cannot be an invariant subtree by Proposition 2.6(e).
Therefore ω0 and ωp = fp(ω0) lie inside L0.

Now L, and in particular L0, cannot contain any preimage of α. Indeed,
that would imply that α belongs to all Li’s, contradicting the fact that
they are disjoint. Hence the arc [ω0, ωp] does not contain any preimage
of α. This implies that the Yoccoz puzzle pieces defined in Section 2 satisfy



132 Ll. Alsedà and N. Fagella

Pd(ωp) = Pd(0) for all depths d. Indeed, pieces with disjoint interiors only
have preimages of α as common boundary on the Julia set. By Lemma 2.2,
fp is renormalizable. It is easy to check that this renormalization is of
disjoint type since the puzzle piece P̂d(0), for d large enough, does not
contain Li for any i 6= 0.

Proof of Theorem B. Let (a′), (b′), (c′) denote the opposite statements
to (a), (b) and (c). We will prove Theorem B by showing

(a′)⇒(c′)⇒(b′)⇒(a′).

To see that (a′)⇒(c′), suppose that fn is renormalizable for some n > 1
and let Jn(i), 0≤ i< n, be the small Julia sets. Define Ei =Jn(i)∩H and let
E=

⋃
i Ei. Recall that the sets Ei have non-empty interior by Lemma 3.3.

Since the union of the small Julia sets is invariant and so is H, it follows
that E is invariant. Moreover, Ei∩Ej consists of at most one point, for all
i 6=j (see Subsection 2.1), and hence, Ei 6=H for all i. By Proposition 2.6(d),
E must contain an edge which we denote by l. If, say, l ∈ E0, it follows that
fk(l) ∈ Ek (mod n) for all k ≥ 0. Hence we have fk(l) 6= H for all k ∈ N.

To show (c′)⇒(b′), suppose that there exists an edge l of H such that
fn(l) 6= H for all n ∈ N. If l is not contained in

⋃
n∈N

fn(l) (which is a union
of edges because the set of vertices is invariant), then f is not transitive (by
definition) and we are done. Hence, assume there exists t ≥ 1 such that
l ⊂ f t(l). We will show that f t is not transitive. Clearly we have an
increasing sequence of sets l ⊂ f t(l) ⊂ f2t(l) ⊂ f3t(l) ⊂ . . . such that, by
hypothesis, fkt(l) 6= H for all k ∈ N. Therefore, we have

k⋃

i=0

(f t)i(l) = fkt(l) 6= H

for each k ∈ N and each of the sets
⋃k

i=0(f
t)i(l) is a union of edges. There-

fore,
⋃

i∈N
(f t)i(l) 6= H because H has a finite number of edges. Conse-

quently, f t is not transitive by definition and so f is not totally transitive.
Finally we show (b′)⇒(a′). We note that if f is not transitive then it is

renormalizable of disjoint type by Theorem A. So, we may assume that f is
transitive. We divide the proof in two cases: the case where −α is not in the
interior of H and the case where it is. As we shall see, this will correspond
to f being renormalizable of β-type and crossed type respectively.

Case 1. If −α 6∈ Int(H) it follows that the orbit of the critical point
is entirely contained in the closure of the puzzle pieces of depth one that
touch the fixed point α (see Section 2). Indeed, if ωn ∈ ⋃q−1

i=1 P1(−ωi)
for some n, then [ω0, ωn] must contain −α in its interior. Hence we may
apply Lemma 2.3 to conclude that f q is renormalizable. We remark that
this renormalization is of β-type for it cannot be of disjoint type since f is
transitive (see Theorem A).
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Case 2. To deal with this case we need to introduce some notation. Let
L0 be the closure of the connected component of J(f)\{α,−α} that contains
the critical point, and let L1, . . . , Lq−1 be the closures of the connected
components of J(f)\{α} that do not contain L0 labeled in such a way that
f(Li) = Li+1 for 0 ≤ i < q−1. Let also L′

i = −Li for 1 ≤ i ≤ q−1. Observe

that f(L′
i) = f(Li). Since J(f) is totally invariant, f(Lq−1) = L0∪

⋃q−1
i=1 L

′
i.

Clearly, H ∩Li is non-empty for all 0 ≤ i ≤ q−1 and since we are assuming
that −α belongs to the interior of H, we see that H ∩ L′

i is non-empty for
some 1 ≤ i ≤ q− 1. Let H0 = H ∩L0 and for 1 ≤ i ≤ q− 1 let Hi = H ∩Li

and H ′
i = H ∩ L′

i (which might be empty).

Since f |H is transitive but not totally transitive, in view of Proposi-
tion 2.7 there exist closed, connected subsets X0,X1, . . . ,Xn−1 of H with
non-empty interior such that H =

⋃n−1
i=0 Xi, Xi ∩Xj = {α} for all i 6= j and

f(Xi) = Xi+1 (mod n) for i = 0, 1, . . . , n − 1. We may also assume that X0

is such that 0 = ω0 ∈ X0. Clearly, each connected component of H \ {α} is
contained in some Xi. Observe that the connected components of H \ {α}
are H0 ∪ ⋃q−1

i=1 H
′
i,H1, . . . ,Hq−1. Since ωi = f i(0) ∈ Hi ∩ Xi (mod n) for

all 0 ≤ i ≤ q − 1, we have H0 ∪ ⋃q−1
i=1 H

′
i ⊂ X0 and Hi ⊂ Xi (mod n) for

1 ≤ i ≤ q − 1. Thus,

X0 = H0 ∪Hn ∪H2n ∪ . . . ∪Hq−n ∪
q−1⋃

i=1

H ′
i,

X1 = H1 ∪Hn+1 ∪H2n+1 ∪ . . . ∪Hq−n+1,

...

Xn−1 = Hn−1 ∪H2n−1 ∪H3n−1 ∪ . . . ∪Hq−1,

where all the H ′
i except one could be empty. Therefore, in particular, n

divides q. Note that since f(Xi) = Xi+1 (mod n), f(H ′
i) = f(Hi) = Hi+1

for 1 ≤ i ≤ q − 2 and f(H ′
q−1) = f(Hq−1) = H0 ∪ ⋃q−1

i=1 H
′
i it follows that

H ′
i = ∅ for all i 6= 0 (mod n). If q = n then H ′

i = ∅ for all i, a contradiction.
Thus, q ≥ 2n. Moreover, it follows easily that we are under the hypothesis
of Lemma 2.4, and hence fn is renormalizable of α-type. This ends the
proof of the theorem.

Proof of Theorem D. By Proposition 1.2(c) and [2, Lemma 4.1.3] we get

h(f |H(f)) ≤ h(f |J(f)) = log d,

becauseH ⊂ J(f) andH is forward invariant. So, we only have to show that
h(f |H(f)) < log d wheneverH 6= J(f). To this end we will use the techniques
from Section 2.3 (see also [9], [2, Section 4.4]). Let M be the matrix of the
f -graph of V (f). From the fact that V (f) contains the critical point of
f and Proposition 2.6(a), it follows that f is V (f)-monotone. Hence, by
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Theorem 2.9, h(f |H(f)) = max{0, log(̺(M))}. Thus, it is enough to prove
that if H 6= J(f) then ̺(M) < d. So, in what follows we assume that
H  J(f) and, to simplify notation, we denote f |H(f) by ϕ.

We claim that for each x ∈ H there exists a positive integer n(x) such
that Card(ϕ−n(x)(x)) < dn(x), where Card(·) denotes the cardinality of a
set. To prove the claim we assume the contrary. Then there exists z ∈ H
such that Card(ϕ−m(z)) ≥ dm for each m ∈ N. Note that ϕ−m(z) ⊂ f−m(z)
and Card(f−m(z)) ≤ dm for each m ∈ N. Hence, f−m(z) = ϕ−m(z) for each
m ∈ N. On the other hand, since H ⊂ J(f), it is closed, and the preimages
of any point are dense in J(f) (see for example [7]), it follows that

J(f) =

∞⋃

m=1

f−m(z) =

∞⋃

m=1

ϕ−m(z) ⊂ H;

a contradiction. This ends the proof of the claim.

From Proposition 2.6(a) and the fact that V (f) is invariant it follows
that if L is an edge of H and U is an open set (in H) contained in the
interior of an edge then either f(L) ∩ U = ∅ or f(L) ⊃ U . The inductive
use of this fact shows that each point in the interior of an edge has the
same number of preimages by ϕm for each m ∈ N. So, by the above claim,
for each edge L there exists a positive integer n(L) such that for each x
in the interior of L we have Card(ϕ−n(L)(x)) < dn(L). Note that for each
m ≥ n(L) we have

Card(ϕ−m(x)) = Card(ϕ−m+n(L)(ϕ−n(L)(x)))

= Card
( ⋃

y∈ϕ−n(L)(x)

ϕ−m+n(L)(y)
)

≤ dm−n(L) Card(ϕ−n(L)(x)) < dm−n(L)dn(L) = dm.

Therefore, for all ν > maxn(L) where L ranges over all edges of H, we
have Card(ϕ−ν(x)) < dν for each x ∈ H \ V (f). Consequently, by [2,
Lemma 4.4.1], the sum of each column of Mν is smaller than dν . So, there
exists γ < d such that the sum of each column of Mν is smaller than γν . Let
v denote the vector of size r (where r denotes the order of the matrixM) with
all entries 1. Clearly, vMν ≤ γνv. By induction we have vM lν ≤ γlνv for
each l ∈ N. Hence, the sum of all entries of M lν is vM lνv′ ≤ γlνvv′ = rγlν ,
where v′ denotes the transpose of v. Thus (see [24]),

̺(M) = lim
l→∞

l
√
vM lv′ = lim

l→∞

lν
√
vM lνv′ ≤ lim

l→∞
lν

√
rγlν

= ( lim
l→∞

lν
√
r)γ = γ < d.

This ends the proof of the theorem.
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Before proving Proposition F we recall the notion of an n-star. For
n ≥ 3, an n-star Xn is a tree which has a unique branching point denoted
by b with valence n. The closure of a connected component of Xn \ {b} will
be called a branch of Xn.

We endow each branch of Xn with a linear ordering such that b is the
smallest point on the branch while the endpoint is the largest one.

Proof of Proposition F. Let gn be the sequence of quadratic Misiurewicz
polynomials which are the endpoints of the main vein in the limbs M1/n (in
Example 12 the Julia set of g2 is shown). Recall that, for those polynomials,
the critical point falls at the β-fixed point after n+ 1 iterations. Hence, the
Hubbard tree is an (n + 1)-star with the point b being the α-fixed point
of gn (see Figure 7). Let Ω denote the orbit of the critical point, i.e.,
Ω = {0 = ω0, ω1, . . . , ωn+1 = β}. Observe that, if we set Hn = H(gn) and
ϕn = gn|Hn

, then ϕn is injective on the closure of each connected component
of Hn \ (Ω ∪ {α}). Thus, following the notation in Subsection 2.3, ϕn is
(Ω ∪ {α})-monotone.

0 = ω0 

= ϕn(ωn+1) 

ω1
ω2

ω3

ωn

ωn+1

b

I3

I2
I1

In I0

In+1

=α

β=

Fig. 7. Hn and the set Ω ∪ {α}

To prove the proposition we have to show that limn→∞ h(ϕn) = 0, for
which we shall use Theorem 2.9. We start by computing the ϕn-graph of
Ω ∪ {α}. To this end we label the closures of the connected components
of Hn \ (Ω ∪ {α}) according to the largest endpoint. That is, let [x, y] be
the closure of a connected component of Hn \ (Ω ∪ {α}). Clearly, [x, y] is
contained in a branch of Hn. So we may suppose that x < y. Hence, y = ωi
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for some i ∈ {0, 1, . . . , n + 1}. Then [x, y] will be denoted by Ii. With this
notation the ϕn-graph of Ω ∪ {α} is

I1 → I2 → . . . → In

In+1 → In+1

ր ց
↓ I1

ց ր
I0

LetMn denote the transition matrix of the ϕn-graph of Ω∪{α}. To compute
its characteristic polynomial we use the “rome” method from [9] (see also
[2, Section 4.4]). Indeed, we take I1 and In+1 as a “rome” and we find
that the characteristic polynomial of Mn is (−1)nx(xn+1 − xn − 2). Note
that ̺(Mn) is the unique point larger than 1 where xn intersects the curve
2/(x− 1). Since xn < xm for all m > n, we see that 1 < ̺(Mm) < ̺(Mn)
and limn→∞ ̺(Mn) = 1. Therefore, by Theorem 2.9 it follows that

lim
n→∞

h(ϕn) = lim
n→∞

max{0, log ̺(Mn)} = lim
n→∞

log ̺(Mn) = 0.

This ends the proof of the proposition.

Appendix: Examples. In this appendix we show some examples
(without proofs) of renormalizable polynomials of each type and we study
their properties from the point of view of Theorems A and B and Corol-
lary C. In what follows fci

will denote the polynomial z2 + ci.

Example 1 (Theorem A; N \ Per(f) infinite). Let c1 = −1.430357 . . .
This parameter value is the last point of the period two copy of the Mandel-
brot set on the real axis. The Julia set and Hubbard tree of the polynomial
fc1 are shown in Figure 8. Observe that condition (d) of Theorem A is
satisfied since

E :=
⋃

n>0

fn
c1

([ω1, ω5]) = [ω1, ω3] ∪ [ω4, ω2]  H(fc1).

Hence, the periodic points are not dense inH(fc1), fc1 |H(fc1
) is not transitive

and fc1 is renormalizable of disjoint type. In fact, this example was chosen
so that fc1 is renormalizable of disjoint type for n = 2 and of β-type for
n = 4. Indeed, the set E has two disjoint components which are the Hubbard
trees of the small Julia sets for f2

c1
. This map restricted to the rightmost

component of E (which contains the critical point) is conjugate to z2 −
1.543689 . . . while f4

c1 restricted to [ω4, ω6] is conjugate to z2 − 2.

Concerning the periods, it is not difficult to see that any periodic point
in H(fc1) different from α must have period a multiple of two and, hence,
N \Per(fc1) is infinite. On the other hand, from Theorem 2.9 (see also [9]),
it follows that h(fc1 |H(fc1

)) = 1
4 log 2.
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ω6ω5= ω7 

0 = ω0 
ω1 ω2

ω3

ω4

ω6ω5= ω7 

0 = ω0 ω1
ω2ω3

ω4

Fig. 8. The Julia set and Hubbard tree of fc1 , where c1 = −1.430357 . . .

ω6

ω4= ω7 0 = ω0 

ω1 ω2
ω3

ω5

ω6

ω4= ω7 0 = ω0 

ω1 ω2
ω3

ω5

Fig. 9. The Julia set and Hubbard tree of fc2 , where c2 = −1.790327 . . .

Example 2 (Theorem A; N \Per(f) finite). Let c2 = −1.790327 . . . The
polynomial fc2 , whose Julia set and Hubbard tree are shown in Figure 9,
can be found at the end of the small period three copy of the Mandelbrot set
on the real axis. For this example condition (d) of Theorem A is satisfied
with l = [ω1, ω4]. Hence, the same conclusions as in the previous example
follow. In this case fc2 is renormalizable of disjoint type for n = 3. Indeed,
E :=

⋃
n≥0 f

n
c2

(l) = [ω1, ω4]∪[ω6, ω3]∪[ω5, ω2] has three disjoint components
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which are the Hubbard trees of the small Julia sets. The third iterate of
fc2 restricted to the middle component (which contains the critical point)
is conjugate to z2 − 2.

On the other hand, by using standard arguments (see [9]) one can check
that there is an invariant Cantor set C in H(fc2)\E which contains periodic

points of all periods. Now, h(fc2 |H(fc2
)) = log

√
5+1
2 .

Example 3 (Corollary C; β-type). Let c3 = −1.222863 . . .+i 0.316882 . . .
The Julia set and the Hubbard tree of fc3 are shown in Figure 10. This ex-
ample falls in the category of Corollary C. Indeed, it is easy to check that
the union of the images of any edge is the whole Hubbard tree. However,
since T0 = [ω5, ω2, ω4] and T1 = [ω5, ω1, ω3] are mapped to each other cycli-
cally it follows that the nth iterate of any edge is different from H(fc3).
Therefore we deduce that fc3 |H(fc3

) is transitive but not totally transitive

(it is easy to check that f2
c3 |H(fc3

) is not transitive) and fc3 is renormalizable
but not of disjoint type. In fact, it follows from the proof of Theorem B
that the polynomial is renormalizable of β-type for n = 2, since −α does
not belong to the interior of H(fc3). This example was chosen so that the
second iterate of fc3 , restricted to the small Julia set, is conjugate to the
polynomial in Example 5. The tree T0 is, under f2

c3 , the Hubbard tree of the
renormalized map. Note that the small Julia set K2(0) and its image meet
at their corresponding β-fixed points (β2(0) = β2(1)), which is the α-fixed
point of fc3 .

ω5= ω6 0 = ω0 

ω2

ω3

ω4

ω1

v2 v1 = v3ω5 = ω6 
0 = ω0 

ω2

ω3

ω4

ω1

Fig. 10. The Julia set and Hubbard tree of fc3 , where c3 = −1.222863 . . .+ i 0.316882 . . .

In this example all periods different from one are multiples of two, and

h(fc3 |H(fc3
)) = log 1.302160040 . . .

Example 4 (Corollary C; α-type). Let c4 = 0.419643 . . .+ i 0.606291 . . .
In Figure 11 the Julia set and Hubbard tree of fc4 are shown. As in the
previous example, fc4 falls in the category of Corollary C. In this case, fc4 is
renormalizable of crossed type for n = 2 since −α does belong to the interior
of H(fc4). Now, the arc [ω2, ω4] is the small Julia set J2(0), homeomorphic
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to the Julia set of z2 − 2. The two sets J2(0) and J2(1) = f(J2) “cross” at
their α-fixed points, which is also the α-fixed point of fc4 .

Just as above, all periods different from one are multiples of two, and
h(fc4 |H(fc4

)) = 1
2 log 2.

0

ω1

= ω0 

ω2
ω3= ω5 

ω4

v1= v2 

0

ω1

= ω0 

ω2
ω3= ω5 

ω4

Fig. 11. The Julia set and Hubbard tree of fc4 , where c4 = 0.419643 . . .+ i 0.606291 . . .

0 = ω0 

ω3= ω4 

ω2

ω1

v1= v2 

0 = ω0 

ω3= ω4 

ω2

ω1

Fig. 12. The Julia set and Hubbard tree of fc5 , where c5 = −0.228155 . . .+ i 1.115142 . . .

Example 5 (Theorem B). Let c5 = −0.228155 . . . + i1.115142 . . . (see
Figure 12). Clearly condition (c) of Theorem B is satisfied for this example
since all edges eventually map to the whole tree (note that l = [ω0, ω3]
satisfies fc5(l) ! l). Hence, fc5 |H(fc5

) is totally transitive, the periodic
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points are dense in H(fc5), N \ Per(fc5) is finite (in fact it is easy to check
that Per(fc5) = N \ {2}) and the polynomial is not renormalizable for any
n > 1. This last property is easily checked in this particular example.
Indeed, as shown in [19], a small Julia set Kn(i) cannot contain the β-fixed
point of the original polynomial, since that would make Kn(i) for i > 0
intersect Kn(0) in more than one point. In particular, when some iterate of
the critical point hits the β-fixed point (as in this example), the polynomial
is not renormalizable.

Concerning the entropy, we note that the map fc5 is conjugate to f2
c3 |T0

.
So,

h(fc5 |H(fc5
)) = 2h(fc3 |T0

) = 2 log 1.302160040 . . .
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Universitat Autònoma de Barcelona
08193 Bellaterra, Barcelona, Spain
E-mail: alseda@mat.uab.es
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