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Borel and Baire reducibility

by

Harvey M. F r i e d m a n (Columbus, OH)

Abstract. We prove that a Borel equivalence relation is classifiable by countable
structures if and only if it is Borel reducible to a countable level of the hereditarily count-
able sets. We also prove the following result which was originally claimed in [FS89]: the
zero density ideal of sets of natural numbers is not classifiable by countable structures.

Introduction. The Borel reducibility theory of Polish equivalence re-
lations, at least in its present form, was initiated independently in [FS89]
and [HKL90]. There is now an extensive literature on this topic, including
fundamental work on the Glimm–Effros dichotomy in [HKL90], on count-
able Borel equivalence relations in [DJK94], and on Polish group actions in
[BK96].

A Polish space is a topological space that is separable and completely
metrizable. The Borel subsets of a Polish space form the least σ-algebra
containing the open subsets. A Borel function from one Polish space to
another is a function such that the inverse image of every open set is Borel.
Two Polish spaces are Borel isomorphic if and only if there is a one-one onto
Borel function from the first onto the second. This is an equivalence relation.
Any two uncountable Polish spaces are Borel isomorphic. See [Ke94].

We also consider Baire measurable subsets of a Polish space. A nowhere
dense set in a Polish space is a set whose closure contains no nonempty open
set. A meager subset of a Polish space is a set which is the countable union
of nowhere dense sets. A Baire (measurable) subset of a Polish space is a
set whose symmetric difference with some open set is meager. A comeager
subset of a Polish space is a subset whose complement is meager. We have
the fundamental Baire category theorem: A Polish space is not meager.

A function from one Polish space to another is said to be Baire if and
only if the inverse image of every open set is Baire.
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A Polish equivalence relation is a pair (X,E), where X is a Polish space
and E is an equivalence relation on X. A Borel (analytic) equivalence rela-
tion is a Polish equivalence relation (X,E), where E is as a Borel measurable
(analytic) subset of X2.

Let (X,E1) and (Y,E2) be Polish equivalence relations. We say that
h : X → Y is a reduction from (X,E1) into (Y,E2) if and only if for all
x, y ∈ X, E1(x, y)↔ E2(h(x), h(y)). We say that (X,E1) is Borel reducible
to (Y,E2) if and only if there is a Borel reduction from (X,E1) to (Y,E2).
We also say that (X,E1) is Baire reducible to (Y,E2) if and only if there is
a Baire reduction from (X,E1) to (Y,E2).

Let STR = (STR,≈) be the analytic equivalence relation of all structures
of countable similarity type (in the sense of model theory) whose domain is
ω, under isomorphism. Also, let BR = (P (ω × ω),≈) be the analytic equiv-
alence relation of binary relations on ω under isomorphism. It is well known
that BR is not a Borel equivalence relation and BR is Borel isomorphic to
STR. It is generally simpler to work with BR.

The condition that a Polish equivalence relation E is Borel reducible to
BR has received a considerable amount of attention, and has assumed the
name “E admits classification by countable structures”. See, e.g., [Hj].

Let (X,E) be a Polish equivalence relation. We define NCS(X,E) as
the Polish equivalence relation (X∞, E′), where xE′y if and only if every
term of x is related to a term of y by E and every term of y is related to
a term of x by E. (Here NCS is “nonempty countable subsets”.) Also, if S
is a countable family of Polish equivalence relations, then

∑
S is the Polish

equivalence relation whose domain is the disjoint union of the domains of the
elements of S, and whose equivalence relation is the union of the equivalence
relations of the elements of S.

Define T (0) to be the dicrete equivalence relation on ω. For countable
ordinals α and countable limit ordinals λ, let T (α + 1) = NCS(T (α)), and
T (λ) =

∑{T (β) : β < λ}.
In Section 1, we prove that a Borel equivalence relation is Borel (or

Baire) reducible to BR if and only if it is Borel (or Baire) reducible to some
T (α).

Let ZD be the Borel equivalence relation on the Polish space P (ω) given
by ZD(x, y) if and only if x4 y has zero density. Here we say that z ⊆ ω
has zero density if and only if

lim
n→∞

|z ∩ [0, n)|/n = 0.

In [FS89], it was claimed that ZD was not Borel reducible into BR, with no
indication of proof. Here, in Section 2, we give this proof, due to this author.
In fact, we prove that ZD is not Baire reducible into BR.
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The authors of [BK96] were not aware of this claim from [FS89]. The
book [BK96] heavily featured the following problem that our result imme-
diately solved:

Is there a Borel equivalence relation that is Borel reducible to an orbit
equivalence relation but not Borel reducible to BR?

Here an orbit equivalence relation is an equivalence relation arising from the
continuous action of a Polish group on a Polish space. This problem is first
raised at 3.5.4 of [BK96]. It is then motivated in Section 8.2 and essentially
raised again at 8.2.4.

For more information on orbit equivalence relations, see [Hj].

1. Reducibility into BR and T (α). The Borel equivalence relations
T (α), α < ω1, form a particularly natural hierarchy, but some other hierar-
chies of Borel equivalence relations appear more often in the literature and
are technically easier to work with.

One of these hierarchies is in terms of HC = the hereditarily countable
sets. Define HC(0) = ∅, HC(α + 1) = the set of all countable subsets of
HC(α), HC(λ) = the union of all HC(β), β < λ. The elements of HC have
what is commonly referred to as codes in P (ω). For countable ordinals α, we
let HC(α) also denote the Borel equivalence relation on codes of elements
of HC(α) according to whether they code the same element of HC(α). We
assume familiarity with the machinery of codes for elements of HC (see, e.g.,
[Hj]).

We quote the following result from the folklore.

Lemma 1.1. For countable ordinals α, T (α) and HC(ω + α) are Borel
reducible into each other.

We now prove that any Borel equivalence relation X = (X,E) that is
Borel reducible to BR = (BR,≈) is Borel reducible to some T (α), α < ω1.
We use a streamlined version of the technology introduced in [Sc65].

We use FS(ω) for the set of all finite sequences from ω. Let A,B ⊆
ω × ω. For countable ordinals α, we define relations Rα(A,B) on FS(ω) by
transfinite induction.

R0(A,B)(x, y) if and only if x, y have the same length, and A(xi, xj)↔
B(yi, yj) for all i, j.

Let α > 0. Then Rα(A,B)(x, y) if and only if x, y have the same length,
and for all z ∈ FS(ω) there exists w ∈ FS(ω) such that for all β < α,
Rβ(A,B)(xz, yw), and for all w ∈ FS(ω) there exists z ∈ FS(ω) such that
for all β < α, Rβ(A,B)(xz, yw).

The following is standard.
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Lemma 1.2. Let A,B ⊆ ω×ω. There exists α < ω1 such that Rα(A,B) =
Rα+1(A,B), in which case for all α, β < ω1, Rα(A,B) = Rβ(A,B). Further ,
A ≈ B if and only if for all α < ω1, Rα(A,B)(〈 〉, 〈 〉).

We can think of the Rα(A,B) as comparison relations between A and B
that become more and more refined as α increases.

For countable ordinals α > 0 and x ∈ FS(ω), we define f0(A, x) =
〈lth(x), {〈i, j〉 : A(xi, xj)}〉, fα(A, x) = 〈lth(x), {fβ(A, y) : β < α and y
extends x}〉.

The following is also standard.

Lemma 1.3. Let A,B ⊆ ω × ω, α < ω1, and x, y ∈ FS(ω). Then
Rα(A,B)(x, y) if and only if fα(A)(x) = fα(B)(y). Further , fα is a Borel
function from P (ω), as codes, into codes for HC(ω + α+ 1).

We need to consider possibly nonstandard comparison relations. For this
purpose, we define a comparison relation between A, B as a system (J,<,R),
where

1. J ⊆ ω.
2. (J,<) is a linearly ordered set with a least element 0.
3. R ⊆ J × FS(ω)× FS(ω).
4. R(0, x, y) if and only if x, y have the same length, and A(xi, xj) ↔

B(yi, yj) for all i, j.
5. For t > 0, R(t, x, y) if and only if x, y have the same length, and for

all z ∈ FS(ω) there exists w ∈ FS(ω) such that for all t′ < t, R(t′, xz, yw),
and for all w ∈ FS(ω) there exists z ∈ FS(ω) such that for all t′ < t,
R(t′, xz, yw).

Lemma 1.4. Let A,B ⊆ ω × ω and (J,<,R) be a comparison relation
between A, B such that for all t ∈ J , R(t, 〈 〉, 〈 〉). If (J,<) is not well
founded then A ≈ B.

P r o o f. Let A,B, J,<,R be as given, and let t1 > t2 > . . . lie in J .
We can inductively build two infinite sequences x1, x2, . . . and y1, y2, . . .
which are enumerations without repetitions of A and B, respectively, such
that R(tn, 〈x1, . . . , xn〉, 〈y1, . . . , yn〉) for all n ≥ 1. The required isomorphism
maps each xi to yi.

Theorem 1.5. Every Borel equivalence relation that is Borel reducible
to BR is Borel reducible into some T (α) with α countable.

P r o o f. Let (X,E) be a Borel equivalence relation that is Borel re-
ducible to BR by the function H : X → P (ω × ω). Let Y be the set of
all (J,<,R, u, v) such that

(i) u, v ∈ X;
(ii) ¬E(u, v);
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(iii) (J,<,R) is a comparison relation between H(u) and H(v);
(iv) for all t ∈ J , R(t, 〈 〉, 〈 〉).

Suppose (J,<,R, u, v) ∈ Y . Then H(u) and H(v) are not isomorphic, and
so by Lemma 1.4, (J,<) is well founded. In fact, the order types of the
(J,<) for which (J,<,R, u, v) ∈ Y are exactly the ordinals 1 + α for which
Rα(H(u),H(v))(〈 〉, 〈 〉), which are also the ordinals 1 + α for which
fα(H(u))(〈 〉) = fα(H(v))(〈 〉).

Note that the set of all (J,<) such that (J,<,R, u, v) ∈ Y for some R, u,
v, with ¬E(u, v) is an analytic set of well-orderings. Hence by boundedness,
let α < ω1 be greater than the order type of all of these well-orderings.

Let u, v ∈ X. If ¬E(u, v) then ¬Rα(H(u),H(v))(〈 〉, 〈 〉). On the other
hand, if E(u, v) then H(u) ≈ H(v), and so Rα(H(u),H(v))(〈 〉, 〈 〉). By
Lemma 1.3, for all u, v ∈ X, E(u, v) if and only if Rα(H(u),H(v))(〈 〉, 〈 〉)
if and only if fα(H(u))(〈 〉) = fα(H(v))(〈 〉). By Lemma 1.3, this provides
a Borel reduction from E into HC(ω+α+ 1). The Theorem now follows by
Lemma 1.1.

Note that we have avoided using Lemma 1.2, which is not provable in
ATR0. We have instead used Lemma 1.4, which is provable in ATR0. Also
note that the boundedness of analytic sets of well-orderings is provable in
ATR0 (see [Si99], p. 199).

Corollary 1.6. The following is provable in ATR0. Every coanalytic
equivalence relation that is Borel reducible into BR is a Borel equivalence
relation that is Borel reducible into some T (α) with α countable. The same
holds with “Borel” replaced by “Baire”.

P r o o f. In the proof of Theorem 1.5, the crucial set of reducts (J,<) is
still analytic. Hence E(u, v) if and only if fα(H(u))(〈 〉) = fα(H(v))(〈 〉),
and so E is Borel and Borel reducible into T (α + 1) as before. The final
claim is an easy consequence that is left to the reader.

2. Zero density equivalence relation. In this section we prove that
the equivalence relation ZD on P (ω) is not classifiable by countable struc-
tures, i.e., is not Borel reducible to BR. In fact, we show that ZD is not
Baire reducible to BR.

We use HC for the set of all hereditarily countable sets. Let ZFC \ P
be the usual axioms of ZFC with the power set axiom deleted. We assume
familiarity with Cohen forcing over M , where M is a countable transitive
model of ZFC \ P and the forcing conditions are finite sequences of 0’s and
1’s. Here p(i) = 0 asserts that the generic object—which is a subset of ω—
does not contain i, and p(i) = 1 indicates that the generic object contains i.
In particular, if x is Cohen generic over M then M [x] is the least transitive
model containing M ∪ {x} satisfying ZFC \ P.
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Lemma 2.1. Let M be a countable transitive model of ZFC \ P. Suppose
x, y are Cohen generic over M , and M [x] ∩ M [y] ∩ P (M) = M . Then
M [x] ∩M [y] = M .

P r o o f. Let x, y be as given. We argue by transfinite induction. Suppose
all elements of M [x]∩M [y] of rank β < α lie in M . Let z ∈M [x]∩M [y] be
of rank α. Then every element of z lies in M [x] ∩M [y] and is of rank < α.
Hence z ⊆M , and so by hypothesis, z ∈M . (Here we have used the Cohen
genericity of x, y only for the well-definedness of M [x] and M [y]).

Lemma 2.2. Let M be a countable transitive model of ZFC \ P. Let p,
q be Cohen conditions of length n, and ϕ = ϕ(x), ψ = ψ(x) be forcing
statements over M such that p does not decide ϕ. Then we can find Cohen
conditions p′ extending p and q′ extending q, of the same length, where (p′

forces ϕ and q′ forces ¬ψ) or (p′ forces ¬ϕ and q′ forces ψ), and p′ \ p and
q′ \ q differ at at most one position.

P r o o f. Let M , p, q, ϕ, ψ be as given. First assume that for all extensions
p∗ of p and q∗ of q, where p∗ \ p = q∗ \ q, we have p∗ forces ¬ϕ if and only
if q∗ forces ¬ψ.

Let p1, p2 be two extensions of p of the same length which force ϕ in the
opposite way, say, with p1 forcing ϕ and p2 forcing ¬ϕ. Then we can find p∗1,
p∗2 extending p, of this same length, such that p∗1 forces ϕ and p∗2 does not
force ϕ, and where p∗1 \ p and p∗2 \ p differ at exactly one position. (To see
this, successively change p1 into p2 by changing p1 at exactly one position
at a time to agree with p2. At some point, there is going to be a change in
whether p1, as successively modified, forces ϕ.)

By further extension, we may assume that p∗1, p∗2 extend p, p∗1 forces ϕ,
p∗2 forces ¬ϕ, and are of the same length and differ at exactly one position.
Now consider r = (p∗2 \p)∪ q. Note that p∗2 \p = r \ q. So p∗2 forces ¬ϕ if and
only if r forces ¬ψ. Hence r forces ¬ψ. But p∗1 forces ϕ, r forces ¬ψ, and
p∗1 \ p, r \ q differ at exactly one position. This establishes the conclusion of
the lemma.

Now let p∗ be an extension of p and q∗ be an extension of q, where
p∗ \p = q ∗\q, and where p∗ forces ¬ϕ and q∗ does not force ¬ψ. By further
extension with a common new part, we may assume that q∗ forces ψ. This
also establishes the conclusion of the lemma.

Finally, let p∗ be an extension of p and q∗ be an extension of q, where
p∗ \ p = q∗ \ q, and where p∗ does not force ¬ϕ and q∗ forces ¬ϕ. By further
extension with a common new part, we may assume that p∗ forces ϕ. This
also establishes the conclusion of the lemma.

Lemma 2.3. Let M be a countable transitive model of ZFC \ P. There
exist x, y ⊆ ω such that
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(1) ZD(x, y);
(2) x, y are Cohen generic over M ;
(3) M [x] ∩M [y] = M .

P r o o f. By Lemma 2.1, it suffices to prove the lemma with (3) replaced
by M [x] ∩M [y] ∩ P (M) = M.

Construct x, y by a pair of sequences of conditions. At the nth stage we
will have two conditions of the same length. We make extensions of p, q,
respectively, so that the lengths are extended by at least n positions, and
where the new parts of the conditions differ at at most one position. This
will guarantee that ZD(x, y) holds.

We diagonalize over forcing statements and forcing terms. At the even
stages 2n we will simply extend both conditions in the same way (by 2n new
places) so that each decides the nth forcing statement (possibly in opposite
ways).

At the odd stages 2n+ 1, we wish to extend, say, p and q, and we work
on the ith forcing term s and the jth forcing term t, where 〈i, j〉 has index n.
Here s, t are forcing terms representing elements of the generic extension.

First extend p, q to p′, q′ of the same length so that at least 2n + 1
new places are created, where the new places are identical, and where p′

decides if s represents a subset of M that lies outside M , and q′ decides if t
represents a subset of M that lies outside M .

If p′, q′ don’t both force these statements, then we are done with this
odd stage. So we may assume that p′, q′ force these respective statements.
Therefore there must exist v ∈ M such that p′ does not decide v ∈ s.
Now apply Lemma 2.2 to ϕ = ‘v ∈ s’, and ψ = ‘v ∈ t’, to make the final
extensions for this odd stage.

In the limit, this infinite length construction results in two Cohen generic
x, y such that ZD(x, y). Suppose u ∈ M [x] ∩ M [y] ∩ P (M), where u is
outside M . Represent u by two forcing terms, s(x) and t(y). Then in the
construction, at some odd stage we worked on s, t. We must have gotten
past the first part of that stage, because of u. So v ∈ s and v ∈ t are forced
by respective initial segments of x, y in opposite ways. This is the desired
contradiction, since s(x) = t(y) is true.

Lemma 2.4. There exists a map h : P (ω × ω) → HC and a formula of
set theory ϕ(x, y) with only the free variables shown such that

(1) for all x, y ⊆ ω × ω, BR(x, y)↔ h(x) = h(y);
(2) ZFC \ P proves (∀x ⊆ ω × ω)(∃!y ∈ HC)(ϕ(x, y));
(3) for all countable transitive models M of ZFC \ P, the graph of ϕ in

M is the same as the graph of h restricted to M .
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P r o o f. Let h(x) be the Scott sentence defined in the usual way. We are
relying on the technology of Scott sentences from [Sc65].

We fix h and a definition of h according to Lemma 2.4 for the remainder
of the proof.

Theorem 2.5. ZD is not Baire reducible to BR.

P r o o f. We assume that F : P (ω) → P (ω × ω) is a Baire reduction of
ZD to BR and obtain a contradiction. Let S be a comeager Borel subset of
P (ω) such that F |S is a Borel function. Let M be a countable transitive
model of ZFC \ P which contains a Borel code for F |S. Then every x ⊆ ω
that is Cohen generic over M lies in S.

We work with the function G : P (ω) → HC given by G(x) = h(F (x)).
We can apply forcing to G because of Lemma 2.4.

We claim that for all x ⊆ ω, if x is Cohen generic over M then G(x) 6∈M .
To see this, let x be Cohen generic over M and G(x) = b ∈M . Then for all
y ⊆ ω, that is, Cohen generic over M with a certain finite initial segment,
G(y) = b. Choose y ⊆ ω to be Cohen generic over M where x4y is cofinite,
and y has that certain finite initial segment. Then x, y lie in S and ¬ZD(x, y),
and so G(x) 6= G(y). This contradiction establishes the claim.

By Lemma 2.3, fix x, y ⊆ ω that are Cohen generic over M such that
ZD(x, y) and M [x]∩M [y] = M . Since G(x), G(y) 6∈M , we see that G(x) 6=
G(y). I.e., h(F (x)) 6= h(F (y)). Hence ¬BR(F (x), F (y)). Since x, y ∈ S, we
have ¬ZD(x, y). This contradicts ZD(x, y).

Corollary 2.6. It is provable in ATR0 that ZD is not Baire reducible
to BR.

P r o o f. In ATR0, Baire reducibility is defined entirely in terms of Borel
functions. We indicate the modifications of the proof of Theorem 2.5 that
are necessary. Note that we have used the existence of Scott sentences, which
requires hyperjumps, and therefore lies outside ATR0. So we now need to
invoke Theorem 1.5, which is itself provable in ATR0 by Corollary 1.6. Thus
it suffices to show that ZD is not Baire reducible to any T (α), α < ω1. But
now we no longer need to use Scott sentences, and can instead work with
M = Lλ(u), where u ⊆ ω is a Borel code for F |S, and λ is an additive
countable limit ordinal greater than the Borel rank of F |S.
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