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Every reasonably sized matrix group
is a subgroup of S,

by

Robert R. Kallman (Denton, TX)

Abstract. Every reasonably sized matrix group has an injective homomorphism into
the group Soo of all bijections of the natural numbers. However, not every reasonably
sized simple group has an injective homomorphism into Soo.

1. Introduction. If X is any nonempty set, let S(X) be the set of
bijections of X. Let S, = S(N), where N is the set of natural numbers. Of
course, we may think of S, as the set of all permutations of any countable
set. It is natural to ask: to what extent is Cayley’s Theorem true for S,,?

In 1960 S. M. Ulam ([11] and [12], page 58) asked “Can one show that
the group R of all rotations in the three-dimensional space is isomorphic (as
an abstract group, not continuously, of course) to a subgroup of the group
S~ of all permutations of integers? Or, perhaps quite generally: is every Lie
group isomorphic (as an abstract group) to a subgroup of the group So,?”
These questions are obviously motivated by Problem 95 of the Scottish Book
([8]), due to Schreirer and Ulam (November 1935), who asked and answered
this question for (R, +).

The purpose of this paper is to prove the following theorem. It certainly
answers Ulam’s first question and a large portion of the second.

THEOREM 1. Let n be a positive integer and F be a field of arbitrary
characteristic such that card(F) < 2%0. Then there is an injective homo-
morphism of GL(n, F) into Su.

The proof is rather elementary, requiring what at best are minor per-
turbations of well known results in field theory. Note that since N can be
decomposed into a countable number of countable subsets, the product of
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countably many copies of S,, can be embedded into S.,. This implies the
following corollary.

COROLLARY 2. Let G =[], Gk, where each G, is one of the groups
described in Theorem 1 or Gy = {e}. Then there is an injective homomor-
phism of G into S

Recall that the rotation group in three dimensions SO(3) has no sub-
groups of finite index. A simple consequence of Theorem 1 is that SO(3)
does have subgroups of countable index.

It is not clear just what groups have an injective homomorphism into
Soo- However, the following theorem proves that not all reasonably sized
groups have an injective homomorphism into S..

THEOREM 3. There exists a simple group G such that card(G) = 2%° and
there is no injective homomorphism of G into S .

The group G of Theorem 3 can be taken to be S /S, where St is
the normal subgroup of S, consisting of all permutations which move only
finitely many integers. Theorem 3 should be compared with the results of de
Bruijn [3] who proves, for example, that S, can be embedded into S, /Ss.

2. Proof of Theorem 1. The bulk of the proof will be carried out in a
sequence of simple and probably well known lemmas.

LEMMA 4. Let Fy and Fy be two fields which have the same characteristic,
are algebraically closed, and satisfy card(Fy) = card(Fy) > Rg. Then Fy and
Fy are isomorphic fields.

Proof. Let P; be the prime subfield of F; (j = 1,2). P; is isomor-
phic to P, since F; and F» have the same characteristic. Let B; be a
transcendence basis for F; over P;, so that F} is the algebraic closure of
P;(Bj). Since F; is uncountable so is P;(B;) and hence B, is infinite. Thus
card(P;(Bj)) = card(B;) and card(P;(B;)) = card(F;) (Kaplansky [7], The-
orem 65, p. 74). It follows that card(B;) = card(Bz). Hence, P;(B;) and
P5(Bs) are isomorphic fields and so are their algebraic closures F; and F5. =

COROLLARY 5. Let F be a field which is algebraically closed and satisfies
card(F) = 2%, If F has characteristic zero, then F is algebraically isomor-
phic to the algebraic closure of the g-adic numbers Q, for any prime q or
to the field of complex numbers C. If F' has characteristic p, then F is al-
gebraically isomorphic to the algebraic closure of the field of formal Laurent
series F,((x)), where F, is the field of p elements.

Proof. We have
card(Q,) = 2% and card(F,((x))) = 2%°.
Now use Lemma 4 and Kaplansky [7], Theorem 65, p. 74. m
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Recall the elementary fact that if F'is a field, | - | is a nonarchimedian
absolute value on F, z,y € F, and |y| < |z|, then |z + y| = |z| (Artin [1],
Corollary 5.1).

LEMMA 6. Let L be a field, K C L a subfield such that L is algebraic
over K, |-| a nonarchimedian absolute value on L, and d(u,v) = |u—v| for
all u,v € L. Suppose that (K,d) is a separable metric space. Then (L,d) is
a separable metric space.

Proof. The key idea in this proof can be found in Artin [1], p. 45.

We can assume that L is algebraically closed, for | - | extends to be a
nonarchimedian absolute value on the algebraic closure of K (Bourbaki [2],
Proposition 9, p. 428).

Let F' be a countable subfield of K which is d-dense in K. It suffices to
prove that the roots of the monic polynomials in F[z] are dense in L. Let
we L, let f(z) =2"+a,_12" '+ ...+ a1 + ap € K[z] be the irreducible
polynomial for v over K, let C' = max{1, |ap_1|,...,|a1], |ao|}, and let € > 0.
Note that if v € L with [v] > C > 1 and if 0 < j < n — 1, then |ajvj| <
Clv|? < |v]™, hence |ag+a1v+ ...+ ap—10" Y < maxo<j<n—1|a;v7| < v|™,
and therefore |f(v)| = |v|™ > 0. Since u is a root of f(z), |u| < C. Choose
bo,b1,...,b,_1 € F such that maxo<j<n—1 ]aj — bj| < €. Let g(x) =" +
bp_1x" 1 + ...+ bix + by € Flz]. We have g(x) = (x — v1)...(x — v,),
where vy, ..., v, € L. Then [(u—v1)... (u—vy)|[ = [g(uv)] = [f(u) — g(u)| <
maxo<;<n—1|(a; —b;j)u’| < eC™. Hence, there exists at least one 1 <k <n
such that |[u —vg| < C /e m

LEMMA 7. Let F be a field which satisfies card(F) < 2%, Then there is
a nonarchimedian absolute value | -| on F with countable range and under
which F' becomes a separable metric space. If card(F) > Yo, then |- | is a
nontrivial absolute value.

Proof. That the range of | - | is countable is not essential for the proof
of Theorem 1, but does seem to be of independent interest.

We may assume that F' is algebraically closed and that card(F) = 2%0.
If not, enlarge F' to F(B), where B is a set of transcendental elements
so that card(F(B)) = 2%, and let K be the algebraic closure of F(B).
Then card(K) = card(F(B)) = 2% (Kaplansky [7], Theorem 65, p. 74) and
replace F' with K.

If F' has characteristic 0, let ¢ be a fixed prime. Corollary 5 implies that
we may assume that I is the algebraic closure of Q,, which is complete
under | - |. The g-adic absolute value | - |, extends in a unique manner to
be an absolute value | - | on F' (Bourbaki [2], Proposition 10, p. 429). The
construction of | - | shows that the range of | - | is countable since the range
of | - |4 is countable. Lemma 6 implies that (F,d) is a separable metric space
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since (Qq,d) is a separable metric space (Q is dense in Q,) and F' is an
algebraic extension of Q.

Next, suppose that F' has characteristic p. In this case Corollary 5 implies
that we may assume that F' is the algebraic closure of the field of formal
Laurent series Fj,((x)), where F), is the field of p elements. F,((z)) is com-
plete under a natural absolute value |-| (Jacobson [6], Theorem 9.16, p. 577).
As in the characteristic 0 case, the absolute value | - | on the field F,((z))
extends in a unique manner to be an absolute value, also denoted by |- |, on
F'. The construction of | - | again shows that the range of | - | is countable.
Lemma 6 again implies that (F,d) is a separable metric space since Fj,((x))
is a separable metric space (the finite Laurent series with coefficients in F),
are dense in F,((z))) and F is an algebraic extension of F,((x)).

Finally, if card(F') > ¥, then the nonarchimedian absolute value | - | is
nontrivial since (F,d) is a separable metric space. m

The argument given in the next lemma is inspired by that sketched in
Serre [10], page LG 4.4, in case F' is locally compact.

LEMMA 8. Let F be a field, |-| a nontrivial nonarchimedian absolute value
on F under which F is a separable metric space, A =[a € F | |a| < 1], and
n > 2. Then SL(n, A) is a proper subgroup of SL(n, F') of index < Xg.

Proof. Identify SL(n,F) with a subset of P by concatenating the
rows of each element of SL(n,F') and give SL(n, F') the relative topology.
SL(n, F') then certainly is a separable metric topological group.

Next, recall the elementary facts that A is a commutative ring with
identity since | - | is a nonarchimedian absolute value and that A is open in
F, for if a € A and b € F satisfies |b| < 1, then |a + b| < max(|al, |b]) < 1,
and therefore the ball B(a,1) C A. Next, A" is an open subset of F™°
and thus SL(n, A) = SL(n, F) N A" is an open subset of SL(n, F). Note
that SL(n, A) is closed under multiplication since A is a ring. SL(n, A) is
also closed under inversion by using Cramer’s Rule, again since A is a ring.
Hence, SL(n, A) is an open subgroup of SL(n, F'). Further, SL(n, A) is a
proper subgroup of SL(n, F') since | - | is a nontrivial absolute value.

The quotient topological space SL(n, F')/SL(n, A) is therefore discrete
and separable and not just a single point. Hence,

1 < card(SL(n, F')/SL(n, A)) < R. =

COROLLARY 9. Use the notation of Lemma 8. Let ¢ : SL(n,F) —
S(SL(n, F')/SL(n, A)) be the natural homomorphism. Then the kernel of ¢
is Z(SL(n, F)), the center of SL(n,F). In particular, there is an injective
homomorphism of SL(n, F)/Z(SL(n, F)) into Ss.
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Proof. If x € SL(n, F), then ¢(z) is the identity if and only if = €
yesLn,r) ¥ SL(n, A)y~™! = N, a normal subgroup of SL(n,F). We in-
fer that N is a proper subgroup of SL(n,F) by Lemma 8. Hence, z €
Z(SL(n, F')) by Dieudonné [4], pp. 38-39. On the other hand, Z(SL(n, F)) C
SL(n, A) since Z(SL(n, F')) consists of diagonal matrices. m

COROLLARY 10. Use the notation of Lemma 8. Let G C SL(n,F') be
a subgroup such that G N Z(SL(n,F)) = {e}. Then there is an injective
homomorphism of G into S .

Proof. There is an injective homomorphism of G into the quotient group
SL(n, F')/Z(SL(n, F')). Now use Corollary 9. m

We are now set to complete the proof of Theorem 1. We can assume that
card(F) = 2% and that F is algebraically closed by the proof of Lemma 7.
The same lemma implies that there is a nontrivial nonarchimedian absolute
value |-| on F under which F is a separable metric space. Define an injective
homomorphism ¢ : GL(n, F') — SL(n+2, F) as follows: if € GL(n, F), let
o(x);; =x;; for 1 <i,j<n,

det(x)™! fori=j=n+1,
p(x)ij =19 p(a)ij=1 fori=j=n+2,
o(x);; =0 otherwise.
Then ¢(GL(n, F))NZ(SL(n+2, F)) = {e} since Z(SL(n+2, F)) consists of
scalar multiples of the identity matrix. Hence, Corollary 10 implies that there
is an injective homomorphism of ¢(GL(n, F')), and therefore of GL(n, F'),
into Seo. =

3. Proof of Theorem 3. If F' C N is a nonempty finite set, define
U(F) = 1 € S | m(x) = x for every x € F]. Each U(F) is a subgroup
of S of countable index. There is a unique Hausdorff topological group
topology on S such that the U(F')’s form a basis for the topology of S
at the identity. It is simple to check that S, is a complete separable metric
topological group in this topology.

LEMMA 11. Let H be a topological group such that every subgroup of at
most countable index is open and let K be a topological group such that the
open subgroups of at most countable index form a basis at e in K. Then
every group homomorphism ¢ : H — K is continuous.

Proof. Let U be an open subgroup of K of at most countable index.
Then ¢~!(U) is a subgroup of H which is of at most countable index and
therefore is open. Since such U’s form a basis at e in K, ¢ is continuous at
e in H, and therefore ¢ is continuous. m

COROLLARY 12. Every group homomorphism 1 : Sec — Soo 45 continuous.
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Proof. The open subgroups of countable index form a basis for the
topology of S, at e. On the other hand, subgroups of countable index in
Soo are open by Dixon et al. [5], Theorem 1, p. 580. Now use Lemma 11. m

We are now ready to complete the proof of Theorem 3. Let St be the nor-
mal subgroup of Sy, consisting of all permutations which move only finitely
many integers. S, /St is known to be a simple group (Schreier and Ulam
[9], Satz 1, p. 135). Suppose that ¢ : So/Sf — Soo is an injective homo-
morphism. Let 7 : Soo — S /St be the natural surjective quotient mapping
and let ©» = ¢ om. Then 1 is a group homomorphism. 1 is continuous by
Lemma 12. But St is in the kernel of ¢ and St is dense in S.,. Hence ¥
is trivial and therefore ¢ is trivial. Contradiction. So there is no injective
homomorphism of S, /St into S m

4. Remark. The referee has pointed out that the separability of the
space (F,d) and the countability of the index of the subgroup SL(n,A) in
SL(n, F') can be proved algebraically in the special cases F' = @p and F' =
F,((x)), which allows for an alternative purely algebraic proof of Theorem 1.
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