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Trees of visible components in the Mandelbrot set

by

Virpi Kauko (Jyväskylä)

Abstract. We discuss the tree structures of the sublimbs of the Mandelbrot set
M, using internal addresses of hyperbolic components. We find a counterexample to a
conjecture by Eike Lau and Dierk Schleicher concerning topological equivalence between
different trees of visible components, and give a new proof to a theorem of theirs concerning
the periods of hyperbolic components in various trees.

1. Introduction. In this paper we discuss the combinatorial tree struc-
ture of the Mandelbrot set M. We construct a tree which disproves a con-
jecture in [LS] (here in 2.6) and give a new proof to a theorem in [LS] (here
2.7) which is a weak version of the conjecture. When finishing the prepara-
tion of this paper, the author was informed that Dierk Schleicher and Henk
Bruin had found a counterexample independently and stated another partial
version—stronger than 2.7—of the original conjecture which Karsten Keller
[K2] had proved and which is given here as Theorem 2.8.

We use ideas introduced in [S1] and [LS] to describe the trees. An im-
portant concept is the internal address of a hyperbolic component A, which
lists the periods of certain components that are “on the way” from the main
cardioid C0 to A (definition 2.2). [LS] presents a simple algorithm, described
here in §3, which gives the internal address from the kneading sequence [Th],
[BK] of the external angles of A, or the angles of external rays landing at A
in the parameter plane.

Recall that the (dynamical) external ray with angle θ of the filled Julia
set Kc of the polynomial Pc : z 7→ z2 + c, denoted by Rc

θ, is the preimage
of the radial line {rei2πθ : r > 1} under the conformal Böttcher map from

Ĉ \ Kc to the exterior of the closed unit disk; consult [CG] or [Be] for
details. The parameter rays or external rays of the Mandelbrot set, RM

θ , are
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defined similarly as preimages of straight rays under the conformal mapping
obtained by evaluating the Böttcher map in c itself. The polynomial Pc maps
each dynamical ray to another ray doubling the angle (which we measure
in full turns, i.e. 0 = 1 = 2π rad = 360◦), and the dynamical rays of any
polynomial “look like straight rays” near infinity. This allows us to study the
Mandelbrot and Julia sets combinatorially, replacing the dynamical plane by
the unit circle, rays by angles, and the quadratic polynomial by the doubling
modulo one map.

1.1. Wakes and periods. The main cardioid C0 only has one external
angle, 0. Any other hyperbolic component A has exactly two external rays
that land at its rootpoint separating its wake WA from the rest of the pa-
rameter plane.

An angle θ in the circle R/Z is periodic under doubling if and only if it is
rational with odd denominator (in the reduced form). For example, 1/7 7→
2/7 7→ 4/7 7→ 8/7 = 1/7. The external angles of hyperbolic components are
periodic. The period of a hyperbolic component A is denoted by PerA and
is defined as the period of the attracting orbit that each polynomial Pc with
c ∈ A has. It has been proved (in [Mi], for instance) to be the same as the
period of the external angles of A under the doubling modulo one map.

The width |W | of the wakeW of a hyperbolic component C with Per C = k
is the difference between its two external angles. Since the k-periodic angles
are of the form θ = a/(2k − 1) with a ∈ N, we have |W | = t/(2k − 1) for
some integer t. This t is odd because of the following

1.2. Remark. If two external rays of M with angles θ1 and θ2 land
at the same point in ∂M, then the number of periodic angles ψ ∈ ]θ1, θ2[
with any period n is even. This is because rays with period n land in pairs
at roots of hyperbolic components of period n, which then must be in the
wake bounded by the given rays.

The p/q-subwake of W is the wake of the kq-periodic satellite component
of C at internal angle p/q, and its width is

(1.3) |W p/q
C | = |W | (2

k − 1)2

2qk − 1
=
t(2k − 1)

2qk − 1
.

This is proved in [S1]. A different, more direct proof will appear in my Ph.D.
thesis; it uses Milnor’s orbit portraits [Mi], which will also be needed in the
present paper.

1.4. Orbit portraits. If a dynamical ray Rc
θ with a rational angle θ lands

at a point of a periodic orbit O := {x1, x2 := Pc(x), . . . , xk := P kc (x)}
(⊂ Jc), then for each xi ∈ O the collection Ai of all external angles of xi is
a finite, non-empty subset of Q/Z.
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The collection {A1, . . . , Ak} =: Θ(O) is called the orbit portrait of O.
Every polynomial Pc has either zero, a finite number, or infinitely many
different non-trivial orbit portraits, by which we mean ones with #Ai =:
v > 1. Each Ai cuts the circle into v intervals, and exactly one of all the
kv intervals is the shortest. This is called the characteristic interval of the
orbit portrait. The main theorem in [Mi] is:

1.5. Lemma. If [θ−, θ+] is the characteristic interval of any non-trivial

orbit portrait Θ, then the parameter rays RM
θ±

land at the same point ĉ ∈ ∂M

Fig. 1
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bounding a wake W . A polynomial Pc has a repelling orbit with portrait Θ
if and only if c ∈ W , and a parabolic orbit with portrait Θ if and only if

c = ĉ.

Example. Figure 1.a shows the dynamical plane of the polynomial Pĉ
with parameter ĉ = −1 + 1

4e
i2π/3 ∈ ∂M. A six-periodic cycle of rays is

landing at a two-periodic parabolic orbit x± := − 1
2 ± 1

2

√
1 − ei2π/3. The

corresponding orbit portrait {{22/63, 25/63, 37/63}, {44/63, 50/63, 11/63}}
is visualized by the diagram in Figure 1.b. Figure 1.c shows the parameter
rays with the bounding angles of the characteristic interval [22/63, 25/63]
landing at ĉ. Since ĉ is an interior point of the wake bounded by the rays
with angles 1/3 and 2/3, Pĉ also has a repelling fixed point 1

2
+ 1

2

√
5 − ei2π/3

with orbit portrait {{1/3, 2/3}} (the dotted lines in Figures 1.a, b, c).

1.6. Note. The open interval of angles of all external rays in the wake
of a C is denoted by I(C). Considered as just intervals on the unit circle,
I(C) equals the characteristic interval of the corresponding orbit portrait.
Since the wakes of any two components A and B are either strictly nested
or disjoint (see 1.1), either I(A) ⊂ I(B) or I(A) ∩ I(B) = ∅.

2. Internal addresses

2.1. Partial ordering of components. If a hyperbolic component (1) A is
in the wake of another hyperbolic component C, we write C ≺ A. The set
of components B such that C ≺ B ≺ A is called the combinatorial arc ]C,A[

Fig. 2.a

(1) This paper concentrates on hyperbolic components, but similar concepts and re-
sults hold for Misiurewicz points.
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(cf. Figure 2.a). Including the endpoints we write [C,A]. (There is actually
also a topological arc connecting A to C, cf. [S2], but the combinatorial arc
is well defined even if we ignore this.) The arc, of course, contains infinitely
many components B; the internal address mentions just some of them.

2.2. Internal address. Denote the main cardioid by C0 and let A be any
hyperbolic component. Let B1 be the component on the combinatorial arc
]C0,A] which has the smallest period, n1. Then let Bi be the component on
]Bi−1,A] with smallest period, ni, for all integers i as long as ni ≤ PerA
=: k. The sequence

1 → n1 → n2 → . . . → k =: A(A)

is called the internal address of A. Any finite, strictly increasing sequence
of integers starting with 1 is called an abstract address.

Note. A priori, one should worry about the uniqueness of the Bi’s.
If there were two components with the same period ni, then ni+1 might
depend on the choice of Bi. But this is excluded by the following lemma of
Lavaurs [La], which thus justifies the definition of the internal address and
guarantees that the sequence is strictly increasing.

2.3. Lemma. If two hyperbolic components C ≺ A have periods equal

to some n, then there is a component B with period less than n such that

C ≺ B ≺ A.

Figure 2.b shows a diagram of all parameter rays (“modulo symmetry”)
with periods up to six and the hyperbolic components at which they land.
The addresses of some components are written into the picture to illustrate
the idea. An interesting question is: Given an abstract address, is there

a hyperbolic component (or several ones) with that sequence as its internal

address? Obviously, the component is not unique in general (2). For exam-
ple, there are four components with address 1 → 5 → 6, one behind each
p/5-satellite of C0. There are also “non-existent components”:

2.4. Example. The sequence 1 → 2 → 4 → 5 → 6 is not realized as an
internal address. The six-periodic component with this address should be
behind the five-periodic component at address 1 → 2 → 4 → 5, but all the
four six-periodic components behind it are also behind the three-periodic
component with address 1 → 2 → 3 and therefore have a “3” in their
addresses.

(2) By equipping the internal address with the internal angles by which the arc
[C0,A] leaves each component Bi, we get the angled internal address which does spec-
ify A uniquely. The number of components sharing an address is the number of possible
combinations of angles. All this is done in [LS].
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Fig. 2.b
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2.5. Visibility and trees. A hyperbolic component A is said to be visible

from B if B ≺ A or A ≺ B and all components on ]B,A[ have periods
greater than PerA. In particular, all components Bi that are mentioned in
the internal address of some A, are visible from A, looking “down” towards
the main cardioid (cf. definition 2.2). Looking “upwards”, Bi+1 is visible
from Bi but not from Bi−1, since ni < ni+1 and Bi−1 ≺ Bi ≺ Bi+1.

The tree T of visible components of C (cf. Figure 2.c) is the collection of
hyperbolic components which are visible from C together with the topolog-
ical and combinatorial structure induced by the embedding of M into the
parameter plane. C, in turn, is called the stem component of the tree T . We

call T ∩W p/q
C =: T p/q the p/q-subtree of T . Each p/q-subtree of a given T

obviously consists of only a finite number of visible components, since the
p/q-satellite is “blocking the view” to all components except for the finitely
many ones with periods less than kq.

Fig. 2.c

Following [K2], we call two subtrees Tp1/q1 and Tp2/q2 equivalent if they
“coincide” in the sense that there is a homeomorphism between them which
maps each n-periodic hyperbolic component in Tp1/q1 to a component in
Tp2/q2 with period (q1−q2)k+n preserving the embedding into the parameter
plane.

2.6. Translation Principle. Let C be a k-periodic hyperbolic com-

ponent and T its tree of visible components. Then the subtree Tp1/q1 is

equivalent to Tp2/q2 for any p1, p2, q1, and q2.
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This principle is true at least for narrow-waked components, i.e. ones
with |WC | = 1/(2k − 1), as proved by Lau and Schleicher in [LS]. Their
Conjecture stated that the Translation Principle is true without any addi-
tional assumption—a counterexample to this will be presented here in §4.
A weaker statement is true in general:

2.7. Theorem. Let C be a k-periodic hyperbolic component and m2 the

smallest period of hyperbolic components in its 1/2-wake W
1/2
C . Then the

minimal period , mq, of components in any p/q-wake W
p/q
C is (q− 2)k+m2.

This is the “Weak Translation Principle” in [LS] and is proved there
by using properties of the dynamical planes of certain parameters c. In
our proof (§5) the dynamics is “hidden behind” orbit portraits. As side-
products we obtain Lemma 5.1, which gives m2 in terms of k and |WC|,
and 5.6, which says that certain wake-widths do not occur. The “Partial
Translation Principle” proven in [K2] is:

2.8. Theorem. Let T be the tree of visible components of any hyperbolic

component in M. Then every subtree of T other than T1/2 is equivalent to

T1/3 or to T2/3.

3. Itineraries, kneading sequences and the algorithm. Here we
use codings of angles and hyperbolic components by binary sequences, in-
troduced in e.g. [At] and [BK], to prove Lemma 3.8 which is an important
tool in proving 2.7, and present the algorithm from [LS] connecting internal
addresses to kneading sequences which we need to construct the counterex-
ample to 2.6.

3.1. Itinerary and kneading sequence of angles. Given angles ϕ,α in the
circle R/Z, the α-itinerary Itα(ϕ) of ϕ is defined as a sequence of ones, zeros
and triangles as follows: the angles α/2 and (α+ 1)/2 cut the circle into
two halves Hα

1 ∋ α and Hα
0 ∋ 0 = 1, and

Itα(ϕ)n :=





0 if 2n−1ϕ ∈ Hα
0 ,

N if 2n−1ϕ = α/2,
1 if 2n−1ϕ ∈ Hα

1 ,
H if 2n−1ϕ = (α+ 1)/2.

The kneading sequence of θ is its own θ-itinerary: K(θ) := Itθ(θ) (cf. Figure
3.a).

We use ∗ as a joker symbol meaning either N or H, and overline to
indicate that a word is repeated periodically. For example, It1/8(1/7) = 110.
The α-itinerary of a k-periodic angle ϕ is obviously also periodic for any α,
with period (dividing) k. The converse statement is not true—even an
irrational angle might have a periodic itinerary. Clearly, K(θ) contains a ∗
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Fig. 3

if and only if θ is periodic under doubling, and then also K(θ) has the same
exact period.

3.2. Lemma. For a fixed k-periodic angle ϕ ∈ R/Z, Itα(ϕ)i 6= Itβ(ϕ)i if

and only if α < 2imod kϕ < β mod 1.

P r o o f. Since 2i−1ϕ equals either 2iϕ/2 or (2iϕ+ 1)/2, Itα(ϕ)i+jk
changes for every integer j when α crosses the ith angle on the orbit of ϕ.

3.3. Lemma. Let n be a fixed integer. For an angle θ = p/(2n − 1)
with any p = 1, . . . , 2n − 2 and any 0 < ε < 1/2n, K(θ − ε)n = Itθ+ε(θ)n 6=
Itθ−ε(θ)n = K(θ + ε)n.

Idea of proof. θ is periodic, and n is some multiple of its exact period.
By halving the circle with respect to each angle θ − ε, θ, and θ + ε in turn
one checks to which side the (n− 1)th iterate of the doubling map takes the
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angles. We have

2n−1(θ + ε) =
θ

2
+ 2n−1ε =

θ + ε

2
+
ε

2
(2n − 1) ∈ Hθ+ε

1 ⇒ K(θ + ε)n = 1

for an even numerator p, K(θ + ε)n = 0 for an odd p, etc.

3.4. Corollary. When θ is moving counter-clockwise around the cir-

cle, K(θ)n changes from 0 to 1 every time θ crosses an angle p/(2n − 1)
with even numerator p and from 1 to 0 every time it crosses one with odd p.
(See Figure 3.b.)

The first n entries of the binary sequences K(θ ± ε), Itθ∓ε(θ) agree for
any ε ≤ 1/22n and every θ because there are no angles with periods m ≤ n
within distance 1/22n from the angle a/(2n − 1);

∣∣∣∣
a

2n − 1
− b

2m − 1

∣∣∣∣ ≥
1

(2n − 1)(2m − 1)
>

1

2n+m − 1
(3.5)

≥ 1

22n−1 − 1
> ε.

Therefore the limit sequences

K−(θ) := lim
εց0

K(θ − ε) and K+(θ) := lim
εց0

K(θ + ε)

exist for every angle θ, periodic or not. Now Remark 1.2 allows us to define:

3.6. Kneading sequences of hyperbolic components. If θ± are the exter-
nal angles of a hyperbolic component C, then its kneading sequence and
outside-kneading sequence are, respectively, K(C) := K+(θ−) = K−(θ+)
and Kout(C) := K−(θ−) = K+(θ+).

K(C) has the same exact period, say k, as C (cf. [LS]). By 3.4, K(C)n 6=
Kout(C)n if and only if n = jk for some j ∈ N. To prove 3.8 and 3.9, which
we shall use in §5, we need one more lemma from [At]:

3.7. Lemma. If c ∈ RM
α , then Itα(ψ) = Itα(ϕ) ∈ {0,1}N if and only if

the dynamical rays Rc
ψ and Rc

ϕ land at the same point x ∈ Jc.

3.8. Lemma. Let θ and ϕ be two angles, periodic under doubling with

periods equal to some k ∈ N, and 0 < θ < ϕ < 1. If K−(θ) = K+(ϕ) and

the interval ]θ, ϕ[ contains no angles in the cycles of either θ or ϕ, then the

parameter rays RM
θ and RM

ϕ land at the same point ĉ ∈ ∂M.

P r o o f. When α moves left of θ and β right of ϕ, Lemma 3.2 says that
Itα(θ) = Itβ(ϕ) until α or β hits some of the angles in the cycles of θ or ϕ.
But by assumption, 3.3, and (3.5),

K−(θ) = Itα(θ) = Itα(ϕ) = K+(ϕ) for every α ∈ ]θ, ϕ[.

3.7 implies that the dynamical rays Rc
θ and Rc

ϕ for any parameter c ∈ RM
α

land at the same point, thus determining an orbit portrait Ψ (cf. 1.4)



Trees of visible components 51

on whose characteristic interval the angle α lies. Since the interval [θ, ϕ]
contains α but no angles of the portrait other than the endpoints, it is the
characteristic interval of Ψ . The claim now follows from 1.5.

3.9. Corollary. Two parameter rays with angles θ = t/(2n − 1) and

ϕ = (t+ 1)/(2n − 1) either land at the same point in ∂M, or else there is

an angle with a period i < n on [θ, ϕ].

P r o o f. If both angles are exactly n-periodic but the rays do not land
at the same point, then by 3.8, K−(θ)i 6= K+(ϕ)i for some i. Since these
binary sequences are at most n-periodic, i < n. By 3.4 there must be exactly
one i-periodic angle on ]θ, ϕ[. The other possibility is that the period of one
of the angles strictly divides n.

3.10. Note. A similar argument would yield another proof for Lavaurs’
Lemma 2.3.

3.11. Algorithm [LS]. Given an angle θ with period k, we can now use
kneading sequences to find the internal address 1 → n1 → n2 → . . . → k =
A(A) (see definition 2.2) of the hyperbolic component A at whose root point
the parameter ray RM

θ lands. Moving from the main cardioid C0 towards
A along the combinatorial arc we enter into nested wakes of hyperbolic
components with various periods but never come out of any wake. By 3.4,
every time we enter the wake of an n-periodic component B ∈ ]C0,A], the
nth entry in the kneading sequence changes. Hence the number ni must be
the index at which the first difference between K(A) and K(Bi−1) occurs,
for each i.

The first k−1 entries ofK(A) agree with those of θ; K(A)|k is determined
by the fact that the kth entry must be changed since the last thing we do
is enter the wake of A.

Example. θ = 11/63 is 6-periodic since 63 = 26 − 1. Next, K(θ) =
11010H. Comparing this sequence first to 111111 . . . and to 110110 . . .
we obtain n1 = 3 and n2 = 5. The first difference between 1101011010. . .
and 11010 ∗ 11010 ∗ . . . should occur at place 6 = n3, so K(A) = 110100

and A(A) = 1 → 3 → 5 → 6. (See again Figure 2.a.)

This algorithm can be used to find the component with the smallest
period on the combinatorial arc between any two hyperbolic components;
we shall do that in §4. The algorithm works in both directions; any abstract
address gives a periodic binary sequence which may or may not be the
kneading sequence of some hyperbolic component (3).

(3) Translating kneading sequences back to angles is more difficult; this will be done in
[BS], which will also give a complete characterization of non-realizable abstract addresses
using Hubbard trees. See also [Pe].
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For each initial word b1 . . . bn−1 with bi ∈ {0,1} exactly one of the
binary sequences b1 . . . bn−10 and b1 . . . bn−11, call it B, produces an abstract

address (cf. 2.2) ending with n. Obviously, B has period exactly n. The
other one, B′, either produces an infinite address skipping n (and thus is not
the kneading sequence of any hyperbolic component, but may be the outside
kneading sequence of one), or else the period k of B′ strictly divides n.

For example, 101 gives an infinite address 1 → 2 → 4 → 5 → 7 →
8 → 10 → 11 → . . . , which lists the periods of a sequence of hyperbolic
components “approaching” the primitive 3-periodic component at address
1 → 2 → 3 whose kneading sequence is 100; thus 101 is the outside kneading
sequence of this component.

3.12. Remark. If a1 . . . ak = A produces a finite address which is
realized by some hyperbolic component, then Aq−1A′ =: B is the kneading
sequence of its qk-periodic p/q-satellite(s) sitting at the internal address
1 → . . .→ k → qk. This is because no pair of rays separate their rootpoints,
so B′ = A. For example, the 1/3-satellite of the component at 1 → 2 → 3
has kneading sequence 100100101 (Proposition 5.4 in [LS]).

4. Counterexample. Now we construct a tree T which does not obey
the Translation Principle. Figure 4 is a diagram of the 1/2- and 1/3-subtrees
of T . Choose θ = 25/127, whose kneading sequence is 110111H, so the
parameter ray RM

25/127 lands at the root of a seven-periodic component C
with internal address 1 → 3 → 6 → 7 and kneading sequence 1101110 (4).
The other external angle with kneading sequence 110111N is 34/127, so
|WC| = 9/127. Formula (1.3) gives the widths of the subwakes:

|W 1/2
C | =

9

127
· 1272

16383
=

9

129
and |W 1/3

C | =
9 · 127

2097151
=

9

16513
.

The smallest possible n such that 1/(2n − 1) < 9/129 is 4, so there is a four-

periodic component A4 inW
1/2
C . By 3.11, K(A4) = 1100, and by comparing

Kout(A4) = 1101 to K(C) we find the smallest period of components on
the combinatorial arc ]C,A4[, which is ten:

11011101101110 . . . 11011101101110 . . . 11011101101110110 . . .

110111011101 . . . 11011101101101 . . . 1101110110111110 . . .

The first difference between the outside-sequence of this 10-periodic com-
ponent A10 and K(C) occurs at the 13th place. Repeating this once more

(4) The first counterexample I found was the tree with a five-periodic stem component
at address 1 → 2 → 4 → 5, the same as the one Dierk Schleicher and Henk Bruin had
found independently. Other examples are trees at 1 → 2 → 6 → 7, 1 → 2 → 4 → 6 → 7
and 1→ 2→ 4→ 5→ 7.
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Fig. 4

we get a 14-periodic kneading sequence which, by 3.12, belongs to the 1/2-
satellite of C. Thus the “trunk” of the 1/2-subtree consists of A4, A10, A13,
and A14. We must calculate the widths of these components to see if there
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are side-branches. Because

9

127
≈ 36.2

511
and

1

15
≈ 34.1

511
,

WC contains 18 pairs of parameter rays—and thus 18 hyperbolic components
—with period nine, 17 of which in WA4

, so there is a narrow-waked nine-

periodic component A9 ∈ W
1/2
C \WA4

. Since we know that A(A9) = 1 →
3 → 6 → 7 → 9 we can again compare the kneading sequences to find that
[C,A4] ∩ [C,A9] = [C,A10] and thus |WA10

| = 71/1023. Similarly we find
A12 which branches off from [C,A13] and note that these six components
make up the tree T1/2. In particular, of the nine components with periods
dividing eight, one is A4 and all others are “invisible” behind it, so 8 does
not appear in the tree at all.

In the same way, we construct the tree T1/3 (or T2/3), finding the main
trunk with components A11, A17, A20, and A21 and two side-branches with
narrow-waked components A16 and A19, in accordance with 2.6. But

9

16513
≈ 17.9

215 − 1
and

1

2047
≈ 16.0

215 − 1
,

so there is one visible 15-periodic component A15 ∈ W
1/3
C \ WA11

which
does not have an eight-periodic “partner” in T1/2 (8 = (2 − 3) · 7 + 15)
like the Translation Principle 2.6 states. By comparing its outside-kneading
sequence 110111011011101 to 1101110 we find that A15 is in the end of
its own branch like A11 and A16 are; therefore the trees T1/3 and T2/3 are
not homeomorphic to T1/2.

5. Treetops. This section is devoted to proving Theorem 2.7. If Aq is
the component with the smallest period, mq, in some p/q-sublimb of a given
k-periodic stem component C, there can be no components B visible from C
such that C ≺ Aq ≺ B; in other words, the branch of the tree in question
must terminate at Aq (cf. Figure 2.c).

For each q ≥ 2, we must find the smallest number mq such that the wake
of Aq (which is necessarily narrow because 3/(2mq − 1) > 1/(2mq−1 − 1))

is narrow enough to fit into |W p/q
C |. We start by finding the number m2

in terms of |WC| and then show that mq = (q − 2)k + m2. We shall first
find pretty easily that there are two possibilities for the number mq: it is
either what 2.7 claims or one more. To rule out the latter possibility we
shall show that in that case the stem component C would have a wake with
an impossible width.

5.1. Lemma. If C is a k-periodic hyperbolic component whose wake has

width |WC | = t/(2k − 1), where t = 2s + r with maximal integer s, then the



Trees of visible components 55

smallest period of components in the 1/2-subwake of WC is m2 = k + 1 if

t = 1, and m2 = k − s if t ≥ 3.

We want the minimal mq such that

1

2mq − 1
<

t

2k − 1
· (2k − 1)2

2qk − 1
=
t(2k − 1)

2qk − 1
= |W p/q

C |,

and so

(5.2)
1

2mq − 1
<
t(2k − 1)

2qk − 1
<

1

2mq−1 − 1
.

In particular, m2 is the unique integer such that

1

2m2 − 1
<
t(2k − 1)

22k − 1
=

t

2k + 1
<

1

2m2−1 − 1
.

5.3. Remark. For any m, no component with period different from m
can have wake with width exactly 1/(2m − 1); otherwise this wake would
contain a single m-periodic ray.

Beginning of proof of 5.1. If the wake of C is narrow (t = 1), we require
that (cf. (5.2))

1

2m2 − 1
<

1

2k + 1
<

1

2m2−1 − 1
.

Therefore 2m2 > 2k + 2 > 2m2−1 and hence m2 > k ≥ m2 − 1, so

(5.1.1) m2 = k + 1.

In the non-narrow case (t > 1), t = 2s + r for some integers s ≥ 1 and odd
r < 2s. Since we require that 1

2m2−1 <
2s+r
2k+1

< 1
2m2−1−1

(cf. (5.2)),

2m2 − 1 >
2k + 1

2s + r
>

2k + 1

2s+1
> 2k−s−1 ⇒ m2 ≥ k − s,

2m2−1 − 1 <
2k + 1

2s + r
<

2k + 1

2s
< 2k−s +

1

2
⇒ m2 − 1 ≤ k − s,

and thus

(5.1.2) k − s ≤ m2 ≤ k − s+ 1.

At this point we have proved Lemma 5.1 in the case of a narrow wake.
Assuming m2 6= k − s+ 1 for the moment, we are done with Theorem 2.7:

If WC is narrow, then by (5.2) and (5.1.1), mq = (q − 1)k + 1 =
(q − 2)k +m2, because

1

2(q−1)k − 1
>

1

2(q−1)k − 1
2k

=
2k

2qk − 1

>
2k − 1

2qk − 1
=

1

2(q−1)k + . . .+ 1
>

1

2(q−1)k+1 − 1
.
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If WC is not narrow, then m2 < k so that 2m2 − 2k < 0. By (5.2), t >
(2k + 1)/(2m2 − 1), and thus

|W p/q
C | =

t(2k − 1)

2qk − 1
>

2k + 1

(2m2 − 1)(2(q−1)k + . . .+ 2k + 1)

=
2k + 1

2(q−1)k+m2 + (2m2 − 2k)(2(q−2)k + . . .+ 2k + 1) − 1

>
2k + 1

2(q−1)k+m2 − 1
>

1

2(q−2)k+m2 − 1
,

so mq ≤ (q − 2)k +m2.

On the other hand,

t(2k − 1)

2qk − 1
≤ 2s+1 − 1

2(q−1)k + . . .+ 2k + 1

<
2s+1

2(q−1)k
<

1

2(q−1)k−s−1 − 1
⇒ mq ≥ (q − 1)k − s.

Therefore mq = (q − 1)k − s = (q − 2)k +m2 if m2 = k − s, and we have
shown

5.4. Observation. Lemma 5.1 implies Theorem 2.7.

It remains to be shown that m2 = k − s , or, by (5.1.2), that m2 6=
k − s+ 1. For some values of t, the wake of a component with period k − s

is too wide to fit into W
p/q
C .

Example. Consider a seven-periodic hyperbolic component C with
wake-width 17/127. Then

|W 1/2
C | =

17

129
=

24 + 1

27 + 1
<

1

27−4 − 1
=

1

7
,

so m2 = 4 = k− s+ 1 (here k = 7 and s = 4). Since 17/127 < 1/7, C would
have to be either in the wake of one of the three 3-periodic components N3

or between (with respect to natural order of angles on the circle) two such
wakes.

In the first case, since 17/127 > 1/9 = |WN3
|, C would be on the combi-

natorial arc between N3 and its 1/2-satellite, which is obviously impossible.
In the latter case, I(C) (cf. 1.6) would be contained in one of the intervals
]0, 1/7[, ]2/7, 1/3[, ]1/3, 3/7[, ]4/7, 2/3[, ]2/3, 5/7[, ]6/7, 1[. If it were the first
or last one of these, C would have to be in the wake of some other satellite
of the main cardioid; but they all have widths at most 1/15 < 17/127. All
other intervals above are even shorter than this, so there just is no room for
C anywhere.
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In general (m2 and s being as above), we must prove the following two
lemmas:

5.5. Lemma. For any k-periodic component C, the condition m2 =
k − s+ 1 implies

1

2k−s
< |WC| <

1

2k−s − 1
.

5.6. Lemma. For any n ∈ N, no hyperbolic component C (of any period)
such that

1

2n + 1
< |WC| <

1

2n − 1
can exist anywhere in the parameter plane.

Proof of 5.5. Assume that the smallest period in the 1/2-subwake of C
is k − s+ 1, and t = 2s + r like above. Then, by (5.2),

1

2k−s+1 − 1
< |W 1/2

C | =
t

2k + 1
<

1

2k−s − 1
.

The second inequality implies

|WC | =
t

2k − 1
<

1

2k−s − 1

because “|WC | = 1/(2k−s − 1)” would contradict 5.3, and if |WC| >
1/(2k−s − 1), then there would be a (k − s)-periodic hyperbolic component
on the combinatorial arc between C and its 1/2-satellite, which is impossible.
On the other hand,

|WC| =
t

2k − 1
=

2s + r

2k − 1
=

1

2k−s − (1 + 2k−sr)/t
>

1

2k−s
.

Beginning of proof of 5.6. Assume

1

2n + 1
< |WC| <

1

2n − 1
.

We shall show that there is no room for the interval I(C) anywhere on
the circle R/Z. Since WC cannot contain just one ray with angle period
(dividing) n, I(C) must be contained in one of the intervals

Ipn :=

]
p

2n − 1
,
p+ 1

2n − 1

[
, where p ∈ Z2n−1.

Corollary 3.9 directly implies that there are three disjoint possibilities:

(a) Ipn = I(N ) for some narrow-waked n-periodic component N ,

(b) Ipn contains one angle with period m < n,

(c) the period of one of the endpoints of Ipn strictly divides n and Ipn
contains no angle with period less than n.



58 V. Kauko

Obviously, C cannot fit into any narrow wake WN because by assumption

|WC| > 1/(2n + 1) = |W 1/2
N |, so (a) is ruled out.

If I(C) ⊂ Ipn, then its distance to either of the two angles in ∂Ipn is less
than the difference of the lengths of these two intervals:

1

2n − 1
− t

2k − 1
<

1

2n − 1
− 1

2n + 1
=

2

22n − 1
<

1

22n−1 − 1
.

But by (3.5) the difference between an endpoint of Ipn and any angle with
period m < n is more than that, so WC would have to contain a single
m-periodic ray, which is impossible. Thus (b) is also ruled out.

We are left with (c), so assume the period h of p/(2n − 1) is a proper
divisor of n = qh. The ray RM

p/(2n−1) lands at the root of some h-periodic

hyperbolic component H. Because Ipn contains no angle with period less
than n, the first n − 1 digits in the kneading sequences of p/(2n − 1) and
(p+ 1)/(2n − 1) must agree by 3.4. Hence the other ray, RM

(p+1)/(2n−1),
lands at the rootpoint of a hyperbolic component N with period n whose
outside-kneading sequence consists of identical h-blocks.

Sublemma. N is the 1/q-satellite component of H.

P r o o f. A priori , the exact period of Kout(N ) could be either h or some
proper divisor j of h = ij; the latter case turns out to be impossible.

If the exact period of Kout(N ) is h, then by the Lau–Schleicher Algo-
rithm 3.11, the internal address of N is 1 → . . . → h→ qh = n. Thus there
must be an h-periodic hyperbolic component H̃ on the combinatorial arc
between the main cardioid and N , such that Kout(N ) = K(H̃). By 3.12, N
is a satellite of H̃. Hence H must be H̃, because otherwise, by 1.6, there are
three possibilities for the geometric arrangement of these two components:

(i) H ≺ H̃,

(ii) WH ∩WH̃ = ∅,
(iii) H ≻ H̃.

(i) and (ii) are impossible because the boundaries of the wakes must be at
a distance at least 1/(2h− 1)> 1/(2n− 1) apart. We are assuming (c), i.e.
that no pair of rays with a period less than n separates N from H, so no such
pair can separate H from H̃ either. But this contradicts Lavaurs’ Lemma
2.3. Thus N must be some s/q-satellite component of H; obviously, s = 1.

If the exact period of Kout(N ) were some proper divisor j of h = ij, then
(by the same argument as above) both H and N would be satellites of a
j-periodic component J . Their internal angles have denominators h/j = i
and n/j = qi, respectively. The difference of these internal angles must
be 1/(qi); when the circle R/Z is divided into qi equal intervals, each of
them except ]0, 1/(qi)[ and ](qi− 1)/(qi), 1[ must contain exactly one angle
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with denominator qi − 1. Therefore there is another satellite of J whose
two external angles are between p/(2n − 1) and (p + 1)/(2n − 1) and have
period (dividing) j(qi− 1) = n− j, which contradicts (c).

End of proof of 5.6. Since the 1/q-subwake of WH is at a distance
u/(2qh − 1) from ∂I(H) if |WH| = u/(2h − 1), now WH must be narrow, i.e.
u = 1.

If I(C) ⊂ Ipn, then WC would have to be contained in some other l/r-
subwake of H with r > q; but the width of such a subwake is at most

2h − 1

2(q+1)h − 1
<

1

2qh + 1
< |WC |.

On the other hand,

1

2qh − 1
− 2h − 1

2(q+1)h − 1
<

2

2(q+1)h − 1
<

1

2qh + 1
< |WC |,

so any subwake is too narrow to contain WC but too wide to leave any room
for it. Now (c) is ruled out as well.

Thus we conclude that I(C) cannot be contained in any of the intervals
Ipn with 0 ≤ p ≤ 2n − 2, so there cannot exist a hyperbolic component C
with this wake-width.

End of proof of 5.1. In particular, no k-periodic component C can have a
wake with width in ]1/2k−s, 1/2k−s − 1[, so 5.5 implies that m2 6= k− s+1.
By (5.1.2), m2 = k − s.

Because of 5.4, we have now proved 2.7.
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